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Abstract A memristor synapse with threshold mem-
ductance is employed to couple two neurons for rep-
resentation of the electromagnetic induction effect
triggered by their membrane potential difference.
This paper presents a memristor synapse-coupled bi-
neuron network by bidirectionally coupling two three-
dimensional heterogeneous or homogeneous Morris–
Lecar neurons with such a memristor synapse. The
memristive bi-neuron network possesses a line equi-
librium set with its stability related to the induc-
tion coefficient and memristor initial value. Coex-
isting firing activities in the heterogeneous memris-
tive bi-neuron network are explored using bifurcation
plots, phase plots, and time sequences, upon which the
initial-induced infinitelymany firing patterns including
hyperchaotic, chaotic, and periodic bursting and tonic-
spiking patterns are disclosed, indicating the emer-
gence of the initial-induced extreme multistability.
Furthermore, synchronous firing activities in homo-
geneous memristive bi-neuron network are investi-
gated using the time sequences, synchronization transi-
tion states, and mean synchronized errors. The results
demonstrate that the synchronous firing activities are
associated with the induction coefficient and specially
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associated with the initial values of memristor synapse
and coupling neurons. Finally, an FPGA-based elec-
tronic bi-neuron network is designed to experimentally
confirm the memristor initial-induced coexisting firing
activities.

Keywords Memristor synapse · Bi-neuron network ·
Initial value · Coexisting activity · Synchronous
activity

1 Introduction

Based on the proposed numerous mathematical mod-
els, the essential electrical activities, basic neuron
dynamics including resting, tonic-spiking, and burst-
ing behaviors, of biological neurons have been revealed
by carrying out bifurcation analyses in the past few
years. In electrophysiological environments, the neu-
ron electrical activities could be influenced by electro-
magnetic radiation [1]. From the point of view of elec-
tromagnetic induction theory, the magnetic flux could
be employed to describe the electromagnetic radiation
effect [2–6] and the flux-controlled memristor could
be taken as the coupled synapse between the neuronal
cells [7–10]. To date, some memristor-based neuron
models with the electromagnetic induction effects have
been proposed [7–15], from which the abundant fir-
ing activities have been disclosed, such as synchronous
firing activities [7–10], mode transition and selection
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between tonic-spiking and bursting [11–13], coherence
resonance of the spiking regularity [14], and coex-
isting multiple firing patterns [15–17]. When differ-
ent firing activities appear in neurons, the differences
of neuron membrane potentials can give birth to the
electromagnetic induction effects [17], behaving like
memristor synapses for coupling these neurons. Con-
sequently, two neurons can be regarded as a memristor
synapse-coupled neural network [10,17], in which the
memristor synapse plays a key role in the information
propagation and regulation mechanism of these neu-
rons.

Initial-dependent multi-stable firing patterns were
affirmed by actual experimental evidences [18].
Recently, Kim and Jones [19] investigated the dynam-
ical effect of asymmetric electrotonic coupling and
thereby uncovered the phenomenon of bistability in
a two-compartment model. On the basis of the two-
and three-dimensional Hindmarsh–Rose neuron mod-
els [15,20], the author of this paper discussed the hid-
den coexisting asymmetric behaviors caused by mem-
ristive electromagnetic induction current and coexist-
ing asymmetric bursters induced by the external AC
stimulus in single neuron. Meanwhile, on the basis of
the three-dimensional Morris–Lecar neuron model, the
author of this paper [21] explored the chaotic burst-
ing dynamics and coexisting multi-stable firing pat-
terns also. In contrast, Pisarchik et al. [22] investigated
the asymmetry induced multistability in the coupled
neuronal oscillators based on the three-dimensional
Hindmarsh–Rose neuron model. Furthermore, Bao et
al. [23] reported the infinitely many coexisting fir-
ing patterns with hidden extreme multistability in
an improved non-autonomous memristive FitzHugh–
Nagumo circuit. The initial-dependent multistability
or extreme multistability not only allows nonlinear
dynamical system to possess great flexibility for poten-
tial applications [24], but also promotes new chal-
lenges for controlling of multiple stable states [25,26].
The authors noticed that the coexistence of infinitely
many disconnected attractors, also known as extreme
multistability, was primitively reported in the unidi-
rectionally coupled Lorenz systems [27], bidirection-
ally coupled Rössler oscillators [28], and bidirection-
ally memristor-coupled system [29] due to the appear-
ance of incomplete synchronization. The problem that
remains is whether the coexistence of infinitely many
disconnected firing patterns also emerges in a memris-
tor synapse-coupled neural network and how the ini-

tial values of memristor synapse and coupling neurons
induce the extreme multistability. With these consider-
ations, this paper considers a Morris–Lecar bi-neuron
network coupled by a bidirectional memristor synapse
and then studies its coexisting firing activities with
extrememultistability in the heterogeneous case,which
has not been revealed yet in the previously reported lit-
erature. Therefore, such an initial-dependent extreme
multistability is an innovative point of our manuscript.

It is all known that abundant collective behav-
iors appear in the actual neural system due to the
interactions in neurons [30–35], among them syn-
chronization is the outstanding collective features in
neuroscience [36], which is regarded as one of the
mechanisms to propagate and to code information in
brain [37,38]. However, there are different kinds of
brain disorder diseases, such as Alzheimer’s, epilepsy,
Parkinson’s, and schizophrenia, which are involved
with the abnormal activities of synchronization [39].
Therefore, neuron synchrony is a fundamental topic in
neuroscience. For this reason, this paper also considers
the synchronous firing activities of the proposed mem-
ristor synapse-coupled Morris–Lecar bi-neuron net-
work in the homogeneous case, which could provide
new insights for the synchronization collective behav-
iors [40], especially induced by the initial values of
memristor synapse and coupling neurons.Additionally,
the digitally circuit-implemented electronic neurons
and their constructing neuronal networks can mimic
the single neuron firing activities and synchronous
firing activities [21,41–43], which could effectively
promote the integrated circuit (IC) design and arti-
ficial intelligence applications of cellular neural net-
works [44].

The rest is arranged as follows. In Sect. 2, a
Morris–Lecar bi-neuron network bidirectionally cou-
pled by a memristor synapse is presented and the
stability for its line equilibrium set is analyzed. In
Sect. 3, coexisting firing activities in the heteroge-
neous memristive bi-neuron network are explored
using numerical plots, upon which initial-induced
infinitely many firing patterns, i.e., extreme multista-
bility, are disclosed. The following Sect. 4 investigates
synchronous firing activities in the homogeneousmem-
ristive bi-neuron network theoretically and numeri-
cally. Moreover, an FPGA-based electronic neuronal
network is designed and the corresponding experimen-
tal observations are performed to confirm the numer-
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ical plots in Sect. 5. Finally, it is a conclusion of this
paper.

2 Memristor synapse-coupled Morris–Lecar
bi-neuron network

Consider a memristor synapse to couple two neu-
rons for representation of the electromagnetic induc-
tion effect triggered by their membrane potential
difference. For the inducted current IM and mem-
brane potential difference VM = V1 − V2, the
characterized memristor synapse can be described
by

IM = W (ϕ)VM = tanh(ϕ)(V1 − V2)

ϕ̇ = VM = V1 − V2 (1)

where ϕ is an inner flux state variable triggered by
the membrane potential difference of two coupling
neurons and W (ϕ) = tanh(ϕ) is a threshold mem-
ductance [16,23]. Note that the memristor synapse
model is an ideal flux-controlled memristor, distin-
guishing from the non-ideal flux-controlled memristor
employed in [17].

A three-dimensional fast-slow autonomous Morris–
Lecar neuronmodelwas reported by [21,45–47],which
can be employed to characterize membrane poten-
tial firing activities in biological neurons. Based on
the model of memristor synapse in (1), a memris-
tor synapse-coupled Morris–Lecar bi-neuron network,
also abbreviated as memristive bi-neuron network, is
derived, which is expressed as

V̇1 = gCaM∞1(VCa − V1) + gKW1(VK1 − V1)

+ gL(VL − V1) − I1 + k IM

Ẇ1 = τW1(W∞1 − W1)

İ1 = ε(V0 + V1)

V̇2 = gCaM∞2(VCa − V2) + gKW2(VK2 − V2)

+ gL(VL − V2) − I2 − k IM

Ẇ2 = τW2(W∞2 − W2)

İ2 = ε(V0 + V2)

ϕ̇ = V1 − V2 (2)

where

M∞ j (Vj ) = 0.5 + 0.5 tanh[(Vj − Va)/Vb]
W∞ j (Vj ) = 0.5 + 0.5 tanh[(Vj − Vc)/Vd]
τW j (Vj ) = (1/3) cosh[0.5(Vj − Vc)/Vd] (3)

The subscripts j = 1, 2 stand for the first neuron (also
called neuron 1) and second neuron (also called neu-
ron 2) of the two coupling neurons, Vj ,Wj are the
fast spiking variables and I j is the slow bursting vari-
able induced by the membrane potential of j th neu-
ron. The induction coefficient k represents the coupling
strength of electromagnetic induction between the two
neurons. Except for the parameters VK1, VK2, and ε,
the other parameters are determined from [21,45] as
VCa = 1 mV, VL = − 0.5 mV, gCa = 1.2 mS/cm2,
gK = 2mS/cm2, gL = 0.5mS/cm2,V0 = 0.2 mV,
Va = − 0.01mV, Vb = 0.15mV, Vc = 0.1mV, and
Vd = 0.05 mV. Note that twomembrane capacitances
are fixed as 1µF/cm2 for simplicity.

Distinctly, the memristive bi-neuron network (2)
owns a line equilibrium set, which can be expressed as

P = (− V0, W̄∞, Ī1, − V0, W̄∞, Ī2, μ) (4)

where μ is an uncertain constant associated with the
memristor initial position,

M̄∞(V0) = 0.5 − 0.5 tanh[(V0 + Va)/Vb]
W̄∞(V0) = 0.5 − 0.5 tanh[(V0 + Vc)/Vd]
τ̄W (V0) = (1/3) cosh[0.5(V0 + Vc)/Vd] (5)

and

Ī1 = gCa M̄∞(VCa − V0) + gKW̄∞(VK1 − V0)

+ gL(VL − V0)

Ī2 = gCa M̄∞(VCa − V0) + gKW̄∞(VK2 − V0)

+ gL(VL − V0) (6)

Therefore, the line equilibrium set (4) is independent
of the induction coefficient k, but closely dependent on
the memristor initial position μ.

With (2), (3), (4), and (5), the Jacobian matrix for
the memristive bi-neuron network at P is deduced as
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− H1 gK(VK1 + V0) − 1 − k tanh(μ) 0 0 0
H2 − τ̄W 0 0 0 0 0
ε 0 0 0 0 0 0

− k tanh(μ) 0 0 − H1 gK(VK2 + V0) − 1 0
0 0 0 H2 − τ̄W 0 0
0 0 0 ε 0 0 0
1 0 0 − 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where

H1 = gCa M̄∞ + gKW̄∞ + gL + k tanh(μ)

− 0.5gCaV
−1
b (VCa + V0)sech

2[(V0 + Va)/Vb]
H2 = 0.5τ̄WV−1

d sech2[(V0 + Vc)/Vd]
Thus, the stability of the line equilibrium set (4) is
related to the induction coefficient k andmemristor ini-
tial position μ.

With (7), the eigenvalues at P can be numerically
calculated in the considered regions of k ∈ [0, 1] and
μ ∈ [− 10, 10]. When VK1 = VK2 = − 0.7 mV and
ε = 0.005, the eigenvalues have one zero root, four (or
two) positive roots, and two (or four) negative roots,
indicating that every point in the line equilibrium set
P is a critical saddle point. When VK1 = VK2 =
− 410 mV and ε = 0.1, the eigenvalues have one zero
root, one pair (or two pairs) of complex roots with pos-
itive real parts, and four negative roots (or two neg-
ative roots and one pair of complex roots with nega-
tive real parts), implying that every point in the line
equilibrium set P is a critical saddle-focus. In con-
trast, when VK1 = − 410 mV, VK2 = − 0.7 mV, and
ε = 0.1, the eigenvalues have the same roots as those
for VK1 = VK2 = − 410 mV and ε = 0.1, i.e., every
point in the line equilibrium set P is a critical saddle-
focus.

3 Coexisting firing activities in heterogeneous
memristive bi-neuron network

The voltage VK in the potassium ion-channel of neuron
is a variable parameter [47].When two different param-
eters of VK are employed, two typical fold/Hopf and
fold/homoclinic bursting patterns can be revealed in
the three-dimensional autonomous Morris–Lecar neu-
ron model [21,47]. Denote VK1 = − 410 mV for neu-
ron 1 and VK2 = − 0.7 mV for neuron 2 along with
ε = 0.1. As a result, the parameters between the two
coupling neurons are inconsistent, indicating that the

memristor synapse-coupled Morris–Lecar bi-neuron
network is heterogeneous. For this case, we focus on
the initial-induced coexisting firing activities in the het-
erogeneous memristive bi-neuron network. Note that
MATLAB ODE23s algorithm with the time-step 0.01
and ODE23s-based Wolf’s Jacobian matrix method is
used for simulations of two and one dimension of bifur-
cation diagrams and Lyapunov exponents (LEs).

The bi-neuron initial values are fixed as (0.01 mV, 0,
0, − 0.01 mV, 0, 0) and the memristor initial value ϕ0

and induction coefficient k are adjusted in the regions
[− 2mWb, 4 mWb] and [0.02, 0.4], respectively.When
bothϕ0 and k are continuously changed in their regions,
two dimensions of bifurcation plots in the ϕ0 − k plane
are depicted in Fig. 1. The two dimensions of bifurca-
tion diagram in Fig. 1a are painted with different colors
through detecting the periodicities of the slow burst-
ing variable I1 of neuron 1. The red regions are coded
by CH for representing chaotic bursting patterns when
the periodicities are greater than 4 and the magenta,
brown, dark green, and blue regions are respectively
coded by P4, P3, P2, and P1 for representing periodic
bursting patternswith different bursters. In contrast, the
two dimension of dynamical map in Fig. 1b is painted
with different colors through calculating the values of
the largest LE [48]. The yellow-red-white regions with
positive largest LE stand for chaotic bursting patterns
and the dark-yellow regions with zero largest LE stand
for periodic bursting patterns. Observed from Fig. 1a,
b, it is sure that the firing activities described by the two
dimension of bifurcation diagram coincide with those
described by the two dimension of dynamical map.

Take the induction coefficient k = 0.07 and 0.2 as
cases to further explore the memristor initial-induced
dynamical behaviors in the heterogeneous memristive
bi-neuron network. When the memristor initial value
ϕ0 is increased from − 2 mWb to 4 mWb, the bifurca-
tion diagram of the maxima I1,max of the slow burst-
ing variable I1 of neuron 1 and the corresponding first
three finite-time LEs are given, as shown in Fig. 2, in
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Fig. 1 Two dimension of the mixed initial value and parameter-
related bifurcation plots in the ϕ0 − k plane with the bi-neuron
initial values (0.01 mV, 0, 0, − 0.01 mV, 0, 0), where the unit of

ϕ0 is mWb a bifurcation diagram depicted by the periodicities
of the slow bursting variable I1 of neuron 1 b dynamical map
depicted by the values of the largest LE

LE
s

φ0

I 1,
m

ax
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s
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I 1,
m
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Fig. 2 One dimension of the bifurcation behaviors induced by
the initial value ϕ0 of memristor, bifurcation diagram of themax-
ima I1,max of the slow bursting variable I1 of neuron 1 (top) and

corresponding first three LEs (bottom), where the unit of ϕ0 is
mWb a bifurcation behaviors for k = 0.07 b bifurcation behav-
iors for k = 0.2

which the dynamical behaviors depicted by the bifurca-
tion diagrams do well match with those depicted by the
finite-timeLEs. The numerical plotsmanifest that there
exist complex memristor initial-dependent dynamical
behaviors in the heterogeneous memristive bi-neuron
network, indicating the emergence of the memristor
initial-induced extreme multistability. Such an initial-
dependent extreme multistability has not been found
yet in the previously reported memristor synapse-
coupled neuron networks. Only multistability with up

to four types of coexisting patterns has been uncovered
in a five-dimensional memristor-coupled Hindmarsh–
Rose neuron model [17] or a three-dimensional mem-
ristor synapse-coupled Hopfield neural network with
two neurons [48].

In the first case of Fig. 2a, the induction coefficient is
fixed as k = 0.07. In the heterogeneous memristive bi-
neuron network, the action potential starts from a peri-
odic burster-4 bursting for neuron 1 at ϕ0 = − 2 mWb
and breaks into a periodic bursting with double burster-
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Fig. 3 Memristor initial-induced infinitely many coexisting pat-
terns for k = 0.07, the lefts are phase plots of neuron 1 in the
I1 − V1 plane and neuron 2 in the I2 − V2 plane, the rights are
time sequences of the membrane potentials V1 and V2, where
the units of V1, V2 are mV and the units of I1, I2 are μA a

periodic burster-4 bursting and periodic tonic-spiking for ϕ0 =
− 2 mWb b periodic bursting with double burster-4 and peri-
odic tonic-spiking for ϕ0 =− 0.97mWb c hyperchaotic bursting
and hyperchaotic tonic-spiking for ϕ0 = − 0.2 mWb d periodic
burster-2 bursting and periodic tonic-spiking for ϕ0 = 2 mWb

4 at ϕ0 = − 1.02 mWb. The periodic double burster-4
bursting gradually evolves into the periodic burster-4
bursting and then jumps into a hyperchaotic bursting
with disordered spikes at ϕ0 = − 0.68 mWb through
chaos crisis. The hyperchaotic bursting sustains to ϕ0

= 0.18 mWb, after which another periodic burster-4
bursting with different structures comes again via tan-
gent bifurcation route. Finally, the periodic burster-4
bursting degrades into a periodic burster-2 bursting at
ϕ0 = 0.94mWbvia reverse period-doubling bifurcation
route. For four specified values of the memristor initial
value ϕ0, the memristor initial-induced infinitely many
coexisting firing patterns are shown in Fig. 3, where the
phase plots of two neurons and time sequences of two
membrane potentials are simulated concurrently.

In the second case of Fig. 2b, the induction coeffi-
cient is changed as k = 0.2. In the heterogeneous mem-
ristive bi-neuron network, the action potential begins
with a periodic burster-5 bursting for neuron 1 at ϕ0

= − 2 mWb and mutates into a chaotic bursting with
variable burster at ϕ0 = − 0.46 mWb through the con-
tinuous deformation of the periodic burster. The chaotic
bursting evolves into a hyperchaotic bursting and fur-
ther breaks into another periodic burster-5 burstingwith
different structures at ϕ0 = 0.22mWb via tangent bifur-
cation route. Another periodic burster-5 bursting grad-
ually splits into a periodic quadruple burster-5 burst-

ing via reverse period-doubling bifurcation route and
then unites into the periodic burster-5 bursting at ϕ0 =
0.63mWb.As ϕ0 increases further, the chaotic bursting
appears again at ϕ0 = 0.90 mWb and ends at ϕ0 = 1.05
mWb. Afterward, the periodic burster-5 bursting lasts a
long initial value region, and then enters into the chaotic
bursting, and finally settles on the hyperchaotic burst-
ing. Similarly, for six specified values of the memristor
initial value ϕ0, the phase plots and time sequences of
the induced infinitely many coexisting firing patterns
are shown in Fig. 4, in which the phase plots of two
neurons and time sequences of two membrane poten-
tials are simulated concurrently. Besides, it is clearly
seen that the periodic burster-5 bursting in Fig. 4c has
different pattern structure from that in Fig. 4a, whereas
the hyperchaotic bursting in Fig. 4f possesses a distin-
guishing pattern structure from that in Fig. 4b, implying
the coexistence of different kinds of firing patterns.

Note that for the hyperchaotic bursting and hyper-
chaotic tonic-spiking shown in Figs. 3c, 4b, and 4f,
the first three finite-time LEs are calculated as (0.0448,
0.0042, 0.0001), (0.0435, 0.0098, 0.0001), and (0.0578,
0.0036, 0.0000), respectively, indicating the appear-
ance of hyperchaotic firing activities in the heteroge-
neous memristive bi-neuron network.

To conveniently explore dynamical effects of the bi-
neuron initial values on the heterogeneous memristive
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Fig. 4 Memristor initial-induced infinitelymany coexisting pat-
terns for k = 0.2, the lefts are phase plots of neuron 1 in the
I1 − V1 plane and neuron 2 in the I2 − V2 plane, the rights are
time sequences of the membrane potentials V1 and V2, where the
units of V1, V2 are mV and the units of I1, I2 are μA a periodic
burster-5 bursting and periodic tonic-spiking for ϕ0 = − 1 mWb
b hyperchaotic bursting and hyperchaotic tonic-spiking for ϕ0

= − 0.15 mWb c periodic bursting with quadruple burster-5 and
periodic tonic-spiking for ϕ0 = 0.45 mWb d chaotic bursting
and chaotic tonic-spiking for ϕ0 = 1 mWbe another periodic
burster-5 bursting and periodic tonic-spiking for ϕ0 = 1.5 mWb
f hyperchaotic bursting and hyperchaotic tonic-spiking for ϕ0 =
3 mWb

bi-neuron network, the induction coefficient and mem-
ristor initial value are kept unchanged as k = 0.2 and
ϕ0 = 0 respectively. The bi-neuron initial values are
considered as (0.01 mV, 0, I10, − 0.01 mV, 0, I20), in
which both themeasurable initial values I10 and I20 are
varied in the regions [− 0.2μA, 0.2μA]. The basin
of attraction in theI10–I20 plane is shown in Fig. 5a,
which demonstrates that different topologically chaotic
(red and magenta) and periodic (blue, cyan, green, and
orange) bursting firings coexisted in the heterogeneous
memristive bi-neuron network. Corresponding to the
initial values appeared in different attracting regions of
Fig. 5a, phase plots of the chaotic and periodic burst-
ing firings are together drawn in Fig. 5b. Note that only
four types of periodic bursting firings labeled by PI –
PV and two types of chaotic bursting firings labeled by
CI, CII are classified in Fig. 5, the other types of peri-

odic and chaotic bursting firings with other different
positions are not provided. Consequently, the bi-neuron
initial values can also trigger complex firing activities
coexisted in the heterogeneous memristive bi-neuron
network.

4 Synchronous firing activities in homogeneous
memristive bi-neuron network

The parameters of two coupling neurons are employed
as VCa = 1 mV, VL = − 0.5 mV, gCa = 1.2 mS/cm2,
gK = 2 mS/cm2, gL = 0.5 mS/cm2,V0 = 0.2 mV, Va =
− 0.01 mV, Vb = 0.15 mV, Vc = 0.1 mV, Vd = 0.05 mV,
VK1 = VK2 = VK = − 410 mV, and ε = 0.1. Thus, the
two coupling neurons have exactly the same parame-
ters, indicating that the memristive bi-neuron network
is homogeneous. Based on this, we focus on the initial-
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I 20
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V 1
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CI: (0, 0)

PII: (0, −0.055)

PI: (0, −0.1)

PV: (0, 0.033)

CII: (0, 0.2)
PIII: (0, 0.076)

b

Fig. 5 Coexisting bursting firing behaviors for k = 0.2 and ϕ0
= 0 mWb with the bi-neuron initial values (0.01 mV, 0, I10,
− 0.01 mV, 0, I20), where the units of V1 and I1 are mV and μA
respectively a basin of attraction in the I10–I20 plane b coexis-

tence of different topologically chaotic (brown and black) and
periodic (blue, red, and green) bursting firings. (Color figure
online)

induced synchronous firing activities in the homoge-
neous memristive bi-neuron network.

4.1 Complete synchronization

Consider a nonlinear dynamical system

ẋ = h(x) (8)

in which h: D → Rn represents a continuously dif-
ferentiable map from a real domain D ⊂ Rn into
Rn and the origin x = 0 locates in D.

The following theorem provides conditions under
whichwe can reach conclusion about the stability of the
origin as an equilibrium set for the nonlinear dynamical
system by inspecting its stability as the equilibrium set
for the linear dynamical system [49].

Theorem 1 ([49], Theorem 4.7, p. 139) Suppose x = 0
to be an equilibrium point for the nonlinear dynamical
system (8). Let

A = ∂h(x)

∂x

∣∣∣∣
x=0

(9)

Then, the origin is asymptotically stable if Re(λi ) < 0
for all eigenvalues of A.

Denote e1 = V1 − V2, e2 = W1 − W2, e3 = I1 −
I2, and e = [e1, e2, e3]T . By (2), the error system of
the homogeneous memristive bi-neuron network can
be described as

ė1 = 2k IM − gLe1+gKVKe2−e3 + F1(Vj ,Wj , e)

ė2 = F2(Vj ,Wj , e)

ė3 = εe1 (10)

where

IM = tanh(ϕ)(V1 − V2) = tanh(ϕ)e1

F1(Vj ,Wj , e) = gCaVCa(M∞1 − M∞2)

− gCa(M∞1V1 − M∞2V2)

− gK(W1V1 − W2V2)

F2(Vj ,Wj , e) = τW1(W∞1−W1)−τW2(W∞2 − W2)

For the sake of ease, the aforementioned parameters of
twocouplingneurons are utilizeddirectly. Thus, F1(Vj ,
Wj , e) and F2(Vj , Wj , e) can be further simplified as

F1(Vj ,Wj , e) = 1.2(M∞1−M∞2)−1.2(M∞1V1

− M∞2V2)−2(W1V1−W2V2)

= 0.6{tanh[(100V1+1)/15]
− tanh[(100V2+1)/15]}
− 0.6{(V1−V2)+V1 tanh[(100V1
+1) /15]−V2 tanh[(100V2+1)/15]}
− 2(W1V1−W1V2+W1V2−W2V2)

= − 0.6e1−2W1e1−2V2e2

+ 0.6{tanh[(100V1+1)/15]
− tanh[(100V2+1)/15]}
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− 0.6{V1 tanh[(100V1+1)/15]
− V2 tanh[(100V2+1)/15]}

F2(Vj ,Wj , e) = (τW1W∞1−τW2W∞2)−(τW1W1

− τW1W2+τW1W2−τW2W2)

= 6−1[cosh(10V1−1)

− cosh(10V2−1)]
+ 6−1[cosh(10V1−1) tanh(20V1−2)

− cosh(10V2−1) tanh(20V2−2)]
− 3−1e2 cosh(10V1−1)

− 3−1W2[cosh(10V1−1)

− cosh(10V2−1)]
= −3−1e2 cosh(10V1−1)

+ 6−1[cosh(10V1−1)

− cosh(10V2−1)]
+ 6−1 tanh(20V1−2)[cosh(10V1
− 1)− cosh(10V2−1)]
+ 6−1 cosh(10V2−1)[tanh(20V1
− 2)− tanh(20V2−2)]
− 3−1W2[cosh(10V1−1)

− cosh(10V2−1)]
It is easy to obtain that the origin e = 0 is the equi-

librium point for the error system (10). Therefore, we
have the following theorem.

Theorem 2 Set |W1| ≤ L0, if2L0−2ktanh(ϕ)+1.1 >

0, and ε > 0 the zero solution of the error system (10) is
asymptotically stable. Thus, the two coupling neurons
in the homogeneous memristive bi-neuron network are
complete synchronization.

Proof As the error system (10) has the equilibrium
point e = 0. Let us investigate the stability of zero
solution by using linearization. From (9), the Jacobian
matrix A at the origin is given by

A =
⎡
⎣
2k tanh(ϕ)− 1.1 − 2W1 2(VK − V2) −1

0 − 3−1 cosh(10V1−1) 0
ε 0 0

⎤
⎦

(11)

we set L1 = 2W1−2ktanh(ϕ)+1.1, L2 = 2(V2−VK ),
L3 = 3−1cosh(10V1 − 1), then the Jacobian matrix A
can be rewritten as

A =
⎡
⎣

−L1 −L2 −1
0 −L3 0
ε 0 0

⎤
⎦ (12)

The eigenvalues of A are

λ1 = − L3

λ2,3 = − 0.5L1 ± 0.5
√
L2
1 − 4ε

(13)

As cosh(10V1 − 1) ≥ 1 is always true, there yields
L3 > 0, i.e., the eigenvalue λ1 satisfies λ1 < 0. For
|W1| ≤ L0 and 2L0 −2ktanh(ϕ)+1.1 > 0, we have
L1 > 0. As ε > 0, the eigenvalues λ2,3 satisfy λ2,3 <

0. Consequently, by Theorem 1, the zero solution of the
error system (10) is asymptotically stable. Thus, the
two coupling neurons in the homogeneous memristive
bi-neuron network are complete synchronization. �	
Remark 1 Noteworthily, from the seventh equation of
(2), we have ϕ = ϕ0 + ∫ t

0 e1dτ , thus the L1 not only
depends on the induction coefficient k andboundofW1,
but also depends on the memristor initial value ϕ0. Of
particular importance, for fixed L0, there is the condi-
tion 2ktanh(ϕ) < 2L0 +1.1.When the zero solution is
asymptotically stable, there gets ϕ = ϕ0 + ∫ t

0 e1dτ ≈
ϕ0, indicating that the two coupling neurons are eas-
ier to synchronize for more negative memristor initial
value along with larger induction coefficient.

Remark 2 What needs special attention is that, in the
linearization system ė = Ae, the solution actually sat-
isfies ‖e(t)‖ ≤ ‖e(t0)‖ emax{Re(λi )}·(t−t0), thus, the sta-
bility depends on the initial value e(t0) and eigenvalue
real part Re(λi ). In a short time, the initial value e(t0)
will have great influence on the stability [50], i.e., syn-
chronization of the two coupling neurons. But, in a long
time, the Re(λi ) plays a decisive role over the initial
value e(t0). That is, the initial value e(t0) have influ-
ence on synchronization of the two coupling neurons,
but with the passage of time, the initial value effect on
synchronization gradually decreases and the influence
of Re(λi ) on synchronization gradually highlights.

4.2 Numerical validations

Now, we perform the numerical validations for the dif-
ferent collective behaviors, i.e., synchronization in the
memristive bi-neuron network (2). The aforementioned
parameters for the homogeneous memristive bi-neuron
network are kept unchanged.

Firstly, the bi-neuron initial values are fixed as
(0.01 mV, 0, 0,− 0.01 mV, 0, 0) and both the induction
coefficient k andmemristor initial value ϕ0 are tunable.
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Fig. 6 Synchronous firing activities of the homogeneous mem-
ristive bi-neuron network with different induction coefficient k
andmemristor initial value ϕ0, where the lefts are time sequences
of bursting behaviors, the rights are synchronization transition

states, the units of V1, V2 are mV, and the units of I1, I2 are μA
a k = 0.2, ϕ0 = 2 mWb b k = 0.2, ϕ0 = − 0.5 mWb c k = 0.2, ϕ0
= − 1 mWb d k = 0.4, ϕ0 = − 0.5 mWb

When ϕ0 = 2 mWb and − 0.5 mWb withk = 0.2 are
selected, there exist the relatively large errors between
the two membrane potentials, indicating that the two
coupling neurons are out of synchronization, as shown
in Fig. 6a, b. However, when k = 0.2, ϕ0 = − 1 mWb as
well as k =0.4,ϕ0 =− 0.5mWbare selected, the state of
two coupling neurons is asymptotically synchronized,
as shown in Fig. 6c, d. Therefore, memristor synapse
coupling can enhance the synchronization between the
two coupling neurons, including the larger induction
coefficient and more negative memristor initial value.

Memristor synapse coupling could be much more
effective to propagate signals between adjacent neurons
and implement information encoding for these neu-
rons [1]. As shown in Fig. 6, with decreasing the mem-
ristor initial value ϕ0 or increasing the induction coef-
ficient k, the two coupling neurons can achieve asymp-
totical synchronization and the error between the two
membrane potentials is decreased entirely. The under-
lyingmechanism could be that memristor synapse cou-
pling can exchange the magnetic flux and the induced
current can be applied to actuate the neuron to keep in
sync with another neuron. The weak electromagnetic
induction effect outputs small induced current bymem-
ristor synapse, leading to that the two coupling neurons
are out of synchronization.

Secondly, the induction coefficient is kept for fixed k
= 0.2. Except for the changes in the slow bursting vari-
able initial values I10 and I20, all the initial values are
zero. When six sets of the initial values I10 and I20 are
assigned, the bursting behaviors and synchronization
transition states are shown in Fig. 7, from which differ-
ent synchronous activities can be observed in the homo-
geneous memristive bi-neuron network. The numerical
results demonstrate that the synchronous activities are
closely related to the bi-neuron initial values also.

Now synchronizability is explored by altering the
values of the mixed parameter k and initial value ϕ0 as
well as the initial values I10 and I20. To quantitatively
depict the error of two action trajectories, a normalized
mean synchronization error E can be utilized [35,51],
which is defined as

E = 1

N

N∑
n=1

√[V1(n)−V2(n)]2+[W1(n)−W2(n)]2+[I1(n)−I2(n)]2√
V1(n)2+W1(n)2+I1(n)2+V2(n)2+W2(n)2+I2(n)2

(14)

where Vj (n),Wj (n), and I j (n) are the nth sampling
values with Nsamples during a time sequence inter-
val. With (14), the normalized mean synchronization
error of the homogeneous memristive bi-neuron net-
work can be calculated, so that E → 0 is relative to the
synchronous state.
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Fig. 7 Synchronous activities of the homogeneous memris-
tive bi-neuron network with different initial values I10 and I20,
where k = 0.2, all other initial values are zero, the lefts are time
sequences of bursting behaviors, and the rights are synchroniza-

tion transition states, the units of V1, V2 are mV, and the units of
I1, I2 are μA a I10 = 0, I20 = 0 b I10 = 0.1 μA, I20 = 0 c I10 =
0.05 μA, I20 = 0 d I10 = −0.1μA, I20 = 0 e I10 = 0, I20 = 0.1μA
f I10 = 0, I20 = − 0.1 μA

For the time sequence interval [500, 600] with the
time-step 0.01 and sample sizeN= 10000, the normal-
izedmean synchronization error for different induction
coefficient k and memristor initial value ϕ0 is plotted
in the ϕ0 − k plane, as shown in Fig. 8a. The red region
indicates the two coupling neurons in synchronization
with E close to zero; however, the other color regions
denote the two coupling neurons out of synchronization
with E having positive values. By increasing the induc-
tion coefficientk, the normalizedmean synchronization
error E drops near zero for more negative memristor
initial valueϕ0, following that the two coupling neurons
become synchronizable. Meanwhile, when the mem-
ristor initial value ϕ0is of a small negative value or a
positive value, the two neurons are asynchronous for
all values of the induction coefficientk.

Similarly, the normalized mean synchronization
error for different slow bursting variable initial values
I10 and I20 is drawn in the I10 − I20 plane, as shown
in Fig. 8b. The boundary between the synchronization

and asynchronization locates just below the diagonal
line, in which the bottom right area colored by the red
represents the two coupling neurons in synchronization
with E close to zero; oppositely, the top left area col-
ored by the black represents the two coupling neurons
out of synchronization with E positive values. Partic-
ularly, only a narrow transition area appears in Fig. 8b,
different from that in Fig. 8a, which demonstrates that
the synchronous firing activities are extremely sensitive
to the initial values of two neuron membrane potentials
in the homogeneous memristive bi-neuron network.

From the normalized mean synchronized errors
given in Fig. 8, it is concluded that the synchronous fir-
ing activities in the homogeneousmemristive bi-neuron
network are associated with the induction coefficient,
and specially the initial values of memristor synapse
and coupling neurons. Such the synchronous firing
activities closely related to the initial values have not
been reported yet in the previously published achieve-
ments.
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Fig. 8 Normalized mean synchronized errors of the homoge-
neous memristive bi-neuron network in the ϕ0 − k plane and the
I10 − I20 plane, where the unit of ϕ0 is mWb and the units of

I10, I20 are μA a for different induction coefficient k and mem-
ristor initial value ϕ0 b for different slow bursting variable initial
values I10 and I20

5 FPGA-based experimental confirmation

To show the physical implementation of the proposed
memristive bi-neuron network, a digitally circuit-
implemented electronic bi-neuron network is designed
using FPGA [52,53], based on which the initial-
induced coexisting and synchronous firing activities of
biological process in thememristive bi-neuron network
can be observed experimentally.

AXilinxFPGA(Zynqxc7z020) boardwith extended
interfaces is employed to implement the proposed
memristor synapse-coupled Morris–Lecar bi-neuron
network. The register transfer level (RTL) schematic
diagram of the digitally circuit-implemented electronic
bi-neuron network is depicted, as shown in Fig. 9.
Floating-point operation IP cores are called to construct
Verilog HDL programs in Vivado integrated devel-
opment environment (IDE). To guarantee high com-
putation accuracy, pure floating-point operations are
applied on FPGA without using bit shifting for fixed-
point multiplication and any approximations such as
piecewise linearization [52,53]. The verilog HDL pro-
grams are optimized to reduce the resource utilization
by carefully designing timemultiplexing sequence. For
instance, themodules using for computations of (M∞1,
W∞1, τ∞1) and (M∞2,W∞2, τ∞2) have the same func-
tion with two different input variables V1 and V2 such
that only onemodule of (M∞ j ,W∞ j , τ∞ j ) is instanced
and called to attain the results of (M∞1, W∞1, τ∞1)

and (M∞2,W∞2, τ∞2) in order. Two selected floating-

point variables are transformed into integer-type num-
bers before being sent to a two-channelDAC (AD9767)
board which is installed on the FPGA extended inter-
face. The two analog signals converted by the DAC
board are measured in the XY displaying mode or
normal mode on a Keysight DSO-X 4154A oscillo-
scope.

To demonstrate the FPGA-based digital experimen-
tal results, the heterogeneousmemristive bi-neuronnet-
work is considered. The parameters and initial val-
ues of two coupling neurons along with the memris-
tor induction coefficient are assigned as those used
in Fig. 4. Corresponding to the numerical results
given in Fig. 4, the experimentally captured results
for different values of memristor initial value ϕ0

are provided, as shown in Fig. 10, where for each
memristor initial value, the phase plots of two cou-
pling neurons and time sequences of two membrane
potentials are overlapped on each picture by post-
processing. One thing to note is that for the digitally
circuit-implemented electronic bi-neuron network, all
the parameters are dimensionless and have no phys-
ical meaning. Therefore, complex memristor initial-
induced coexisting firing activities can be experimen-
tally observed in such a memristive bi-neuron network.
Generally ignoring the errors in amplitudes caused
by same linear scaling, the experimental results in
Fig. 10 well match with the numerical simulations in
Fig. 4, indicating the feasibility of the digitally circuit-
implemented electronic bi-neuron network. Analo-
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Fig. 9 RTL schematic diagram of the memristor synapse-coupled Morris–Lecar bi-neuron network implemented in Zynq xc7z020
FPGA board

gously, the aforementioned numerical synchronous fir-
ing activities in the homogeneousmemristive bi-neuron
network can be also captured in the digitally circuit-
implemented electronic bi-neuron network, which are
omitted here.

6 Conclusions

A memristor synapse-coupled bi-neuron network was
presented, which was completed by bidirectionally
coupling two three-dimensional heterogeneous or
homogeneous Morris–Lecar neurons with a memris-
tor synapse. Due to the existence of a line equilib-
rium set, coexisting firing activities in the heteroge-
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Fig. 10 FPGA-based experimentally captured results of mem-
ristor initial-induced infinitely many coexisting patterns for k =
0.2, the lefts are phase plots of neuron 1 in the I1 − V1 plane and
neuron 2 in the I2−V2 plane, the rights are time sequences of the
membrane potentials V1 and V2 a periodic burster-5 bursting and
periodic tonic-spiking for ϕ0 = − 1 b hyperchaotic bursting and

hyperchaotic tonic-spiking for ϕ0 = − 0.15 c periodic bursting
with quadruple burster-5 and periodic tonic-spiking for ϕ0 = 0.45
d chaotic bursting and chaotic tonic-spiking for ϕ0 = 1 e another
periodic burster-5 bursting and periodic tonic-spiking for ϕ0 =
1.5 f hyperchaotic bursting and hyperchaotic tonic-spiking for
ϕ0 = 3

neous memristive bi-neuron network were explored,
upon which initial-induced infinitely many firing pat-
terns with extrememultistability were numerically dis-
closed. Meanwhile, synchronous firing activities in
the homogeneous memristive bi-neuron network were
investigated. It can be found theoretically and numeri-
cally that the two coupling neurons are easier to com-
pletely synchronize for more negative memristor ini-
tial value along with larger induction coefficient, but
their synchronous firing activities can be affected by the
initial values of two coupling neurons. Furthermore, a
digitally circuit-implemented electronic bi-neuron net-
work was designed using FPGA and the memristor
initial-induced coexisting firing activities were cap-
tured to experimentally confirm the numerical plots.
The investigations for memristor synapse-coupled bi-
neuron network can provide some new insights for
understanding the actual firing activities of neuron-
based complex network.Moreover, when amultiplayer
or chain neural network is modeled by the Morris–
Lecar neurons, what kinds of the collective behaviors,

for example, chimera state [54], will be encountered
in the network involved field coupling, or/and noise,
or/and chemical autapse [55,56], which could be con-
sidered for future research issues.
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