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Abstract In this paper, an efficient event-triggered
control is designed to address the leader-following con-
sensus problem for the fractional-order multi-agent
systems. First, in order to reduce the conservation of
consensus criteria, a novel Wirtinger-based fractional-
order integral inequality is proposed. Second, an adap-
tive control is designed by using a new event-triggered
scheme without Zeno behavior, which can effectively
reduce the communication cost in network. Later in
order to analyze the consensus of the fraction-order
leader-following systems, we employ a new approach
based on fractional Lyapunov direct method. Finally,
combining Wirtinger-based fractional-order integral
inequality, the event-triggered adaptive control as well
as the proposed consensusmethod, the consensus crite-
ria of the leader-following fractional-order multi-agent
systems are obtained.Twonumerical examples are used
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1 Introduction

The coordination of multi-agent systems (MASs) has
attracted increasingly attention over the past decades
due to its popularity in many practical applications
such as leader–follower formation of the nonholonomic
mobile robots [1], distributed formation of multi-robot
systems with nonholonomic constraint [2], distributed
consensus behavior in sensor networks [3], coordinated
target of unmanned air vehicle formations and under-
water vehicles [4] and [5]. As a critical issue in coor-
dination of MASs, the consensus problems of first-
order, second-order, and high-order systems have been
extensively studied [6,7]. According to the definition
of fractional calculus, the fractional-order systems can
accurately describe the memory and heredity proper-
ties [8–14]. Therefore, for more complicated dynamic
phenomena, fractional calculus instead of integer one
has been employed to describe them more accurately,
such as the lubricating bacteria model for branching
growth of bacterial colonies, biofluid dynamic model
for lubricating bacteria, submarines and underwater
robots that explores the seabed with large amounts
of microorganisms and sticky substances, consensus
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behavior for unmanned aerial vehicles operating in
complex weather (e.g., high-speed flight in dust storm,
rain, or snow), and dynamic behavior of viscoelastic
materials during vehicle movement [15–20].

Since Cao et al. first proposed the fractional-order
multi-agent systems (FOMASs) in [21], some sufficient
criteria have been proposed to achieve the consensus of
the considered networks. Later the coordination, con-
sensus and stability problems of FOMASs have been
explored [22–29]. For instance, in [23] and [24], neces-
sary and sufficient criteria for consensus of FOMASs
are proposed by designing the distributed control proto-
cols; by employing adaptive pinning control approach,
the leader-following consensus of FOMASs is dis-
cussed in [25]; the distributed formation control in [26–
28] is designed to obtain the consensus behavior of
FOMASs; the sliding mode control method is intro-
duced to ensure the distributed consensus tracking for
FOMASs in [29] and [30].

It is worth noting that all these aforementioned
works study the consensus problem of FOMASs by
using continuous control, in which the input control-
ling signals have to be updated continuously. However,
from economics perspective, these continuous proto-
cols will spend a lot of time andmoney, leading to inef-
ficiency in real application. Therefore, how to design
a more efficient and practical controller for the con-
sensus of FOMASs has become a challenge faced by
scholars. Indeed, the controller can be divided into two
types: continuous time controller [23–32] and discrete
sampled-data one [33–41]. Compared with the widely
application of continuous time controller [23–32], the
discrete sampled-data controller, as a more economi-
cal one, is still in emergent stage for the consistency
of FOMASs with only several event-triggered sam-
pling techniques being proposed [34–41]. In [38], the
event-triggered strategy for the consensus of FOMASs
is designed, but it does not consider neighboring agent
information. In [39–41], the event-triggered strategies
are designed to solve the channel congestion caused
by simultaneous information transferring. Thus to deal
with these problems, in this study, we design a corre-
sponding event-triggered mechanism for each agent by
using information from the neighboring agents.

Inspired by the above discussion, this paper addre-
sses the consensus problem of FOMASs by design-
ing event-triggered control which only depends on the
local information. The main contributions of this study
include: (1) a novel Wirtinger-based fractional-order

integral inequality (WBFOII) is introduced to estimate
Lyapunov–Krasovskii functions, which can obtain
much tighter bounds than fractional-order Jensen-like
integral inequality; (2) new event-triggered control
strategies without Zeno behavior are produced to mon-
itor the dynamic behavior of each agent, which can
reduce communication traffic; (3) by using the pro-
posed WBFOII, the consensus criteria depending on
α-order are also suggested to analyze the dynamical
behaviors of FOMASswith event-triggered control; (4)
compared with the previous works [25] and [27–29],
the proposed consensus criteria depending on α-order
can analyze the effect ofα-order on the dynamic behav-
iors of FOMASs more accurately; (5) the simulation
results of the event-triggering numbers also verify the
effectiveness of our approach as well as its advantage
in comparison with the method in [41].

The rest of this paper is organized as follows. In
Sect. 2, some related definitions and properties of
fractional calculus are introduced and a network with
FOMASs is described. Then, an adaptive controller
for the consensus of FOMASs is designed based on
WBFOII and the proposed event-triggered strategies in
Sect. 3. Section 4 provides two numerical examples to
demonstrate the validity and efficiency of the proposed
controller. Finally, some conclusions are summarized
in Sect. 5.

Notations: in this paper, N denotes the positive
integer. R

n and R
n×m , respectively, represent the n-

dimensional Euclidean space and the set of n × m
real matrices. R is a real number set. Cm([0,+∞), R)

denotes Banach space of all continuous and m-order
differentiable functions. T stands for the transpose of
matrix. In denotes an n-dimensional identity matrix.
The notation diag(. . .) stands for a block-diagonal
matrix.λmax(A) (λmin(A)) denotes themaximum(min-
imum) eigenvalues of A. The notation A > 0 repre-
sents that A is a real symmetric and positive definite
matrix. If x ∈ R

n ,wehave |x | = (|x1|, |x2|, . . . , |xn|)T
and ‖x‖ = (∑n

k=1 | xk |2) 12 . If a ∈ R
n , then sgn(a)

denotes the symbol of scalar a.

2 Preliminaries and problem statement

In this section, some definitions and property of frac-
tional calculus are introduced and then a FOMAS
model with one leader and several followers is sug-
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gested to standardize the consensus problem in this
study.

2.1 Fractional calculus

Definition 1 [42] The Caputo derivative of α-order for
function f (t) is defined as

t0D
α
t f (t) = 1

Γ (m − α)

∫ t

t0
(t − u)m−α−1 f (m)(u)du

wherem−1 ≤ α < m,m ∈ N, f ∈ Cm([t0,+∞), R),
t0 is the initial time, andΓ (·) isGamma function.When
0 < α < 1, t0D

α
t f (t) = 1

Γ (1−α)

∫ t
t0
(t − u)−α f ′(u)du.

Definition 2 [42] The integration of α-order for func-
tion f (t) is defined as

t0 I
α
t f (t) = 1

Γ (α)

∫ t

t0
(t − u)α−1 f (u)du

where α > 0 and f (u) is integrable in [t0, t].
Definition 3 [42] The Riemann–Liouville derivative
of α-order for function f (t) is defined as

R
t0D

α
t f (t) = 1

Γ (m − α)

dm

dtm

∫ t

t0
(t − u)m−α−1 f (m)(u)du.

The following property of the fractional calculus is
necessary in proof of our main results.

Property 1 [42] Assume that f (t) is a continuous
function, then t0 I

α
t t0D

α
t f (t) = f (t) − f (t0), where

0 < α ≤ 1.

2.2 Problem statement

This paper studies the consensus of a multi-agent net-
work with one leader and N followers. For more accu-
racy, the behavior of the leader and followers can be
described as the fractional-order nonlinear dynamics.
Without loss of generality, let x0 be the leader. Then
the dynamic behavior of the leader can be described by

t0D
α
t x0(t) = Ax0(t) + f (x0(t)) + Δ0(t) (1)

where 0<α <1, x0(t)= (x01(t), x02(t), . . . , x0n(t))T

is the state of the leader; A ∈ R
n×n is a constantmatrix;

f (x0(t)) = ( f1(x0(t)), f2(x0(t)), . . . , fn(x0(t)))T ∈

R
n is a nonlinear function; Δ0(t) = (Δ01(t),Δ02(t),

. . . , Δ0n(t))T ∈ R
n is the external disturbance in some

special environment. The behavior of N followers is
described by

t0D
α
t xi (t) = Axi (t) + f (xi (t)) + Δi (t) + ui (t) (2)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T is the state
of follower i ; f (xi (t)) = ( f1(xi (t)), f2(xi (t)), . . . ,
fn(xi (t)))T ∈ R

n is a nonlinear function; Δi (t) =
(Δi1(t), Δi2(t), . . . , Δin(t))T ∈ R

n is the external dis-
turbance in some special environment; ui (t) represents
a vector of control input.

Remark 1 In a real complicated environment, exter-
nal disturbances are inevitable. For example, complex
weather such as rain and snow storms, and a series
of external noises will affect the communication of
FOMASs. Therefore, it is necessary to consider the
impact of external disturbances on the dynamic behav-
ior of FOMASs.

Before proceeding further, it is necessary to make
the following assumptions.

Assumption 1

(1) The function f (x) of multi-agent systems is con-
tinuous, and there exists a constant matrix Q > 0
such that (x−y)T ( f (x)− f (y)) ≤ (x−y)T Q(x−
y) for all x, y ∈ R

n .
(2) The unknown disturbance Δi (t) is bounded,

namely |Δi j (t)| < Δi j , i = 0, 1, 2, . . . , N ,
where Δi j is a positive constant denoting Δi =
(Δi1,Δi2, . . . , Δin)

T .

Assumption 2 Assume that there is at least one com-
munication path between the leader and each follower
in the argued multi-agent network.

Definition 4 [43] The leader-following consensus of
FOMASs is said to be achieved if, for any xi (0), i ∈
{0, 1, 2, . . . , N }, it satisfies
lim

t→+∞ ‖xi (t) − x0(t)‖ = 0.

To study the consensus problem, the error vector
ei (t) between the leader x0(t) and any follower xi (t) is
defined as ei (t) = xi (t)− x0(t). Then the error system
can be obtained as follows

t0D
α
t ei (t) = Aei (t) + f̃ (ei (t)) + Δ̃i (t) + ui (t) (3)

where f̃ (ei (t)) = f (xi (t)) − f (x0(t)), Δ̃i (t) =
Δi (t) − Δ0(t) and i ∈ {1, 2, . . . , N }.
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The purpose of this study is to design amore efficient
and economical event-triggered mechanism to achieve
the consensus problem of the above leader-following
FOMASs.

3 Main results

In this section, first a new WBFOII is proposed to
deal with Lyapunov–Krasovskii functions, then a novel
event-triggered adaptive control is proposed to ensure
the N followers states to be consistent with the leader’s
behavior rapidly and economically.

3.1 Wirtinger-based fractional-order integral
inequality

Lemma 1 Let x(t) be an arbitrary integrable function
in [a, b]. Then, for any n × n matrix Q > 0, the fol-
lowing inequality holds:

a I
α
b (xT (b)Qx(b)) ≥ 3

Γ (α + 1)(b − a)α
ΩT QΩ

+ Γ (α + 1)

(b − a)α

(
a I

α
b x(b)

)T
Q
(
a I

α
b x(b)

) (4)

where Ω = Γ (2α+1)
(b−a)α a I 2αb x(b) − Γ (α + 1)a I α

b x(b).

Proof For any integrable function x(t), definition of
the function z(t) is given for ∀t ∈ [a, b],
z(t) = x(t) − Γ (α + 1)

(b − a)α
a I

α
b x(b)

−
(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)
Ω.

(5)

According to Definition 2, we can obtain

a I
α
b (zT (t)Qz(t))

= 1

Γ (α)

∫ b

a
(b − t)α−1zT (t)Qz(t)dt

= 1

Γ (α)

∫ b

a
(b − t)α−1

{
xT (t)Qx(t) − 2

Γ (α + 1)

(b − a)α
xT (t)

× Qa I
α
b x(b)−2

(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)
xT (t)QΩ

+
(

Γ (α + 1)

(b − a)α

)2

(a I
α
b x(b))

T Q(a I
α
b x(b))

+ 2

(
Γ (α + 1)

(b − a)α

)(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)
(a I

α
b x(b))

T

× QΩ +
(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)2

ΩT QΩ

}

dt. (6)

Notice that

1

Γ (α)

∫ b

a
(b − t)α−1 ×

(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)
dt = 0,

(7)
1

Γ (α)

∫ b

a
(b − t)α−1

(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)
x(t)dt

= 6

Γ (α)(b − a)2α

∫ b

a
(b − t)2α−1x(t)dt

− 3

(b − a)α
a I

α
b x(b)

= 6Γ (2α)

Γ (α)(b − a)2α
a I

2α
b x(b) − 3

(b − a)α
a I

α
b x(b)

= 3

Γ (α + 1)(b − a)α
Ω, (8)

1

Γ (α)

∫ b

a
(b − t)α−1

(
6(b − t)α

(b − a)2α
− 3

(b − a)α

)2

dt

= 9

Γ (α)(b − a)4α

∫ b

a

(
4(b − t)3α−1

−2(b − t)2α−1(b − a)α
)
dt

= 3

Γ (α + 1)(b − a)α
. (9)

Therefore, substituting (7)–(9) into (6), it could be
derived

a I
α
b (zT (b)Qz(b)) = a I

α
b (xT (b)Qx(b))

− Γ (α + 1)

(b − a)α

(
a I

α
b x(b)

)T Q
(
a I

α
b x(b)

)

− 3

Γ (α + 1)(b − a)α
ΩT QΩ.

(10)

Accordingly, zT (t)Qz(t) is always nonnegative since
Q > 0. Thus, we have

a I
α
b (xT (b)Qx(b))

≥ Γ (α + 1)

(b − a)α

(
a I

α
b x(b)

)T
Q
(
a I

α
b x(b)

)

+ 3

Γ (α + 1)(b − a)α
ΩT QΩ.

(11)


�
Remark 2 Notice that when α = 1, according to
Lemma 1, we can obtain

∫ b

a
xT (t)Qx(t)dt ≥ 1

b − a

∫ b

a
xT (t)dt Q

∫ b

a
x(t)dt

+ 3

b − a
ΩT

1 QΩ1

(12)

where Ω1 = 2
b−a

∫ b
a

∫ s
a x(u)duds − ∫ b

a x(s)ds. Obvi-
ously, (12) is the same as Eq. (5) in [44], implying
Lemma 1 is an extension of Corollary 5 in [44].
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Remark 3 Compared with fractional-order Jensen-like
integral inequality, the proposed WBFOII has an addi-
tional positive term. Therefore, using WBFOII to esti-
mate Lyapunov–Krasovskii functions can obtain much
tighter bounds.

Corollary 1 Let x(t) be an arbitrary continuously dif-
ferentiable function in [a, b]. Then, for any n×n matrix
Q > 0, the following inequality holds:

a I
α
b

((
aD

α
b x(b)

)T
Q
(
aD

α
b x(b)

))

≥ Γ (α + 1)

(b − a)α
ΩT

2 QΩ2

+ 3

Γ (α + 1)(b − a)α
ΩT

3 QΩ3

(13)

where Ω2 = x(b) − x(a),

Ω3 = Γ (2α + 1)

(b − a)α
a I

α
b x(b) − Γ (2α + 1)

Γ (α + 1)
x(a)

−Γ (α + 1)Ω2.

Corollary 2 Let x(t) be an arbitrary continuously dif-
ferentiable function in [a, b]. Then, for any n×n matrix
Q > 0, the following inequality holds:

a I
α
b

((
R
a D

α
b x(b)

)T
Q
(
R
a D

α
b x(b)

))

≥ Γ (α + 1)

(b − a)α
xT (b)Qx(b)

+ 3

Γ (α + 1)(b − a)α
ΩT

4 QΩ4

(14)

where Ω4 = Γ (2α+1)
(b−a)α a I α

b x(b) − Γ (α + 1)x(b).

3.2 Design of the event-triggered scheme

The FOMAS with one decision-making leader and N
followers can be simplified as a control system. In prac-
tice, the leader might be a large firm or the local gov-
ernment, whose decisions or policies are periodical,
rather than continuous ones as discussed in [23–29].
Thus the event-triggered strategy in the control theory
can describe their behaviors or activities better. There-
fore, in this section, we try to design an event-triggered
mechanism to reduce the control frequency. Let

tk+1 = tk + min{τ, T i
k |i = 1, 2, . . . , N }

T i
k = in f {l|�i (tk + l) ≥ �e−εtk }, k = 0, 1, 2, . . .

(15)

where l, ε and τ are the positive constants, t0 is the
first trigged time, tk stands for the latest transmis-
sion instant, tk+1 denotes the next transmission instant;

�i (t) = (
∑N

j=1 Li j (x j (t) − x j (tk)))T Ri (
∑N

j=1 Li j

(x j (t) − x j (tk))) − ρ(
∑N

j=1 di j (xi (tk) − x j (tk)))T

Ri (
∑N

j=1 di j ( xi (tk)− x j (tk))) where the matrix Ri >

0, the scalars ρ and �, which are parameters of
event-triggered scheme, will be designed later. D =
(di j )N×N denotes a weighted adjacency matrix of the
follower’s system, where di j > 0 indicates that the
follower agents i and j can exchange information with
each other, otherwise di j = 0; Li j = −di j when i �= j ,
otherwise Lii = ∑N

j=1 di j . We denote sampling inter-
val τk = tk+1 − tk , namely τk ≤ τ .

Remark 4 This study designs the following event-
triggered condition
⎛

⎝
N∑

j=1

Li j (x j (t) − x j (tk))

⎞

⎠

T

Ri

×
⎛

⎝
N∑

j=1

Li j (x j (t) − x j (tk))

⎞

⎠

≤ ρ

⎛

⎝
N∑

j=1

di j (xi (tk) − x j (tk))

⎞

⎠

T

× Ri

⎛

⎝
N∑

j=1

di j (xi (tk) − x j (tk))

⎞

⎠+ �e−εtk .

(16)

When the event-triggered scheme is violated, the leader
will update control state to make the consensus of a
leader and N followers. Otherwise, the control inputs
of the N follower systems (2) are kept in holding time
[tk, tk+1).

Remark 5 The interval [t0,+∞) is divided into T =
{[tk, tk+1) | k ∈ N} by using the event-triggered
sample-data. Then the error system with t ∈ [tk, tk+1)

can be obtained as follows:

tk D
α
t ei (t) = Aei (t) + f̃ (ei (t)) + Δ̃i (t) + ui (t). (17)

Then, in order to analyze the consensus of FOMASs,
we propose the following lemmas.

Lemma 2 For system (17), let ν(t) be a positive def-
inite function, ϑ(t) be an arbitrary function satisfy-
ing ϑ(tk) = 0, and there exists a scalar σ such that
tk+1 − tk ≥ σ > 0. If

tk D
α
t V (t) ≤ −κ(‖e(tk)‖), t ∈ [tk, tk+1) (18)
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where κ(·) is a K -class function and V (t) = ν(t) +
ϑ(t), then lim

t→+∞ ‖e(t)‖ = 0.

Proof Applying the fractional-order integration on
both sides, tk D

α
t V (t) ≤ −κ(‖e(t)‖) can be derived

to

V (ttk+1) − V (tk) ≤ − (tk+1 − tk)α

Γ (1 + α)
κ(‖e(tk)‖). (19)

Further, we can obtain

ν(ttk+1) − ν(tk) ≤ − σα

Γ (1 + α)
κ(‖e(tk)‖). (20)

Thereby, the following inequality holds
n∑

k=0

κ(‖e(tk)‖) ≤ Γ (1 + α)

σα
ν(t0). (21)

From the above inequality, the series∑+∞
k=0 κ(‖e(tk)‖) is obviously converged, showing that

limk→+∞ κ(‖e(tk)‖) = 0, i.e., limk→+∞ ‖e(tk)‖ = 0.
According to the designed event-triggered scheme,

the following inequality holds with ∀t ∈ [tk, tk+1)

�i (t) = − ρ

⎛

⎝
N∑

j=1

Li j e j (tk)

⎞

⎠

T

Ri

⎛

⎝
N∑

j=1

Li j e j (tk)

⎞

⎠

+
⎛

⎝
N∑

j=1

Li j (e j (t) − e j (tk))

⎞

⎠

T

× Ri

⎛

⎝
N∑

j=1

Li j (e j (t) − e j (tk))

⎞

⎠

≤ �e−εt

(22)

Thus, we have lim
t→+∞ ‖e(t)‖ = 0. 
�

Lemma 3 For system (17), let ν(t) be a positive def-
inite function, ϑ(t) be an arbitrary function satisfy-
ing ϑ(tk) = 0, and there exists a scalar σ such that
tk+1 − tk ≥ σ > 0. If

tk D
α
t (ν(t) + ϑ(t)) ≤ −κ(‖e(tk)‖) + �e−εtk ,

t ∈ [tk, tk+1), (23)

then lim
t→+∞ ‖e(t)‖ = 0.

Proof The proof of this lemma is similar to that of
Lemma 2. Thus, Lemma 3 can be obtained.

Remark 6 When α = 1, the asymptotic stability result
of Lemma 2 is still valid. It is obvious that Lemma 2 in
[45] is a special case of Lemma 2 in our study. Com-
pared to Lemma 2 in our study, the asymptotic stability
criteria of Lemma 3 are weaker.

3.3 Leader-following consensus criteria

Considering the consensus of FOMASs, each fol-
lower’s state of system (2) should converge to the
leader’s state of system (1). Therefore, the consensus
problem of FOMASs is equivalent to the stability of
each error system (17). In this section, a novel adaptive
controller will be designed to guarantee the stability of
the trajectories of system (17). Furthermore, the con-
troller gain matrices are derived by solving liner matrix
inequalities (LMIs) constraints.

The adaptive control ui (t) is designed as

ui (t) = − ki1

N∑

j=1

di j (xi (tk) − x j (tk))

− ki2ci (xi (tk) − x0(tk)) − Δ̂∗
i (t)

(24)

where i ∈ {1, 2, . . . , N }, ki j ( j = 1, 2) is the controller
parameter to be designed and there exists a positive
constant k such that ki j ≤ k. Throughout this paper,
we assume dii = 0. C = diag(c1, c2, . . . , cN ) stands
for the weighted adjacency matrix with one leader and
N followers, where ci > 0 implies that the i th fol-
lower can obtain information from the leader, other-
wise ci = 0. Δ̂∗

i (t) = (Δ̂i1(t)sgn(ei1(t)), Δ̂i2(t)

sgn(ei2(t)), . . . , Δ̂in(t)sgn(ein(t)))T , where Δ̂i (t) =
(Δ̂i1(t), Δ̂i2(t), . . . , Δ̂in(t))T is the external distur-
bance estimation vector, which is updated with the fol-
lowing adaptive control law:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk D
α
t Δ̂i (t) = θi

(|ei (t)| + μ(t)Δ̄i (t)
)

μ(t) = δτ 1−2α

nNΓ (2 − α)

∫ t

tk
‖tk D1−α

s e(s)‖2ds

+ δτ 1−α

nN
tk I

1−α
t ‖tk D1−α

t e(t)‖2
(25)

where θi and δ are positive constants, and Δ̄i (t) =
( 1
2Δi1−Δ̂i1(t)

, 1
2Δi2−Δ̂i2(t)

, . . . , 1
2Δin−Δ̂in(t)

)T .

For the convenience, the controller (24) is simplified
to the following form

ui (t) = −ki1

N∑

j=1

Li j e j (tk) − ki2ci ei (tk) − Δ̂∗
i (t)

(26)

Remark 7 From the controller (24), we may find that
the sign function is introduced to dealwith the unknown
external disturbance. This also implies that the unde-
sired chattering phenomenon is unavoidable. Thus, to
avoid this problem, the controller (24) is improved to
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ui (t) = − ki1

N∑

j=1

di j (xi (tk) − x j (tk))

− ki2ci (xi (tk) − x0(tk)) − Δ̂i (t)

(27)

which is updated with the adaptive control law (25) and
the following equation:

tk D
α
t Δ̃i (t) =θi

(
|ei (t)| + δ(2Δi − Δ̃i (t))

)
. (28)

Theorem 1 Under Assumptions 1 and 2, for any given
scalars0 < α, ρ < 1, the consensus of FOMASs canbe
achieved by using the controller (24)with adaptive law
(25) if there exist scalar k and appropriate dimension
matrices R > 0, Q > 0, P > 0, K1 and K2 such that
δ ≥ λmax(P) and

Ξ =
⎡

⎢
⎣

Ξ11 Ξ12 3Γ (3 − 2α)P
∗ Ξ22 Ξ23

∗ ∗ −Γ 2(3−2α)
Γ (2−α)

P

⎤

⎥
⎦ < 0

where K1 = diag(k11, k21, . . . , kN1), K2 = diag(k12,
k22, . . . , kN2), L̃ = diag(L11, L22, . . . , LNN ), C =
diag(c1, c2, . . . , cN ),

Ξ11 =IN ⊗
(
A + AT

2
+ Q

)
+ 1

2
(k2 L̃) ⊗ In

− 4Γ (2 − α)P − R,

Ξ12 = − 1

2
(K1 L̃ + K2C) ⊗ In

−
(

Γ (3 − 2α)

Γ (2 − α)
− 4Γ (2 − α)

)
P + R,

Ξ22 =1

2
L̃ ⊗ In −

(
3Γ 2(3 − 2α)

Γ 3(2 − α)
− 6Γ (3 − 2α)

Γ (2 − α)

−3Γ (2 − α)) P + (ρ − 1)R,

Ξ23 =
(
3Γ 2(3 − 2α)

Γ 2(2 − α)
− 3Γ (3 − 2α)

)
P

R =
N∑

i=1

⎡

⎢
⎣

IN ⊗ Li1
...

IN ⊗ LiN

⎤

⎥
⎦ Ri

[
IN ⊗ Li1 . . . IN ⊗ LiN

]
.

Proof Weconsider the followingLyapunov–Krasovskii
function

V (t) = V1(t) + V2(t) + V3(t), ∀t ∈ [tk, tk+1) (29)

where

V1(t) = 1

2

N∑

i=1

eTi (t)ei (t), (30)

V2(t) = 1

2

N∑

i=1

1

θi
(2Δi −Δ̂i (t))

T (2Δi − Δ̂i (t)), (31)

V3(t) = −τ−α
k (tk+1 − t)

∫ t

tk

(
tk D

1−α
s e(s)

)T

×P
(
tk D

1−α
s e(s)

)
ds. (32)

The time derivative of V1(t) along the solution ei (t) of
system (17) can be calculated by

tk D
α
t V1(t) ≤

N∑

i=1

eTi (t)tk D
α
t ei (t)

=
N∑

i=1

eTi (t)(Aei (t) + f̃ (ei (t))

+ Δ̃i (t) + ui (t))

≤
N∑

i=1

eTi (t)
(
(A + Q)ei (t) + Δ̃i (t) + ui (t)

)
.

(33)

According to the adaptive controller (24), we have

N∑

i=1

eTi (t)ui (t) =
N∑

i=1

eTi (t)(−ki1

N∑

j=1

Li j e j (tk)

− ki2ci ei (tk) − Δ̂∗
i (t))

= −
N∑

i=1

ki1e
T
i (t)(Lii ei (tk) −

N∑

j=1, j �=i

|Li j |e j (tk))

−
N∑

i=1

(ki2ci e
T
i (t)ei (tk) + |ei (t)|T Δ̂i (t))

≤ −
N∑

i=1

(ki1Lii + ki2ci )e
T
i (t)ei (tk)

−
N∑

i=1

|ei (t)|T Δ̂i (t)

+
N∑

i=1

Lii

2
(k2‖ei (t)‖2 + ‖ei (tk)‖2).

(34)

By substituting (34) into (33), we have
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tk D
α
t V1(t) ≤

N∑

i=1

[eTi (t)(A + Q + 1

2
k2Lii In)ei (t)

+ |ei (t)|T (2Δi − Δ̂i (t))] +
N∑

i=1

Lii

2
‖ei (tk)‖2

−
N∑

i=1

(ki1Lii + ki2ci )e
T
i (t)ei (tk). (35)

According to Assumption 1, the α-order derivative
of V2(t) can be calculated by

tk D
α
t V2(t) ≤ −

N∑

i=1

1

θi
(2Δi − Δ̂i (t))

T
tk D

α
t Δ̂i (t)

(36)

By substituting (25) into (36), we get

tk D
α
t V2(t) ≤ −

N∑

i=1

(2Δi − Δ̂i (t))
T (|ei (t)| + μ(t)Δ̄i (t)

)

≤ −
N∑

i=1

|ei (t)|T (2Δi − Δ̂i (t)) − nNμ(t).

(37)

From (35) and (37), we have

tk D
α
t (V1(t) + V2(t))

≤ eT (t)(IN ⊗
(
A + AT

2
+ Q

)

+ 1

2
(k2 L̃) ⊗ In)e(t)

+ eT (t)(−(K1 L̃ + K2C) ⊗ In)e(tk)

+ 1

2
eT (tk)(L̃ ⊗ In)e(tk) − nNμ(t).

(38)

Taking the α-order derivative of V3(t), the following
inequality holds

tk D
α
t V3(t) = τ−α

k

∫ t

tk

(t − τ)−α

Γ (1 − α)

×
∫ τ

tk

(
tk D

1−α
s e(s)

)T
P
(
tk D

1−α
s e(s)

)
dsdτ

− τ−α
k

∫ t

tk

(tk+1 − τ)

Γ (1 − α)(t − τ)α

(
tk D

1−α
τ e(τ )

)T

× P
(
tk D

1−α
τ e(τ )

)
dτ

≤ τ−α
k

∫ t

tk

(t − τ)−α

Γ (1 − α)
dτ (39)

×
∫ t

tk

(
tk D

1−α
s e(s)

)T
P
(
tk D

1−α
s e(s)

)
ds

≤ τ 1−2α
k

Γ (2 − α)

∫ t

tk

(
tk D

1−α
s e(s)

)T
P
(
tk D

1−α
s e(s)

)
ds

+
(
τ 1−α
k − (t − tk)

1−α
)

× tk I
1−α
t

{(
tk D

1−α
t e(t)

)T
P
(
tk D

1−α
t e(t)

)}
.

According to Corollary 1, the following inequality
holds

− tk I
1−α
t

{(
tk D

1−α
t e(t)

)T
P
(
tk D

1−α
t e(t)

)}

≤ − Γ (2 − α)

(t − tk)1−α
ωT
1 Pω1

− 3

Γ (2 − α)(t − tk)1−α
ωT
2 Pω2 (40)

where ω1 = e(t) − e(tk), ω2 = Γ (3−2α)

(t−tk )1−α tk I
1−α
t e(t) −

Γ (3−2α)
Γ (2−α)

e(tk)−Γ (2−α)ω1. Combining (39) and (40),
it could be derived

tk D
α
t V3(t) ≤ nNμ(t)

−
{
Γ (2 − α)ωT

1 Pω1 + 3

Γ (2 − α)
ωT
2 Pω2

}
.
(41)

According to the event-trigger condition (16), the
following inequality holds

(e(t) − e(tk))
T R(e(t) − e(tk))

< ρe(tk)
T Re(tk) + N�e−εtk . (42)

Then combining all the results from (33) to (42), we
have

tk D
α
t V (t) ≤ ζ T (t)Ξζ(t) + N�e−εtk (43)

where ζ(t) = (eT (t), eT (tk),
1

(t−tk )1−α tk I
1−α
t eT (t))T .

According to the criteria of Theorem 1, we can get

tk D
α
t V (t) ≤ λmax(Ξ)‖e(tk)‖2 + N�e−εtk . (44)

By using Lemma 3, we can derive the following
result

lim
t→+∞ ‖e(t)‖ = 0. (45)

Therefore, the consensus of FOMASs is achieved. This
completes the proof. 
�
Remark 8 As a free variable, α-order helps to regulate
the dynamic behavior of FOMASs. In [25] and [27–29],
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the consensus criteria do not take into account the effect
of the α-order on the dynamic behavior of FOMASs.
However, by using the proposed WBFOII, the suffi-
cient criteria in Theorem 1 depending on the α-order
are obtained. Therefore, the proposed consensus crite-
ria and method in this paper are less conservative than
those in [25] and [27–29] for analyzing FOMASs.

Below we turn to prove Zeno behavior is excluded
in the proposed combination event-triggered consensus
scheme.

Theorem 2 Consider the leader–follower systems (1)
and (2) with 0 < α < 1, if the controller (24) with
adaptive law (25) is executed by the event-trigger
scheme (15), then Zeno behavior will not happen,
implying that there exists aminimumsample-data inter-
val σ , viz, σ = min

k=0,1,...
τk .

Proof From the sample-data scheme (15), we can
obtain that if the event-triggered function �i (t) < 0
holds for all t ∈ R, then τk = τ . Thus, it is obvious
that Zeno behavior can be excluded, namely σ = τ .
Next, we prove that Zeno behavior will not happen if
there exists k1 such that

lim
t→tk1+1

(e(t) − e(tk1))
T R(e(t) − e(tk1))

= ρe(tk1)
T Re(tk1) + N�e−εtk1 .

(46)


�
According to the proof of Theorem 1, tk1 D

α
t e(t) is

bounded. Then, there exists a positive constant Z such
that ‖tk1 Dα

t e(t)‖ ≤ ‖K1 L̃ + K2C‖‖e(tk1)‖ + Z for all
t ∈ [tk1 , tk1+1). Denote ψ(t) = e(t) − e(tk), then, we
have

tk1
Dα
t ‖ψ(t)‖ ≤ ‖tk1 Dα

t e(t)‖
≤ ‖K1 L̃ + K2C‖‖e(tk1)‖ + Z

(47)

By using Property 1 (Fractional-order Newton–
Leibniz formula), the following equation holds

‖ψ(t)‖ − ‖ψ(tk1)‖ = tk1
I α
t tk1

Dα
t ‖ψ(t)‖

≤
(
‖K1 L̃ + K2C‖‖e(tk1)‖ + Z

) (t − tk1)
α

Γ (α + 1)

(48)

From (46), we have

lim
t→tk1+1

‖ψ(t)‖2 ≥ 1

λmax(R)
lim

t→tk1+1
ψ(t)T Rψ(t)

= 1

λmax(R)

(
ρe(tk1)

T Re(tk1) + N�e−εtk1
)

. (49)

Combining (48) with (49), we may deduce

(
ρλmin(R)

λmax(R)

) 1
2 ‖e(tk1)‖ ≤ lim

t→tk1+1
‖ψ(t)‖

≤
(
‖K1 L̃ + K2C‖‖e(tk1)‖ + Z

) (τk1)
α

Γ (α + 1)
.

(50)

Therefore, the following equation is obtained

τk1 ≥
(

ρλmin(R)
λmax(R)

) 1
2α

(Γ (α + 1)‖e(tk1)‖)
1
α

(
‖K1 L̃ + K2C‖‖e(tk1)‖ + Z

) 1
α

> 0. (51)

It is obvious that τk1 is strictly positive, viz, τk1 > 0.
Thus there exists the minimum sample-data interval.
This completes the proof.

Remark 9 From [46], α ∈ (0, 1) is a necessary con-
dition for t0D

α
t ( f T (t)P f (t)) ≤ 2 f T (t)Pt0D

α
t f (t)

where P > 0. Thus, in [8–11], α-order always sat-
isfies α ∈ (0, 1). Further, when α = 1, we have

t0D
α
t ( f T (t)P f (t)) = 2 f T (t)Pt0D

α
t f (t). According

to their proofs, Theorems 1 and 2 are valid for all
α ∈ (0, 1]. Therefore, the results of Theorems 1 and 2
are still valid for integer-order MASs, meaning that
the results in this study are more general than those in
[7,47–53].

Remark 10 In the consistency analysis of FOMASs,
the α-order differential plays a crucial role. [15,22]
and [29] investigated the consensus of leader-following
FOMASs, but they did not consider the importance of
α-order differential in consensus criteria. However, by
using the method presented in this paper, the α-order
differential of system is highlighted.

4 Numerical simulations

In this section, two examples are used to test the fea-
sibility as well as effectiveness of the proposed adap-
tive controller for the consensus problem of the leader-
following FOMASs.

4.1 Example 1

Consider a network with 5 agents: one leader and 4
followers. First, the dynamic behaviors of the leader
and followers are described by
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{
tk D

α
t x0(t) = Ax0(t) + f (x0(t)) + Δ0(t)

tk D
α
t xi (t) = Axi (t) + f (xi (t)) + Δi (t) + ui (t)

(52)

where f (xi (t)) = (0.1sin(xi1(t)), 0.1sin(xi2(t)), 0.1sin
(xi3(t)))T , Δi (t) = 0.01(cos(xi1(t)), cos(xi2(t)),
cos(xi3(t)))T , i = 0, 1, . . . , 4,

A =
⎡

⎣
−1.56 0.5 0
−1 −2 0.5
0.5 −1.2 −1.5

⎤

⎦ .

This example considers the network with fixed topo-
logical structure as shown in Fig. 1. From Fig. 1, we
can obtain C = diag(1, 0, 0, 1),

D =

⎡

⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎦ , L =

⎡

⎢⎢
⎣

1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

⎤

⎥⎥
⎦ .

The feasible solutions of LMIs in Theorem 1 are
solved by using MATLAB software. Due to the lim-
itation of the length of this paper, we only give the
parameters of the designed event-trigged scheme and
the adaptive controller by solving LMIs of Theorem 1,

K1 = diag(0.0099, 0.0194, 0.0194, 0.0099),

K2 = diag(0.0281, 0, 0, 0.0281).

Figure 2 shows the operating states of the adaptive
control ui (t) (i = 1, 2, 3, 4). From Figs. 3, 4, 5 and
6, we may find that these leader-following systems are
convergent quickly by using the adaptive control ui (t).
As shown in Fig. 7, Zeno behavior is excluded and there
exists a minimum sample-data interval σ = 0.1. From
Fig. 8 which exhibits the error states of system (52), we
may find that the consensus behavior does not change
with α. Thus, the numerical simulation proves that the

Fig. 1 The topological structure of the network in Example 1
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Fig. 2 State trajectory of the adaptive control ui (t) (i =
1, 2, 3, 4) with α = 0.8
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Fig. 3 State error trajectory e1 of the leader-following systems
(52) with α = 0.8

results of this paper can be generalized to integer-order
MASs, implying that the consensus criteria in this paper
are more general than the obtained works in [7,47–53].
In the case of α = 0.9 or α = 1, the consensus of
FOMASs is not achieved for t ∈ [0, 10]. Therefore, in
the comparative analysis, we only consider α ≤ 0.8.
From the comparison in Table 1, we can find the event-
triggering numbers are much less than those in [41],
indicating that the designed event-trigged scheme in
this study is much more effective and economical.

4.2 Example 2

Consider a leader-following networkwith 7 agents: one
leader and 6 followers, in which dynamic behaviors of
the leader and followers are described by
{

tk D
α
t x0(t) = Ax0(t) + f (x0(t)) + Δ0(t)

tk D
α
t xi (t) = Axi (t) + f (xi (t)) + Δi (t) + ui (t)

(53)
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Fig. 4 State error trajectory e2 of the leader-following systems
(52) with α = 0.8
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Fig. 5 State error trajectory e3 of the leader-following systems
(52) with α = 0.8
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Fig. 6 State error trajectory e4 of the leader-following systems
(52) with α = 0.8

where α=0.8, f (xi (t))=(0.11cos(xi1(t))−0.1xi1(t),
0.11cos(xi2(t)) − 0.1xi2(t), 0.11cos(xi3(t)) − 0.1xi3
(t))T , Δi (t) = (−0.01cos(xi1(t)),−0.01cos(xi2(t)),
−0.01cos( xi3(t)))T , i = 0, 1, 2, . . . , 6,

A =
⎡

⎣
−1.7 0 0
−1.5 −1.75 0.5
0.8 0 −1.5

⎤

⎦ .
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Fig. 7 Relationship between the event-trigged number k and the
sample-data interval length τk with α = 0.8
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Fig. 8 The maximum state error Eα = ‖e(t)‖ with different
orders (α)

Table 1 Event-triggering numbers compared to methods [41]
with different α: ε = 2

α 0.55 0.6 0.65 0.7 0.75 0.8

Our scheme 4 6 6 9 18 39

[41] 18 27 18 21 46 84

Figure 9 illustrates the topological structure of
FOMASs (53). From Fig. 9, we can obtain C =
diag(1, 0, 0, 0, 0, 0),

D =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 1 0
0 1 1 0 1 1
0 0 1 1 0 1
1 1 0 1 1 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

By calculating the feasible solutions of LMIs in The-
orem 1, we can get the parameters of the event-trigger
scheme and the adaptive controller.

K2 = diag(0.0723, 0, 0, 0, 0, 0),

K1=diag(0.0100, 0.0199, 0.0198, 0.0199, 0.0198, 0.0199).

123



2230 T. Hu et al.

Fig. 9 Topological structure of Example 2
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Fig. 10 State error trajectory e1 of the leader-following systems
(53) with α = 0.8
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Fig. 11 State error trajectory e2 of the leader-following systems
(53) with α = 0.8

From Figs. 10, 11 and 12, the states of the leader-
following systems (53) are consistent. Thus, the
designed event-triggered adaptive control is effec-
tive to achieve the consensus of leader-following sys-
tems more economically and rapidly. As illustrated in
Fig. 13, the event-trigger condition not only avoids the
Zeno behavior, but also reduces the communication
traffic.

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

e i
3
,i=

1,
2,
...
,6

e13 e23 e33 e43 e53 e63

Fig. 12 State error trajectory e3 of the leader-following systems
(53) with α = 0.8
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Fig. 13 Relationship between the event-trigged number k and
the sample-data interval length τk with α = 0.8

5 Conclusion

In this paper, the consensus of the fraction-order leader-
following systems was studied. In order to obtain much
tighter bounds for the estimated Lyapunov–Krasovskii
function, a novelWBFOII was proposed. To reduce the
frequency of network governance, an event-triggered
scheme without Zeno behavior was produced. Further-
more, an event-triggered adaptive control was designed
to ensure that the N followers’ behavior can converge
to the leader’s statemuch faster andmore economically
than previous methods. Then, the sufficient criteria
depending on the α-order were obtained to achieve the
consensus of the fraction-order leader-following sys-
tems. Finally, two examples were given to test the fea-
sibility as well as effectiveness of the proposed results.
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