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Abstract This paper investigates a nonlinear iner-
tance mechanism (NIM) for vibration mitigation and
evaluates the performance of nonlinear vibration isola-
tors employing such mechanism. The NIM comprises
a pair of oblique inerters with one common hinged ter-
minal and the other terminals fixed. The addition of
the NIM to a linear spring-damper isolator and to non-
linear quasi-zero-stiffness (QZS) isolators is consid-
ered. The harmonic balance method is used to derive
the steady-state frequency response relationship and
force transmissibility of the isolators subjected to har-
monic force excitations. Different performance indices
associatedwith the dynamicdisplacement response and
force transmissibility are employed to evaluate the per-
formance of the resulting isolators. It is found that the
frequency response curve of the inerter-based nonlin-
ear isolation system with the NIM and a linear stiff-
ness bends towards the low-frequency range, similar to
the characteristics of the Duffing oscillator with soften-
ing stiffness. It is shown that the addition of NIM to a
QZS isolator enhances vibration isolation performance
by providing a wider frequency band of low amplitude
response and force transmissibility. These findings pro-
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vide a better understanding of the functionality of the
NIM and assist in better designs of nonlinear passive
vibration mitigation systems with inerters.
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1 Introduction

There has been a growing demand for high-perform-
ance vibration control devices that change the vibra-
tion transmission within a dynamic system to meet
specific design requirements. Such devices can be cate-
gorised into active or passive vibration control systems,
depending onwhether external energy input is required.
Even though active control systems can achieve effec-
tive vibration isolation, their disadvantages, such as
their complexity, the need of external energy supply
andmaintenance issues confine their engineering appli-
cations. Passive vibration isolators have been exten-
sively studied and widely used for mitigation of exces-
sive vibration transmission [1]. Nevertheless, there is
still much interest in design and analysis of new pas-
sive vibration suppression systems for enhanced per-
formance. For instance, by configuring a nonlinear
negative-stiffness mechanism with a linear isolator, it
is possible to achieve a high-static low-dynamic stiff-
ness characteristic, such that the static deflection is
small, and the natural frequency is low to enlarge the
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frequency range of effective vibration isolation [2].
Nonlinear passive vibration isolators have also been
proposed and demonstrated to outperform their lin-
ear counterparts [3]. Many studies on passive vibra-
tion control systems have been focused on the param-
eter optimisation of springs and dampers to modify
the stiffness and damping characteristics. For exam-
ple, in the classic design approach for the dynamic
vibration absorber, the spring and damping coeffi-
cients of the absorber are carefully chosen so as to
achieve tuning and also to reduce the peak responses.
Some recent investigations considered the possibility of
employing nonlinear geometric configuration of mul-
tiple springs and dampers to enhance vibration attenu-
ation [3]. There is much less work reported on the use
of the inertia in nonlinear passive devices to improve
vibration isolation performance.

In the search for the mechanical counterpart of
capacitors using the force–current analogy, a new ele-
ment, the inerter, has been proposed [4]. The one-
port, two-terminal device has the property that the
applied force is proportional to the relative acceler-
ations across the terminals, i.e. Fb = b(V̇1 − V̇2),
where Fb is the coupling inertial force, b is a param-
eter named inertance and V̇1 and V̇2 are the acceler-
ations of the two terminals. The work also showed
that it is possible to construct such element using a
flywheel and a rack-pinion mechanism. Benefits of
introducing inerter in vibration mitigation have been
demonstrated in many applications such as automobile
shock absorbers and railway suspension systems [5–7],
building vibration control systems [8–10] and landing
gear shimmyvibration suppression systems [11]. These
works identified beneficial network configurations con-
sisting of springs, dampers and inerters through opti-
misation of either low-complexity network structures
or positive real admittance functions. Network synthe-
sis techniques (e.g. [12–14]) are then used to obtain
networks which are able to realise such admittances.

Previous studies of inerter-based vibration mitiga-
tion systems usually adopt linear models and configu-
rations of inerters. The dynamic characteristics and per-
formance of inerter-based nonlinear vibration isolators
remain largely unexplored. Note that passive nonlin-
ear quasi-zero-stiffness (QZS) isolators which employ
the geometric nonlinearities of a pair of compressed
horizontal springs, bars or buckled beams to create
negative-stiffness mechanisms and a high-static-low-
dynamic characteristic have shown favourable vibra-

tion isolation performance [2,15,16]. These investi-
gations provide insights into the possibility of incor-
porating inerters alongside the horizontal springs of
QZS isolators to achieve better suppression of vibra-
tion transmission.Vibration isolatorwith geometrically
nonlinear inerter subjected to base motion excitation
was investigated, and itwas shown to have performance
benefits at high frequencies as compared to classical
isolators [17]. It should be noted that in many engi-
neering systems, there is a strong need for vibration
isolation of force excitation, and it is thus necessary
to carry out detailed dynamic analysis to reveal the
associated vibration transmission characteristics and
performance of nonlinear inerter-based vibration iso-
lators for enhanced application. There is also limited
study on power flow properties of inerter-based vibra-
tion mitigation systems. Vibration power flow anal-
ysis (PFA) approach has been widely used to assess
the performance of linear vibration mitigation systems
[18,19], including linear inerter-based vibration iso-
lators [20,21]. This approach has been developed to
reveal dynamics of nonlinear systems from energy flow
viewpoint [22–24] and to evaluate nonlinear isolators
[2,25] and dynamic vibration absorbers [26].

This paper investigates a nonlinear geometric con-
figuration of inerters and examines its dynamics and
performance when used in nonlinear vibration isola-
tors. A nonlinear inertance mechanism (NIM) is pre-
sented and configured to a conventional spring-damper
isolator and also a QZS isolator. The steady-state
response characteristics of the system subjected to har-
monic excitation are obtained using analytical approx-
imation based on the harmonic balance method and
verified by numerical integrations. The influence of
the NIM on vibration isolation performance is eval-
uated using different performance indices including
peak dynamic displacement, peak force transmissibil-
ity and unity isolation frequency band. The effects of
the addition of a NIM to a QZS nonlinear vibration iso-
lator on dynamic properties and isolation performance
are examined. Power flow behaviour of the isolator is
discussed. The remaining content of the paper is organ-
ised as follows. The mathematical model of a NIM and
its application as an isolator both with a linear and
a nonlinear QZS spring arrangements are introduced
in Sect. 2. In Sect. 3, the frequency response rela-
tionship is derived by the harmonic balance method.
Then, the characteristics of the backbone curves are
studied analytically. Section 4 defines and formulates
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Fig. 1 Schematic model of the NIM

the force transmissibility for performance evaluations
of the inerter-based nonlinear isolators. Section 5 pro-
vides the results and discussion of the dynamics and
performance of the NIM isolator and also the nonlin-
ear NIM QZS mount. Conclusions are provided at the
end of the paper.

2 Mathematical modelling

2.1 The NIM

Figure 1 provides a schematic representation of the pro-
posedNIMcreated byusing a pair of inerters positioned
obliquely and hinged together at terminal O while their
other terminals are fixed at points A and B, which
are separated horizontally by 2l. The two inerters are
assumed to be ideal with inertance b so that the iner-
tance force in the axial direction is proportional to rel-
ative acceleration across the terminals. The motion of
the NIM is restricted to this two-dimensional plane. It
is assumed that the inerter axis is horizontal at x = 0
when point O lies on midpoint of line AB. As the sys-
tem is symmetrical, the terminals of the inerters at O
move in the vertical direction.

Basedon the geometric configurations of the system,
the velocity of the moving terminal O is ẋ , in the ver-
tical direction. Thus, the velocity component of point
O along the axis of the inerter is v = ẋ sin θ , where
θ denotes the angle between the inerter axis and the
horizontal line AB, with sin θ = x/

√
l2 + x2. There-

fore, the force applied to each inerter is along the axial
direction of the inerter and is calculated by

fa = b
d(ẋ sin θ)

dt

= b

(
ẍ sin θ + ẋ2l2

(l2 + x2)
√
l2 + x2

)
. (1)

It shows that geometric nonlinearity is introduced by
theNIM.The total force introduced by theNIM to point
O is:

fb = 2 fa sin θ

= 2b

(
x2 ẍ

l2 + x2
+ l2x ẋ2

(l2 + x2)2

)
= fb1 + fb2, (2)

where fb1 = 2bx2 ẍ/(l2 + x2) and fb2 = 2bl2x ẋ2/
(l2 + x2)2. Equation (2) shows that the nonlinear iner-
tial force by the NIM depends on the displacement,
velocity and acceleration of the moving terminal O.
This is of contrast to an ideal linear inerter, of which
the applied force is only proportional to the accelera-
tions of its terminals. The nonlinear inertial forces fb1
and fb2 for a NIM with inertance b = 0.5kg, l = 1m
are shown in Fig. 2. It shows that fb1 depends on the
displacement and acceleration of point O. The value
of fb1 is approximately proportional to acceleration ẍ
when x/ l is large. This is reasonable as theNIM should
provide an inertance of 2b in the extreme case of x/ l
tending to infinity, i.e. the inerters are oriented in the
vertical direction. Figure 2b shows that fb2 depends on
the displacement and the velocity. Its value is sensi-
tive to changes in velocity ẋ in the neighbourhood of
x = 0. The magnitude of the nonlinear inertance force
component fb2 tends to zero when the displacement x
becomes large.

2.2 Inerter-based nonlinear vibration isolators

Figure 3 shows several configurations of inerter-based
linear and nonlinear vibration isolators. Figure 3a
shows a nonlinear quasi-zero-stiffness (QZS) isolator
that has been studied previously [15,16]. It comprises
a pair of lateral springs each with stiffness coefficient
kh/2, a vertical spring with stiffness coefficient k and
a vertical viscous damper with damping coefficient c.
This paperwill investigate the use of inerters in this con-
text. As shown in Fig. 3b, a nonlinear NIM isolator can
be obtained by replacing the lateral springs in Fig. 3a
with a NIM created by a pair of oblique inerters, each
with inertance b/2. Figure 3c shows a more complex
vibration isolator named NIM QZS mount comprising
bothQZS andNIM. In these systems, themassm repre-
sents a vibratingmachine subjected to a harmonic force
excitation. The motion of the system is restricted to be
in the two-dimensional plane. As the system is sym-
metrical, the mass only has vertical movement denoted
by x . It is assumed that the mass is in static equilibrium
and the inerters are oriented in the horizontal direc-
tion when x = 0. This can be achieved through the
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Fig. 2 Nonlinear inertial
force characteristics of the
NIM (b = 0.5 kg, l = 1m)

Fig. 3 Different
configurations of vibration
isolators. a QZS isolator, b
NIM isolator, c NIM QZS
mount and d linear isolator

adjustment of the vertical spring. The two terminals of
the inerters and the lateral springs are of a distance of
l when x = 0, and the original un-stretched length of
the lateral springs is l0. To achieve QZS characteristics,
the lateral springs are initially compressed by setting
l < l0.

For comparisons of dynamic characteristics and per-
formance of inerter-based linear and nonlinear isola-
tors, Fig. 3d shows a linear isolator with a mass m, a
spring with stiffness coefficient k, a viscous damper
with damping coefficient c and an inerter with iner-
tance b. The mass is subjected to a harmonic force
with amplitude fe and frequency ω with its equation of
motion being

mẍ + cẋ + kx + bẍ = fe cosωt . (3)

As the nonlinear QZS and NIM isolators shown in
Fig. 3a and b are special cases of the one illustrated by
Fig. 3c, the governing equation of motion of the mass
in Fig. 3c is formulated here. Note that the combined
restoring force of the QZS mechanism provided by the
vertical and lateral springs as shown in Fig. 3c is

fs(x) = kx + khx

(
1 − l0√

x2 + l2

)
. (4)

Based on Eqs. (2) and (4), the equation of motion of
the mass in Fig. 3c is

mẍ + cẋ + kx + khx

(
1 − l0√

x2 + l2

)

+ b

(
x2 ẍ

l2 + x2
+ l2x ẋ2

(l2 + x2)2

)
= fe cosωt, (5)
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where fe and ω are the amplitude and frequency of the
harmonic excitation force, respectively. Note that the
equation of motion of the mass in Fig. 3a is obtained by
setting inertance b = 0 in Eq. (5). By setting stiffness
coefficient kh = 0 in Eq. (5), the equation of motion of
a nonlinear NIM isolation system illustrated by Fig. 3b
is found.

To facilitate later formulations, the following non-
dimensional parameters are introduced:

ω0 =
√

k

m
, τ = ω0t, ζ = c

2mω0
, L = l0

l
,

X = x

l
, K = kh

k
, Fe = fe

kl
,

Ω = ω

ω0
, λ = b

m
,

where ω0 is the linearised natural frequency of the sys-
tem in Fig. 3c without the NIM and the lateral springs,
τ is the non-dimensional time, ζ denotes the damping
ratio, L is the ratio of the initial length l0 of the lat-
eral springs when x = 0 and their free length l with
L > 1 and X , K , Fe, Ω and λ are the non-dimensional
displacement, the stiffness ratio of the lateral springs
and the vertical spring, the non-dimensional excitation
amplitude, the non-dimensional excitation frequency
and the inertance ratio, respectively. By using these
dimensionless parameters and variables, Eqs. (3) and
(5) can be written in a dimensionless form as

(1 + λ)X ′′ + 2ζ X ′ + X = Fe cosΩτ, (6a)

X ′′ + 2ζ X ′ + H(X) + G(X, X ′, X ′′) = Fe cosΩτ,

(6b)

respectively, where the primes denote differentiation
with respect to τ , H(X) andG(X, X ′, X ′′) are the total
restoring force from the vertical and lateral springs (i.e.
theQZSmechanism), and the total inertial force arising
from the geometric nonlinearity of the NIM, respec-
tively, with

H(X)=(1 + K )X − K L√
X2 + 1

≈αX+βX3, (7a)

G(X, X ′, X ′′)= λX2X ′′

1 + X2 + λXX ′2

(1 + X2)2
, (7b)

where α = 1 − K (L − 1) and β = K L/2. Note that
in Eq. (7a), the effects of the pair of oblique springs
are approximated by Duffing-type stiffness nonlinear-

ity [27]. They also lead to the addition of a linear stiff-
ness term. This approximation is in line with previ-
ous studies of QZS isolators [15,16]. Equation (6b)
becomes:

X ′′ + 2ζ X ′ + αX + βX3 + G(X, X ′, X ′′)
= Fe cosΩτ. (8)

Note that K > 0 and L > 1, we have α < 1. By
adjusting L and K values, we can have α = 0, and cor-
respondingly, the quasi-zero-stiffness characteristic of
the QZS isolator is achieved. Also note that as L and K
are both positive, the dimensionless stiffness parameter
β is also positive. Therefore, the QZS isolator exhibits
hardening stiffness characteristics.

Equation (7b) shows that the nonlinear force G(X,

X ′, X ′′) depends on displacement, velocity and accel-
eration of the harmonically excited mass. When its dis-
placement response X is small, G(X, X ′, X ′′) may be
Taylor expanded at X = 0 to have

G(X, X ′, X ′′) ≈ λX2X ′′ + λ(1 − 2X2)XX ′2. (9)

By replacing G(X, X ′, X ′′) in Eq. (8) using the
approximations in Eq. (9), we have a simplified non-
dimensional governing equation

X ′′ + 2ζ X ′ + αX + βX3 + λX2X ′′

+ λ(1 − 2X2)XX ′2 = Fe cosΩτ. (10)

This equation suggests that the non-dimensional lin-
earised natural frequency of the inerter-based vibra-
tion nonlinear isolation system is

√
α. It shows that the

addition of the NIMdoes not alter the linearised natural
frequency of the system.

3 Forced response

3.1 Frequency response relationship

The steady-state frequency response relationship of the
nonlinear isolation system with the NIM QZS mount
as shown in Fig. 3c subjected to a harmonic force exci-
tation will be derived here using the harmonic balance
method. It is assumed that the non-dimensional steady-
state displacement of the mass is

X = r cos(Ωτ + φ), (11)
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where r and φ represent the response amplitude and
the phase angle. The corresponding velocity and accel-
eration are expressed by:

X ′ = −rΩ sin(Ωτ + φ), (12a)

X ′′ = −rΩ2 cos(Ωτ + φ). (12b)

By inserting Eqs. (11), (12a) and (12b) into Eq. (10)
and following some mathematical transformation, we
have:

(
αr+ 3βr3

4
−rΩ2− λr3Ω2

2
− λr5Ω2

4

)
cos(Ωτ +φ)

+
(

βr3

4
− λr3Ω2

2
+ λr5Ω2

8

)
cos(3Ωτ + 3φ)

λr5Ω2

8
cos(5Ωτ + 5φ) − 2ζrΩ sin(Ωτ + φ)

= Fe cosΩτ. (13)

By considering only the response component at the
excitation frequency and omitting the trigonometric
terms with harmonics at 3Ω and 5Ω , it follows that

(
αr + 3βr3

4
− rΩ2 − λr3Ω2

2
− λr5Ω2

4

)

cos(Ωτ + φ)

− 2ζrΩ sin(Ωτ + φ) = Fe cosΩτ. (14)

Using trigonometric identities, the right-hand side of
Eq. (14) may be rewritten as

Fe cosΩτ = Fe cos(Ωτ + φ − φ)

= Fe cos(Ωτ + φ) cosφ + Fe sin(Ωτ + φ) sin φ.

(15)

By inserting Eq. (15) into Eq. (14) and balancing
the coefficients of cos(Ωτ + φ) and sin(Ωτ + φ) in
Eq. (14), we have

αr + 3βr3

4
− rΩ2 − λr3Ω2

2
− λr5Ω2

4
= Fe cosφ,

(16a)

− 2ζrΩ = Fe sin φ. (16b)

After cancelling out the trigonometric terms with φ

by combining Eqs. (16a) and (16b), we obtain the

frequency response relationship between the response
amplitude and the system parameters:

F2
e = (2ζΩ)2r2

+
(
α + 3βr2

4
−

(
1 + λr2

2
+ λr4

4

)
Ω2

)2
r2.

(17)

Equation (17) provides a nonlinear algebraic equation
for the response amplitude r . When the system param-
eter values are set, it can be solved by using a standard
bisection method to obtain the steady-state displace-
ment response characteristics.

Note that for the nonlinear QZS isolator without the
NIM as shown by Fig. 3a, we have λ = 0. Thus, the
corresponding frequency response relationship is

F2
e = (2ζΩ)2r2 +

(
α + 3βr2

4
− Ω2

)2
r2. (18)

For the nonlinear NIM isolator shown in Fig. 3b with
kh = 0 (i.e.α = 1, β = 0), the corresponding fre-
quency response relationship is

F2
e = (2ζΩ)2r2 +

(
1 −

(
1 + λr2

2
+ λr4

4

)
Ω2

)2
r2.

(19)

For the inerter-based linear isolator represented by
Fig. 3d, the frequency response relationship has been
derived previously and introduced here [20]:

F2
e = (2ζΩ)2r2 +

(
1 − (1 + λ)Ω2

)2
r2. (20)

3.2 Backbone curves

The backbone curve is widely used to describe rela-
tionship between the displacement amplitude of a
undamped and unforced nonlinear vibration system
with the oscillation frequency, i.e. the free vibration
behaviour, [28–30]. For the NIMQZS mount shown in
Fig. 3c, the backbone curve is obtained by setting the
damping and external excitation to be zero in Eq. (17):

α + 3βr2

4
− (1 + λr2

2
+ λr4

4
)Ω2 = 0. (21)

The peak displacement amplitude of the damped,
forced system relates closely to the point where its fre-
quency response curve intersects with the backbone
curve. For a system with prescribed parameters ζ , α,
β and λ, the displacement amplitude and the response
frequency corresponding to the crossing point of the
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Fig. 4 Backbone curves of
a different types of
vibration isolators and b
nonlinear NIM isolators. In
(a), solid line: linear isolator
(λ = 15), dashed line: QZS
isolator
(α = 0, β = 1.5, λ = 0),
dash–dot line: nonlinear
NIM QZS mount
(α = 0, β = 1.5, λ = 15)
and dotted line: NIM
isolator
(α = 1, β = 0, λ = 15)

(a) (b)

frequency response curve and the backbone curve are
expressed by

rp = Fe
2ζΩb

, (22a)

Ωb =
√

4α + 3βr2p
4 + 2λr2p + λr4p

, (22b)

respectively, where Eqs. (17) and (21) are used to find
the intersection point.

For the QZS isolator illustrated by Fig. 3a, the corre-
sponding backbone curve is obtained by setting λ = 0
in Eq. (21):

α + 3βr2

4
− Ω2 = 0. (23)

The oscillation frequency associated with the cross
point of the frequency response curve and the back-
bone curve is expressed by:

Ωb =
√

α + 3

4
βr2p, (24)

which agrees with the expression reported in ref. [16].
The displacement amplitude can be calculated by using
Eq. (22a).

For the nonlinear NIM isolator shown in Fig. 3b, the
backbone curve is obtained by setting α = 1, β = 0 in
Eqs. (21):

1 − (1 + λr2

2
+ λr4

4
)Ω2 = 0. (25)

Thus, at intersection point of the frequency response
curve and the backbone curve, we have

Ωb = 2√
4 + 2λr2p + λr4p

. (26)

Again, Eq. (22a) can then be used to determine the
corresponding displacement amplitude.

The backbone curve of the linear inerter-based
vibration isolator shown in Fig. 3d is obtained by set-
ting Fe = ζ = 0 in Eq. (20):

1 − Ω2(1 + λ) = 0, (27)

which indicatesΩb = 1/
√
1 + λ, i.e. the free vibration

frequency of the undamped inerter-based linear isola-
tion system is independent of the displacement ampli-
tude.

Figure 4a shows the backbone curves associated
with the four different types of vibration isolators
shown in Fig. 3. Figure 4a shows that the backbone
curve of the QZS isolator is hardening, i.e. the natu-
ral frequency increases with the amplitude of oscilla-
tion. This can be explained by Eq. (24), which shows
that the oscillation frequency is an increasing function
of amplitude r . Physically, the QZS isolator may be
approximated via a Taylor series expansion, to a hard-
ening Duffing oscillator [27]. In contrast, the backbone
curve associatedwith the nonlinearNIM isolator shown
by Fig. 3b bends to the left. The reason is that the forced
response frequency Ω is a decreasing function of dis-
placement amplitude r , as suggested by Eq. (26). This
characteristic is similar to that of the backbone curve
associated with the softening stiffness Duffing oscil-
lator. The backbone curve of the inerter-based linear
vibration isolator shown in Fig. 3d is a straight verti-
cal line at Ωb = 1/

√
1 + λ. When a NIM is added to

the QZS isolator to achieve a NIM QZS isolator, it is
found that the backbone curve firstly extends to the high
frequencies until a turning point A at approximately
Ω = 0.3145, r = 0.719. As the response amplitude r
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continues to increase, the curve turns and bends to the
low-frequency range. Figure 4b plots backbone curves
that are associated with nonlinear NIM isolators, as
shown in Fig. 3b with NIM of different inertance ratios
of 5, 15, and 40 and that of the conventional linear
isolator with α = 1, β = 0, λ = 0. Figure 4b shows
that with the increase in inertance ratio λ, the backbone
curve associated with the nonlinear NIM isolator shifts
more to the low-frequency range.

It is of interest to investigate the characteristics of
the backbone curve of the NIM QZS mount as they are
closely related to the dynamics and isolation perfor-
mance. Note that Eq. (22b) has shown that the oscilla-
tion frequency Ωb is a function of displacement ampli-
tude rp. Thederivative information canbeused to deter-
mine the bending behaviour of the backbone curve.
Based on Eq. (22b), a differentiation ofΩb with respect
to rp leads to

dΩb

drp

=
rp

(
3β(4 − λr4p) − 8αλ(1 + r2p)

)
(4 + 2λr2p + λr4p)

2

×
√

4α + 3βr2p
4 + 2λ + λr4p

. (28)

Clearly, the parameters α, β and λ of the nonlinear
isolator can be designed so as to achieve desirable char-
acteristics of the backbone curves. For the QZS isolator
with α = 0, β > 0 and λ = 0, as shown in Fig. 3a,
we have dΩb/drp > 0. Therefore, the oscillation fre-
quencyΩb is amonotonically increasing function of rp
and the backbone curve associated with the QZS iso-
lator bends to the high-frequency range. For the NIM
isolator (i.e. α = 1, β = 0) as shown in Fig. 3b, we
have dΩb/drp < 0, suggesting that the Ωb is a mono-
tonically decreasing function of rp. Consequently, the
backbone curves of the isolators with NIM extend to
the low-frequency range, as shown in Fig. 4a and b.

For the inerter-based nonlinear isolator with both
QZS and NIM, i.e. α = 0, β > 0, as shown in
Fig. 3c, the backbone curve initially bends to the right
as we have dΩb/drp > 0 for small-amplitude oscilla-
tions. As the displacement amplitude rp increases until
the derivative dΩb/drp becomes zero, a turning point
appears on the backbone curve. This is illustrated by
point A in Fig. 4a. The turning point is found by set-
ting dΩb/drp = 0 in Eq. (28). Consequently, we have

Fig. 5 Backbone curves of the nonlinear NIMQZSmount (α =
0, β = 1.5). The dash–dot–dot line is for the locus of the turning
point as λ changes

one equation for the location of the turning point on the
backbone curve:

3β(4 − λr4p) − 8αλ(1 + r2p) = 0, (29)

which is a quadratic equation of r2p, and thus, the solu-
tions can be found analytically for prescribed system
parameters α, β and λ. For the NIM and QZS isolator
(i.e. α = 0, β > 0, λ > 0), we have rp = √

2λ−0.25

at the turning point. It suggests that the corresponding
response amplitude rp at the turning point only depends
on inertance ratioλwhenα = 0. Therefore, for the case
considered in Fig. 4a with α = 0, β = 1.5, λ = 15, the
turning point is found at rp = 0.719 and Ω = 0.3145.
This analytical prediction agrees with the location of
Point A shown in Fig. 4a.

Figure 5 shows that backbone curves of NIM QZS
mount comprising QZS with α = 0, β = 1.5 and NIM
with different inertance ratios λ of 5, 10, 20 and 40. The
figure shows that as λ increases from 5 to 40, the back-
bone curve shifts to the low-frequency range. The locus
of turning point is also obtained by usingEqs. (22b) and
(29). It shows that as the inertance ratio λ increases,
the turning point position moves to the left with the
decrease in rp andΩb. This property demonstrates that
the inertance ratio λ can be designed for favourable
turning point position for the design of inerter-based
nonlinear isolators.

4 Force transmissibility

Force transmissibility has been widely used for perfor-
mance evaluation of vibration isolators [1]. For non-
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linear vibration isolators, the following performance
indices may be used [2,3,15,16]:

(a) Peak dynamic displacement;
(b) Peak transmissibility;
(c) Unity isolation frequency band, in which the value

of transmissibility is less than unity.

They are used in this paper to evaluate the nonlinear
inerter-based vibration isolators. In this section, the
force transmissibility of the NIM QZS mount as repre-
sented by Fig. 3c is defined and derived.

Note that other performance indicators such as time-
averaged power flow transmission and kinetic energy of
the mass have also been used in previous studies of lin-
ear and nonlinear vibration isolators [2,18,19,25,31].
A power flow analysis is carried out for the current non-
linear NIM QZS mount, and the detailed formulations
are provided in “Appendix”.

The total non-dimensional force transmitted to the
ground is

FT = 2ζ X ′ + H(X) + G(X, X ′, X ′′)

≈ r
(
α + 3

4
βr2

− λr2Ω2(2 + r2)

4

)
cos(Ωτ + φ)

− 2ζrΩ sin(Ωτ + φ), (30)

where the Taylor expansions of H(X) and G(X,

X ′, X ′′) as shown in Eqs. (7a) and (9) as well as the
first-order approximate expressions of the steady-state
response were employed. Also, only the component at
the excitation frequency Ω has been considered in the
analytical approximation. Consequently, the analytical
approximate expression of the amplitude of the trans-
mitted force is

|FT |=r

√
(2ζΩ)2+

(
α+ 3

4
βr2− λr2Ω2(2+r2)

4

)2
.

(31)

For nonlinear isolators, the force transmissibility can be
defined as the ratio of the maximum transmitted force
to that of the excitation force, and we have

T RNIM&QZS = |FT |
Fe

≈
√

(2ζΩ)2 +
(
α + 3

4βr
2 −

(
λr2
2 + λr4

4

)
Ω2

)2
√

(2ζΩ)2 +
(
α + 3

4βr
2 −

(
1 + λr2

2 + λr4
4

)
Ω2

)2 ,

(32)

where the frequency response relation expressed by
Eq. (17) is used to replace Fe. Note that for numerical
integration solutions of the force transmissibility, the
maximum value of the transmitted force in the steady-
state motion is used in this paper.

Note that by removing the NIM in Fig. 3a, we have
a QZS nonlinear vibration isolator as shown in Fig. 3a.
Thus, the force transmissibility is obtained by setting
the inertance ratio λ = 0 in Eq. (32):

T RQZS =
√

(2ζΩ)2 + (
α + 3

4βr
2
)2

√
(2ζΩ)2 + (

α + 3
4βr

2 − Ω2
)2 . (33)

For the NIM isolator as the one represented by
Fig. 3b, the force transmissibility is obtained by set-
ting α = 1, β = 0 in Eq. (32):

T RNIM =

√
(2ζΩ)2+

(
1−

(
λr2
2 + λr4

4

)
Ω2

)2
√

(2ζΩ)2+
(
1−

(
1+ λr2

2 + λr4
4

)
Ω2

)2 .

(34)

For the inerter-based linear vibration isolator as
shown in Fig. 3d, the force transmissibility is [20]:

T Rlinear =
√

(2ζΩ)2 + (
1 − Ω2

)2
√

(2ζΩ)2 + (
1 − Ω2(1 + λ)

)2 . (35)

For the nonlinear NIMQZSmount shown in Fig. 3c
to be effective in terms of force transmission, we need
T RNIM&QZS < 1 , i.e.

(2ζΩ)2+
(
α+ 3

4βr
2 −

(
λr2
2 + λr4

4

)
Ω2

)2

(2ζΩ)2+
(
α+ 3

4βr
2 −

(
1+ λr2

2 + λr4
4

)
Ω2

)2 <1,

(36)
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Fig. 6 Effects of a
inertance ratio λ and b
excitation amplitude Fe on
the response amplitude. In a
Fe = 0.01. Circles,
triangles and squares are the
RK results for λ=10, 20 and
40, respectively. In b
λ = 20. Circles, triangles
and squares are the RK
results for Fe=0.005, 0.01
and 0.05, respectively

(a) (b)

which is equivalent to the condition:

(
α + 3

4
βr2 −

(λr2

2
+ λr4

4

)
Ω2

)2

−
(
α + 3

4
βr2 −

(
1 + λr2

2
+ λr4

4

)
Ω2

)2
< 0.

(37)

Using the relationship y2 − z2 = (y + z)(y − z), the
inequality (37) is transformed into:

(
2α+3

2
βr2 −

(
1 + λr2 + λr4

2

)
Ω2

)
Ω2 < 0, (38)

which is mathematically equivalent to

2α + 3

2
βr2 <

(
1 + λr2 + λr4

2

)
Ω2. (39)

Therefore, the requirement for effective isolation of
transmitted force is:

Ω >

√
8α + 6βr2

4 + 4λr2 + 2λr4
= Ωlow. (40)

This expression provides the lower limit Ωlow of the
frequency range where the force transmission is atten-
uated by using the inerter-based nonlinear isolator.
The isolation range of some special cases can then
be derived from expression (40). For the QZS isola-
tor without NIM (i.e. λ = 0) as shown in Fig. 3a,
the lower limit Ωlow reduces with α, and correspond-
ingly the addition of the QZS mechanism can be used
to enhance low-frequency vibration isolation. For the
NIM isolator as the one shown in Fig. 3b, we have

α = 1, β = 0 and λ > 0, and thus, the frequency
range of effective vibration isolation, i.e. the unity iso-
lation frequency band, can be enlarged by introducing
the NIM. For the conventional spring-damper isola-
tor, we have α = 1, β = λ = 0, and therefore, the
lower limit of effective isolation frequency range is

√
2.

This agrees with the classical vibration isolation the-
ory. It is noted that for nonlinear NIM QZS mount, the
lower limit Ωlow of effective isolation frequency band
depends on the response amplitude r and hence the
external forcing amplitude Fe.

5 Performance of inerter-based nonlinear
vibration isolators

5.1 The NIM isolator

The configuration of the NIM isolator has been pre-
sented previously in Fig. 3b. The effects of the inertance
ratio λ and the external forcing amplitude Fe on the
steady-state displacement amplitude are investigated
and shown in Fig. 6a and b, respectively. The isolator
investigated here does not contain lateral springs, i.e.
α = 1, β = 0, and the damping ratio ζ is set to 0.01. In
Fig. 6a, the dashed, dash–dot and dotted lines represent
the analytical approximation results based on harmonic
balance (HB) method, while the symbols denote direct
numerical integrations of Eq. (10) based on the fourth-
order Runge–Kutta (RK)method. In Fig. 6a, Fe = 0.01
and the inertance ratio λ changes from10 to 20 and then
to 40. For engineering applications, a large value of the
inertance tomass ratioλmaybedesirable as inerters are
geared and so their device mass is significantly lower
than their apparent mass, and hence, the suspension

123



Dynamic analysis and performance evaluation 1833

system is lighter. Correspondingly, the effectiveness of
the isolators when λ is large is of interest and is inves-
tigated in this section. The response amplitude curve
of the linear spring-damper isolator without NIM (i.e.
λ = 0) is also included and represented by the solid
line for comparison.

Figure 6a shows the steady-state response obtained
by analytical approximations and numerical integra-
tions, which generally agree well, and thus, the har-
monic balance formulations are verified. The differ-
ences between the numerical and analytical results are
due to the fixed number of the response components
considered in the harmonic balance method. It shows
that the addition of the NIM into the isolator bends the
frequency response curve to the low-frequency range
and reduces the response at the original peak value
around Ω = 1. With the increase in λ from 10 to
40, the displacement response curve bends further to
the low frequencies. This bending characteristic of the
frequency response curves is similar to those of the
harmonically excited Duffing oscillator with softening
stiffness [22,27]. An explanation for this behaviour is
that with an increase in the deflection |X |, the nonlin-
earity introduced by the NIM becomes stronger. Con-
sequently, the nonlinear inertance force by theNIMand
the effective mass of the system increase with |X | as
well. The effects of having the effective mass increase
with the deflection |X | on the steady-state response
may be similar to the situation of having the stiff-
ness reduce with an increase in deflection |X |, i.e. a
softening stiffness characteristic. Figure 6a also shows
that the introduction of the NIM in the isolator results
in higher peak displacement amplitude, compared to
that of the conventional isolator case with λ = 0.
In the non-resonant frequency range away from the
response peaks, the response curves for the four exam-
ined cases merge with each other. This property arises
from the fact that for small-amplitude oscillations, the
corresponding nonlinear force term introduced by the
NIM is negligible. At low excitation frequencies, mul-
tiple possible solutions may be encountered at a sin-
gle excitation frequency, suggesting a dependence of
the steady-state response on the initial conditions of
the isolation system with NIM. Figure 6b investigates
the effects of the external forcing amplitude on the
frequency response characteristics of the system with
λ = 20. The external forcing amplitude varies from
0.005, 0.01 and then 0.05. The backbone curve of the
systemwith α = 1, β = 0, λ = 20 is also plotted in the

figure. It shows that the backbone curve provides good
indication of the bending direction of the frequency
response curves. The figure also shows that a larger
external excitation leads to higher response amplitude
in the low- and high-frequency ranges. However, as the
associated backbone curve is independent of the exci-
tation force amplitude Fe, the extent of the bending of
the frequency response curve is almost the same for the
three cases regardless of the change in the value of Fe.

Figure 7a presents the force transmissibility charac-
teristics of the NIM isolators (i.e. α = 1, β = 0). The
other parameters are set as Fe = 0.01, ζ = 0.01, and
the inertance ratio λ changes from 10 to 20 and then to
40. The force transmissibility curve of the correspond-
ing linear system with a spring-damper isolator (i.e.
λ = 0) is also provided for comparisons. The dash,
dash–dot and dotted lines shown in the figure repre-
sent first-order approximations of force transmissibility
TR based on the harmonic balance method. Figure 7a
shows that the use ofNIM in the inerter-based nonlinear
isolator bends the force transmissibility curves to the
low-frequency range. This behaviour is desirable for
improvement in vibration isolation performance. The
force transmissibility in the vicinity ofΩ = 1, the orig-
inal peak frequency of the linear isolator case, is also
reduced. With the increase in the inertance ratio λ of
the NIM from 10 to 20 and then to 40, the peak trans-
missibility becomes smaller. It is shown that inertance
nonlinearity due to NIM created by the pair of lateral
inerters may also yield multiple possible levels of force
transmission at a predetermined excitation frequency
in the low-frequency range. It is also observed that the
nonlinear inertance introduced by theNIMaffects force
transmissibility locally in the resonant region. Away
from the resonant region, the curves corresponding to
different levels of inertance ratios and the linear isola-
tor case coincide. This is again due to the fact that the
nonlinear force introduced by the NIM is small when
the system exhibits small-amplitude oscillations. Fig-
ure 7b shows the force transmissibility curve of the
inerter-based linear isolator for a comparison of NIM
isolator with the linear isolator. The inertance ratio λ

is set to be 10. Figure 7b shows that while the inerter-
based linear isolator provides a large frequency band
in which T R < 1, its performance at high excitation
frequencies is weak as the value of T R remains close
to unity. This asymptotic behaviour of force transmis-
sibility T R of inerter-based linear isolator has been
shown analytically [20]. This deficiency is overcome

123



1834 J. Yang et al.

Fig. 7 a Effects of
inertance ratio λ on the
force transmissibility for the
NIM isolator and b force
transmissibility of the linear
inerter isolator (λ = 10). In
a, the circles, triangles and
squares present the RK
results for λ=0, 10, 20 and
40, respectively

(a) (b)

by having the inerters in the lateral configuration, i.e.
adding a NIM, as the NIM isolator provides much bet-
ter attenuation of force transmission at high excitation
frequencies with force transmissibility reducing with
the excitation frequency Ω .

5.2 The NIM QZS mount

The steady-state dynamic response characteristics and
performance of nonlinear inerter-based vibration iso-
lators with a combination use of NIM and QZS are
investigated herein. Figure 8 examines the steady-state
displacement amplitude of inerter-based nonlinear iso-
lator with both QZS and NIM. The system parameters
are set as ζ = 0.01, K = 2, L = 1.5, Fe = 0.005.
Correspondingly, we have α = 0, β = 1.5, i.e. the
isolator is characterised by quasi-zero-stiffness (QZS)
and also exhibits hardening stiffness behaviour. The
inertance ratio λ for the NIM changes from 0, repre-
senting a nonlinear QZS isolator, to 10, then to 20 and
finally to 40, denoting a nonlinear isolator with both
NIM and QZS. The solid, dashed, dash–dot and dot-
ted lines in the figure represent analytical solutions of
the frequency response equation (17) obtained from
the harmonic balance method. For the QZS isolator
without NIM, the frequency response curve bends to
the right towards the high-frequency range. This is due
to the hardening stiffness characteristics introduced by
the QZS mechanism. After introducing the NIM with
λ = 10, the resonance peak bends less to the left,
compared to the QZS isolator. As the inertance ratio λ

increases to 20, the frequency response curves initially
extend to the right when the response amplitude r is rel-
atively small and then to the left as r becomes larger.

Fig. 8 Response characteristics of the NIM QZS mount. Solid,
dashed, dash–dot and dotted lines for the HB results of λ = 0, 10,
20 and 40, respectively. The circles, triangles, squares and dia-
monds are for the RK results of λ = 0, 10, 20 and 40, respectively

When the NIM with λ = 40 is included in the nonlin-
ear isolator, the resonant peak shifts and bends further
into the low-frequency range. The bending behaviour
of the frequency response curves is captured by the
backbone curves, the characteristics ofwhichhavebeen
explained previously in Sect. 3. The figure also shows
that the peak displacement amplitude increases with
inertance ratio λ. Away from the resonant region, the
effects of inertance ratio on the displacement ampli-
tude are observed to be small. The figure shows that
the addition of the NIM to the QZS isolator enlarges
the bandwidth of low response amplitude but at the
expense of higher response peak.

Figure 8 shows that the response curve characteris-
tics for the NIM QZS mount are quite different with
those for the NIM only isolator shown in Fig. 6. It is
of interest to investigate the effects of the lateral spring
stiffness on the response characteristics. In Fig. 9a, b,
displacement responses associated with the QZS iso-
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Fig. 9 Effects of the lateral
spring stiffness on the
response characteristics of
the QZS isolator a with
NIM (λ = 10) and b
without NIM (λ = 0).
Parameters set as ζ = 0.01,
Fe = 0.005, L = 2. Solid
curve 1: K = 0; Solid curve
2:K = 0.5; Solid curve 3: K
= 1; Solid curve 4: K = 1.5;
Solid curve 5: K = 1.8;
Solid curve 6: K = 2.
Dash–dot–dot lines:
backbone curves

(a) (b)

lator shown in Fig. 3c with NIM (λ = 10) and with-
out the NIM (λ = 0) are examined, respectively. The
other parameter values are set to be ζ=0.01,Fe=0.005
and L=1.5. The responses are obtained with the stiff-
ness ratio K increased from 0 to 0.5, 1, 1.5, 1.8 and
finally to 2. Correspondingly, there are six sets of sys-
tem parameter values, with α = 0, β = 1(Case one),
α = 0.75, β = 0.375 (Case two), α=0.5, β=0.75 (Case
three), α=0.25, β=1.125 (Case four), α=0.1, β=1.35
(Case five) and α=0, β=1.5 (Case six). In Fig. 9a, Case
one represents the use of the NIM isolator, while Case
six is for theNIMQZSmount. The correspondingback-
bone curves of the six cases are also included. Figure 9a
shows that the curves associated with the NIM isolator
(i.e. K = 0) bends to the low-frequency range. With
the increase in K , the curves extend to the high fre-
quencies when K = 1.8 and K = 2. The increase
in the lateral spring stiffness also leads to the shift of
the resonance peak to the low-frequency range. This
is due to the fact that the linearised natural frequency
of system is

√
α, and an increase in K will lead to

a smaller value of α. Consequently, there are shifts
of the resonance peak. The figure also shows that the
response peak value increaseswith the stiffness ratio K .
In Fig. 9b, solid curve 1 shows the response of a conven-
tional isolator with vertical spring-damper unit, with-
out lateral springs (K = 0). With the addition of lateral
springs with an increase in non-dimensional stiffness
coefficient K , the displacement response curve shifts
to the low-frequency range with the peak bending to
the right. When the lateral spring stiffness K increases
to 2 (solid line 6), the response curves twist significant
to the left. The corresponding peak value is the high-
est, compared to other cases with lower values of K .

Fig. 10 Force transmissibility characteristics of the NIM QZS
mounts (ζ = 0.01, Fe = 0.005, K = 2, L = 1.5). Solid,
dashed, dash–dot and dotted lines for the HB results of λ = 0, 10,
20 and 40, respectively. The triangles, squares and diamonds are
for the RK results of λ = 10, 20 and 40, respectively

Comparing Fig. 9b with Fig. 9a, it is clear that the use
of lateral springs alone leads to the shift and right-hand
side bending of response curves. The addition of the
NIM, as in Fig. 9a, may alter the bending direction and
yield left-hand side bending response curves.

Figure 10 presents the performance of the nonlinear
NIMQZSmount in terms of force transmissibility. The
system parameters are set as ζ = 0.01, K = 2, L =
1.5, Fe = 0.005 so as to represent a system with quasi-
zero-stiffness characteristics. Four different values of
the inertance ratioλwithλ=0, 10, 20 and40 are selected
to evaluate the effects of NIM on the isolation of force
transmission. The force transmissibility T R is obtained
by harmonic balance analytical formulations based on
Eqs. (17) and (32) and also by the direct numerical
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Fig. 11 Effects of inertance
ratio λ on the maximum
kinetic energy Kmax for a
NIM only isolator and b the
NIM QZS mounts. The
circles, triangles and squares
are for the RK results of λ =
10, 20 and 40, respectively

(a) (b)

integration results of the maximum transmitted force
in the steady-state motion. The figure shows that the
force transmissibility curve of the nonlinear QZS iso-
lator extends to the high-frequency range. By the intro-
duction of the NIMwith λ = 10 to the QZS isolator, the
force transmissibility curve bends less to the right. Fur-
ther increases in the inertance ratio λ to 20 and then to
40 lead to less twisting of the force transmissibility to
the high-frequency range. Meanwhile, the peak force
transmissibility is reduced by the increase in λ. The fig-
ure shows that by increasing the inertance ratio λ, the
horizontal line of unity transmissibility, i.e. T R = 1,
crosses the force transmissibility curve at lower fre-
quencies. This agrees with the analytical formulation
of the lower limit of the effective isolation frequency
band in expression (48).

These characteristics show potential benefits of
adding the NIM to a QZS nonlinear vibration isolator.
More specifically, the addition of the NIM increases
the effective isolation bandwidth while reducing the
peak value of T R. Away from the resonant solution
branches, the effects of inertance ratio λ on force trans-
missibility T R are observed to be small.

5.3 Discussion of vibration power flow behaviour

Power flow analysis of inerter-based nonlinear isola-
tor is carried out, and the formulations are presented in
“Appendix”. Figure 11 investigates the influence of the
inertance ratio λ on the maximum kinetic energy Kmax

of the mass for the NIM only isolator and also the NIM
QZSmount cases. Three different values inertance ratio
of the NIM are selected with λ varying from 10 to 20
and then to 40. In Fig. 11a, the system parameters for

the NIM isolator are set as ζ = 0.01, Fe = 0.01, α =
1, β = 0. The figure shows that the addition of theNIM
into the vibration isolator twists peaks of Kmax to the
low-frequency range.With the increase in the inertance
ratio λ, the curves of Kmax bend further to the low fre-
quencies. The peak values in the curves of Kmax are
suppressed by introducing the NIM and increasing the
inertance ratio λ. These characteristics may be benefi-
cial for vibration isolation. It is seen that the level of the
maximum kinetic energy is also reduced at the origi-
nal peak frequency of the system with a linear spring-
damper isolator (i.e. λ = 0). In Fig. 11b, the parameters
are set to be ζ = 0.01, Fe = 0.005, K = 2, L = 1.5
(i.e. α = 0, β = 1.5). The inertance ratio λ is ini-
tially set as 0 to represent a nonlinear QZS isolator
while three other values of the inertance ratio with
λ = 10, 20 and 50 are considered for nonlinear NIM
QZS mounts. Figure 11b shows that the peak of Kmax

for the QZS only isolator (with λ=0) extends to the
high-frequency range due to the hardening stiffness
characteristics ofQZSmechanism.When theNIMwith
λ = 10 is used together with the QZS mechanism, the
peak of Kmax bends less to the right. A further increase
in the inertance ratio λ to 20 leads to less bending of the
curves to the high frequencies. When λ increases to 40,
the kinetic energy curve extends to the low-frequency
range. The figure also shows that the peak values of
Kmax are almost the same for the four cases of λ val-
ues considered. This behaviour was shown by analyt-
ical derivations in “Appendix”, i.e. the upper limits of
Kmax are independent of λ. Figure 11 shows that for
different cases considered, the non-resonant solution
branches for Kmax merge. This is due to small oscilla-
tion amplitude as shown in Figs. 6a and 8, and corre-
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spondingly the associated nonlinear effects introduced
by NIM may be ignored. In summary, the addition of
the NIM to the QZS isolator does not have a detrimen-
tal effect on the peak value of Kmax but does shift the
frequency at which it occurs.

6 Conclusions

This paper presented a nonlinear inertance mechanism
(NIM) that can be used to enhance vibration isolation
performance and demonstrated its application to non-
linear inerter-based isolators. The NIM is created by
arranging a pair of inerters obliquely with the one com-
mon end hinged together and the other ends fixed. Two
configurations of inerter-based nonlinear vibration iso-
lators, with one comprising the NIM and a conven-
tional spring-damper isolator, and another one consist-
ing of the NIM with a nonlinear QZS isolator were
examined. The frequency response relationship was
obtained using the harmonic balance method. Perfor-
mance indices associated with dynamic response and
force transmissibility were used to evaluate the effec-
tiveness of the vibration isolators.

The addition of the NIM to a linear isolator pro-
vides performance benefits to vibration isolation. This
was evident by showing that the presence of the NIM
results in: (1) the bending the frequency response
curves towards the low-frequency range and reducing
the original peak values in dynamic response; (2) bend-
ing of force transmissibility curve and potential reduc-
tion in peak transmissibility; and (3) lower transmis-
sibility are achieved at high frequencies comparing to
the inerter-based linear isolator.

The introduction of NIM to a QZS isolator can pro-
vide enhanced performance as shown by: (1) a larger
frequency range of small dynamic response amplitude
and kinetic energy of the mass; 2) a wider frequency
band of unity force transmissibility; and (3) potential
reduction in peak force transmissibility.

Overall, the study suggests that the added NIM can
have a beneficial effect on both the linear isolator and
the nonlinear QZS isolators. These findings improve
the understanding of the dynamic properties of the
NIMand provide design guidance for nonlinear inerter-
based vibration isolators for enhanced vibration atten-
uation.
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Appendix: Vibration power flow analysis

The non-dimensional power flow balance equations of
the systems shown by Fig. 3d and c are obtained by
multiplying by non-dimensional velocity X ′ on both
sides of the original governing equations (6a) and (6b):

(1 + λ)X ′′X ′ + 2ζ X ′X ′ + XX ′ = X ′Fe cosΩτ,

(41a)

X ′′X ′ + 2ζ X ′X ′ + H(X)X ′ + G(X, X ′, X ′′)X ′

= X ′Fe cosΩτ, (41b)

Thus, for the vibration isolation systems shown in
Fig. 3, the non-dimensional instantaneous time-avera-
ged input power by the external excitation force and
the dissipated power by the damper in the isolator are
expressed by the products of the forces and the corre-
sponding velocities:

pin = X ′Fe cosΩτ, (42a)

pd = 2ζ X ′X ′, (42b)

respectively. Interested readers may refer to ref. [18]
for the basic concept and definition of vibration power
flow as well as its application to dynamic analysis of
linear andnonlinear vibration suppression systems as in
Refs. [2,19,20,22,25,26]. In the steady-state motion,
the non-dimensional time-averaged input and dissi-
pated powers over one period of the external excitation
are

p̄in(Ω)= 1

T

∫ τ0+T

τ0

X ′Fe cosΩτ dτ ≈−rΩ

2
Fe sin φ,

(43a)

p̄d(Ω) = 1

T

∫ τ0+T

τ0

2ζ X ′X ′ dτ ≈ ζr2Ω2, (43b)

respectively, where τ0 is the starting time while T is
the averaging time, set to be a period of excitation,
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i.e. T = 2π/Ω , and a first-order approximation of the
velocity with X ′ = −rΩ sin(Ωτ + φ) was used for
the inerter-based nonlinear isolation system shown in
Fig. 3c. Note that based on Eqs. (16b) and (43a), the
first-order approximation of the time-averaged input
power into the system shown in Fig. 3c is

p̄in(Ω) = ζr2Ω2. (44)

Note that it has been shown that Eq. (44) presents the
exact analytical expression of the time-averaged input
power into the inerter-based linear isolator [20]. Equa-
tions (43b) and (44) show that the first-order approxi-
mate expressions for the time-averaged input and dis-
sipated powers are identical. This is due to the fact
that over a cycle of steady-state periodic oscillation,
there is no net change in potential and kinetic ener-
gies of the integrated nonlinear isolation system. Con-
sequently, the vibration power input from the external
excitation is all dissipated by damping.

The maximum kinetic energy of the excited sys-
tem is widely used as a performance index of vibration
control systems [19]. The non-dimensional maximum
kinetic energy of the mass in the steady-state motion is

Kmax = 1

2
X ′2 ≈ 1

2
r2Ω2. (45)

where a first-order approximation the steady-state
velocity response was used for the inerter-based non-
linear isolator shown in Fig. 3. Note that a comparison
of Eqs. (44) and (45) shows that

p̄in = 2ζKmax. (46)

Equation (46) shows that for the systemwith a predeter-
mined damping coefficient ζ , the time-averaged input
power is proportional to the maximum kinetic energy
of the harmonically excited mass.

With reference to the frequency response relation-
ship expressed by Eq. (17), the time-averaged input
power and the maximum kinetic energy of the mass for
the system shown in Fig. 3c can be rewritten as:

p̄in = ζΩ2F2
e

(2ζΩ)2 +
(
α + 3

4βr2 −
(
1 + λ

2 r
2 + λ

4 r
4
)
Ω2

)2

≤ F2
e

4ζ
, (47a)

Kmax = Ω2F2
e

2(2ζΩ)2+2
(
α+ 3

4βr2−
(
1+ λ

2 r
2+ λ

4 r
4
)
Ω2

)2

≤ F2
e

8ζ 2
. (47b)

These equations show that there are upper limits for
both the time-averaged input power and the maximum
kinetic energy of themass, respectively. The upper lim-
its are only determined by the damping coefficient ζ

and the excitation force amplitude Fe. These upper lim-
its of the time-averaged power flow and the maximum
kinetic energy of the mass may be reached when

α + 3βr2

4
−

(
1 + λr2

2
+ λr4

4

)
Ω2 = 0. (48)

Recalling the backbone curve expression in Eq. (21)
and frequency response relationship in (17), it is found
that the upper limits of input power and kinetic energy
of the mass are reached at the intersection point of the
backbone curve and the displacement response curve.
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