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Abstract The nonlinear dynamic response of car-
bon nanotube (CNT)/polymer nanocomposite beams
to harmonic base excitations is investigated asymptot-
ically via the method of multiple scales. The hystere-
sis associated with the CNT/polymer interfacial fric-
tional sliding is described by a 3D mesoscopic the-
ory reduced via a uniaxial strain assumption for a
beam in pure plane bending. Such reduction leads to
a Bouc–Wen-like hysteretic moment–curvature rela-
tionship. The generalized memory-dependent consti-
tutive law is developed asymptotically and, subse-
quently, introduced in two archetypal cases of nonlin-
ear beam models. A beam model is tailored for axi-
ally restrained, extensible beams (e.g., hinged–hinged
beams) for which the dominant geometric nonlinear-
ity is associated with the multiplicative effect of the
tension with the bending curvature. The second model
is valid for inextensible beams (e.g., cantilever beams)
dominated by inertia and curvature nonlinearities. The
piece-wise integration of the moment–curvature rela-
tionship yields an exponential law which is treated
asymptotically to obtain the quadratic and cubic cur-
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vature contributions. The ensuing asymptotic equa-
tions of motion in the unknown deflection field are
discretized according to the Galerkin method employ-
ing the eigenmode directly excited near its primary
resonance to thus obtain a piece-wise reduced-order
model (ROM). The method of multiple scales applied
to the ROM yields the asymptotic response together
with the frequency response functions for the low-
est mode. A parametric study unfolds rich nonlinear
dynamic responses in terms of behavior charts high-
lighting regions of hardening and softening behavior,
regions of single-valued stable behavior and regions of
multi-valued multi-stable behavior. Such richness of
responses is caused by the unusual and unique combi-
nation of material and geometric nonlinearities.

Keywords Nanocomposite beam · Carbon
nanotube/polymer · Nanostructured beam · Method of
multiple scales · Hysteretic moment–curvature law ·
Nonlinear frequency response

1 Introduction

Nanocomposite materials are regarded as high-
performance structural materials for demanding appli-
cations in dynamic environments. Lightweight nano-
composites, made of engineering (thermoplastic or
thermosetting) polymers integratedwith various 0D/1D/
2D carbon nanofillers, are being employed to realize
dynamic devices, such as microresonators, microac-
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celerometers, and chemical and biosensors [1–4].
Moreover, an increasing number of works are address-
ing the interesting nonlinear properties of CNT-
reinforced polymer materials via extensive experimen-
tal testing and analysis of 1D (i.e., ropes, beams) and
2D (i.e., plates, shells) samples [5–7] toward a wider
exploitation of these new materials in aerospace, auto-
motive, and civil engineering.

Some of the distinguished mechanical properties of
CNT nanocomposite materials are the strong depen-
dence of the storage and lossmoduli on theCNTweight
fraction and the nonlinear dependence of these moduli
from the strain/stress levels. The dissipative capabil-
ity of CNT nanocomposites is primarily attributed to
a stick-slip frictional sliding motion of the long poly-
mer molecular chains surrounding the CNTs which is
triggered when the shear stresses on the CNTs outer
walls overcome the interfacial shear strength. Signif-
icant interfacial shear stress jumps are caused by the
severe elastic mismatch between CNTs and the hosting
polymer matrix. (The Young modulus is of the order of
1000GPa forCNTs,while it is 2–5GPa for engineering
polymers.)

The interfacial stick-slip behavior gives rise to hys-
teresis in the mechanical response [6–9]. This hys-
teretic behavior becomes increasingly more influen-
tial as more interfacial surface area becomes available
for the frictional slippage. It is reported that for high-
aspect-ratio, single-walled CNTs, the interfacial sur-
face area is of the order of 500 m2 for 1g of CNTs. Of
course, the interfacial surface area increases with the
CNTs content and the CNTs aspect ratio, as previously
observed in [6,7]. The hysteretic phenomenon com-
binedwith the viscosity of the polymer system typically
yields a softening nonlinearity in the material dynamic
response, as it happens for a variety of other strain-
softeningmaterials as well as physical/mechanical sys-
tems [10] or structures with initial curvature [11].

In a preliminary work [12], the nonlinear dynamic
response of nanocomposite cantilevers (made of ther-
moplastic polybutylene terephthalate polymer and single-
walled CNTs) was experimentally investigated and
compared with the response of a neat polymer beam
subject to a primary resonance base excitation. A key
result was the switch from softening- to hardening-
type nonlinearity. This was attributed to the competing
softening effects induced by the nanostructural stick-
slip with the hardening effects due to the nonlinear
curvature. An initial mechanical model for nanocom-

posite beams was proposed considering the nonlinear
Euler–Bernoulli beam theory projected onto the excited
mode according to the Galerkin method. The obtained
reduced-order equation of motion was thus modified to
account for a generalized hysteretic force regulated by
a modified Bouc–Wen model of hysteresis. The quali-
tative features of the experimental frequency response
curves were thus reproduced as documented in [12].

In the present work, we derive consistent models
of nanocomposite beams via a suitable reduction of
the 3D nanocomposite mesoscale constitutive model
[13,14] facilitated by the uniaxial strain state ansatz for
the assumed plane bending case treated to obtain the
moment–curvature relationship. A phenomenological
1Dmodel obtained as a by-product of the full 3Dmodel
was also shown to provide results in agreement with
experiments [15].

Here we discuss two nanocomposite beam models
valid for (1) axially restrained, unshearable/extensible
beams and (2) for unshearable/inextensible beams.
Subsequently, an unusual mix of the Galerkin dis-
cretization approach with a suitable asymptotic treat-
ment leads to a reduced-order model in which the
restoring force has a piece-wise representation in each
of the four branches of the hysteresis loops. The
obtained piece-wise ODE is further attacked by the
method ofmultiple scales to obtain the asymptotic peri-
odic solutions and the associated frequency response
functions for the primary resonance of the lowestmode.
A predecessor of this work about the effects of material
nonlinearities is [16] where a nonlinearly viscoelastic
moment–curvature relationship was defined to study
the influence of polynomial-type material nonlineari-
ties on flexural vibrations of circular rings.

The method of multiple scales [17] is widely
employed to study the frequency response and bifur-
cations of a variety of nonlinear systems for increas-
ing levels of approximation. In [16,18,19], the non-
linear dynamic behavior of distributed parameter sys-
tems with quadratic and cubic nonlinearities, includ-
ing cables/beams/rings, was investigated. A similar
asymptotic approach was employed in [20,21] to study
the dynamic response of a nonlinear hysteretic vibra-
tion absorber (with and without pinching) alone and
together with a primary system, its stability and sen-
sitivity with respect to the constitutive parameters. In
the present work, the wide tunability of the nonlin-
ear dynamic response of nanocomposite beams which
combine material and geometric nonlinearities is stud-
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ied thanks to the computational versatility afforded by
the asymptotic solutions. The present study into the
dynamic response of infinite-dimensional systems is
framed within the stream of works dealing with one-
or two-degree-of-freedom systems exhibiting bilin-
ear hysteresis [22], yielding structures [23], degrad-
ing systems [24] and other hysteretic systems [25–
37] improved to better capture the complexities of
different nonlinearities including shape memory phase
transitions coupled with thermomechanical features
[38,39].

The paper is organized as follows. Section 2 dis-
cusses the nonlinear nanocomposite beam models
whose discretization and asymptotic treatment are
detailed in Sect. 3. The asymptotic treatment and the
main results are illustrated in Sects. 4 and 5, respec-
tively.

2 Nonlinear nanocomposite beam models

A geometrically exact (Euler–Bernoulli) model of
nanocomposite beams in plane bending is chosen as the
baseline beam model together with an ad hoc nonlin-
ear constitutive formulation whose tailoring and com-
putational implementation represent the main mod-
eling challenge. In the linear material range, equiv-
alent stress–strain relationships relating, in a Mori-
Tanaka sense, average stresses with average strains
are already available [5]. On the other hand, the rel-
ative CNT/polymer frictional sliding occurring when
the localized interfacial shear stresses overcome the
shear strength introduces a strong nonlinearity in the
stress–strain relationships. Such a “stick-slip” behavior
between the two phases was described by a mescoscale
nonlinear constitutive model [13,14] valid for uni-
formly aligned CNTs. A phenomenological derivation
of the 3D model was experimentally validated in [15].
The same 3D nanocomposite model was employed for
optimization studies seeking to maximize at the same
time damping and stiffness of multilayer nanocompos-
ite plates in [40,41]. A generalization for randomly
oriented CNTs and accounting for nonuniform CNT
aspect ratios was proposed and experimentally vali-
dated in [42].

The3Dmesoscalemodel suitably reduced to account
for a plane bending problem (a linear counterpart was
proposed in [2]) together with the Saint-Venant ansatz
is employed to obtain a generalized constitutive law

which regulates the bending moment variation with the
beam bending curvature.

Nonlinear constitutive model for CNT/polymer
nanocomposites. The considered nanocomposites are
made of two material phases, the hosting polymer
matrix (here and henceforth denoted by subscript
“m”) and the CNTs (denoted by subscript “c”) mod-
eled as cylindrical inclusions [13]. According to the
Mori–Tanaka approach, the nanocomposite stresses
and strains are assumed as averaged continuum ten-
sors of the two phases (i.e., the so-called rule of mix-
ture) treated separately as two continuum media, Ṫ =
φm Ṫm + φc Ṫ c and Ė = φm Ėm + φc Ėc where the
scalar φc is the CNT volume fraction and φm := 1−φc

is that of the hosting matrix.
Here we adopt Gibbs notation for vector and ten-

sor fields. In particular, the dot and cross products of
vectors u and v are denoted by u · v and u× v, respec-
tively. The image T of second-order tensor E under
the application of fourth-order tensor L is expressed as
T = L : E, i.e., Ti j = Li jhk Ehk . The same nota-
tion is employed to indicate the inner tensor prod-
uct between both second- and fourth-order tensors,
namely T : E and A : B, respectively; these inner
products are expressed as T : E = Ti j Ei j and
A : B = Ai jhk Bhklm . The tensor product between
second-order tensors reads finally as T⊗E = Ti j Ehk .

According to Hill’s approach [43], phase-strain ten-
sors can be mapped into equivalent strains as

Ėm = Am : Ė , Ėc = Ac : Ė, (1)

where the fourth-order tensors Am and Ac (called the
dilutemechanical strain concentration tensors such that
φmAm + φcAc = I) account for Eshelby’s theory of
equivalent inclusion, together with the stress interface
conditions; they thus depend on both the equivalent
stress and strain for a given nonlinear constitutive law.

Both the hosting matrix and the CNTs are treated as
linearly elastic, isotropic continuum media, while the
constitutive nonlinearity is introduced at the interface
level; that is,

Ṫm = Lm : Ėm , Ṫ c = Lc : Ėc (2)

where Lm and Lc are the fourth-order tensors of elastic
coefficients of the two isotropic phases which depend
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on Young’s moduli (Em, Ec) and Poisson’s ratios (νm,
νc), respectively.

The equivalent constitutive law is then obtained by
combining the rule of mixture with (2), together with
the equilibrium at the interface and the Eshelby inclu-
sion governed by Eshelby’s tensor S incorporating the
shape, geometry, and variability of the CNTs length
within the nanocomposite [13,42]. The nanocompos-
ite equivalent stress–strain relationships are thus given
by Ṫ = L : Ė in which the equivalent elastic tensor is
defined as

L = Lm + φc〈(Lc − Lm) : Ac〉(φmI + φc〈Ac〉)−1 (3)

where I is the identity tensor while the dilute mechan-
ical strain concentration tensor Ac is given by

Ac =
[
I + S : (Lm)−1 : (Lc − Lm)

]−1
. (4)

Here S is specialized to account for the assumed cylin-
drical geometry of the CNTs. To introduce the CNT
orientation, which may be aligned with a preferential
direction or be random throughout the medium, the
terms enclosed by angle brackets indicate the tensor
transformation from the local CNT-fixed frame to the
global frame (〈Ac〉 = R� : Ac : R accounting for the
relative rotation about a prescribed coordinate axis in
case ofCNTs collinearwith a given direction) aswell as
the additional averaging operation over all orientations
in the case of random CNTs. Tensor R represents the
rotation parametrized, for example, by Euler’s angles.

For perfectly aligned CNTs depicted in Fig. 1, the
equivalent constitutive law is simplified into

Ṫ =
[
φm Lm : Am + φc Lc : Ac

]
: Ė

= Lm : Ė + φc

[
Lc − Lm

]
: Ac : Ė (5)

As proposed in [13,14], the hysteretic stick-slip behav-
ior is framed within the same context of the above
described Eshelby–Mori–Tanaka approach developed
in linear elasticity. The constitutive law is obtained
introducing a smooth transition from the stick to the
slip condition according to a Bouc–Wen-like law:

Ṫ c = L̂c(T c) : Ėc = Lc : Ėc

− 3μc ŝ(T c : Ṫ c)

(
Φ(T c)

So

)n−2 [Tdev
c

So
⊗ Tdev

c

So

]
: Ėc

(6)

where Φ(T c) is the von Mises function of the CNT-
phase stress which the interfacial stress discontinuity
depends on [14]:

Φ(T c) :=
√

3
2 T

dev
c : Tdev

c , ŝ(T c : Ṫ c)

:= β + γ sign(T c : Ṫ c). (7)

with n, β, and γ denoting the classical Bouc–Wen
parameters and Tdev

c the deviatoric part of the stress
tensor jump at the interface.

Due to the highly nonlinear nature of the 3D con-
stitutive law, a rigorous 1D reduction is a complex
task. However, a simplified 1D model mimicking
the 3D constitutive law was proven to yield results

CNTs

base line

O

b

b

b33
1

2

CNT

Polymer chains

Fig. 1 Carbon nanotube nanocomposite beam model. The arclength along the base line is denoted by s while the displacement vector
u(s, t) describes the current position of the base point of the cross sections
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in qualitative agreement with the experimental data
[15].

Consider the limit condition in which the von Mises
function reaches asymptotically the interfacial shear
strength So read in the CNT phase (i.e., onset of slip),
namely Φ(T c) → So. This condition occurs when

Φ̇(T c) → 0. This implies necessarily Tdev
c : Ṫdev

c →
0, hence, Tdev

c → c I with c = So
√
2/3. At the

onset of the slip phase, the constitutive law (6) thus
becomes

Ṫ c → Lc : Ėc − 2

3
μc [I ⊗ I] : Ėc

≡ λc tr(Ėc) I + 2μc Ėc (8)

where λc := (λc − 2
3μc) is the reduced Lamé con-

stant of the CNT phase. On the other hand, the lin-
earized law about the origin (i.e., linearly elastic
law) is given by Ṫ c = λc tr(Ėc) I + 2μc Ėc. Thus,
we can rewrite the linearized constitutive equations,
valid at the origin and in the post-slip condition, as
Ṫ c = λ

(i)
c tr(Ėc) I + 2μc Ėc where λ

(1)
c = λc for the

elastic tangent case and λ
(2)
c = λc for the post-slip

case.

1D reduction process of the full constitutive law. For
the plane-bending problemhere considered,we assume
the elongation E33 in the e3 direction as the only
nontrivial strain component, that is, Ei j = 0 for
any i 	= 3, j 	= 3 and E33 	= 0 (see Fig. 1).
According to Voigt’s notation, the strain tensor com-
ponents can be collected in the strain vector ε =
(0, 0, E33, 0, 0, 0) and the stresses in the stress vec-
tor σ = (T11, T22, T33, T13, T23, T12). The constitu-
tive equation (2)2 of the CNT phase can be rewrit-
ten using Eq. (1)2; the obtained expressions keep the
same format in both tangent and limit conditions, Ṫ c =
Lc : Ac : Ė. The stress vector σ c can be simplified
into

σ̇ c = 1

λ
(i)
c + μ+

⎡
⎢⎢⎢⎢⎢⎢⎣

λmμc + λ
(i)
c (λm + μm)

λmμc + λ
(i)
c (λm + μm)

2μcμ
+ + λ

(i)
c (λm + μm + 3μc)

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

Ė33

(9)

whereμ+ := μc+μm. In the same way, the equivalent
constitutive law can be expressed as

σ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎣

λm
λm

λm + 2μm

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

Ė33

+ 1

λ
(i)
c + μ+

⎡
⎢⎢⎢⎢⎢⎢⎣

λmμc + λ
(i)
c (λm + μm)

λmμc + λ
(i)
c (λm + μm)

Δ

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

Ė33 (10)

whereΔ := λ
(i)
c (λm+μ−+2μc)+2μ+ μ−−λm (λm−

μ+) and μ− := μc − μm.

Moment–curvature relationship. First, to move toward
the constitutive relationship between the generalized
stress resultants and the generalized strains, we express
the elongation E33 of a fiber at distance x1 from axis
b2 in a state of uniform extension and plane bending
as E33 = ε − κ x1 where ε is the elongation of the
base line and κ is the bending curvature [11]. The base
line is taken to coincide with the centerline and the unit
vectors (b1,b2) are taken collinear with the principal
axes of inertia of the cross sections (see Fig. 3). On the
other hand, the stress–strain relationship of interest is
obtained from (10) as Ṫ33 = E (i) Ė33 where the effective
tangent modulus is given by

E (i) = λ(i)
c [λm(1 + φc) + 2 (μcφc + μm) + μ−φc]

−[λ2mφc − μ+(λmφm + 2μ̄)]/λ(i)
c + μ+ (11)

with μ̄ := (μmφm + μcφc). It turns out that the effec-
tive modulus E (2) in the post-slip condition suffers a
drop with respect to the initial (elastic) modulus E (1)

proportional to the CNT volume fraction and given by

[E (1) − E (2)] = 2μc(λm + μ+)2

(λc + μ+)(3λc + μc + 3μm)
φc.

The linearized time rate of change of tension and
bending moment at the origin and in the post-slip con-
dition can be computed, respectively, as

Ṅ =
∫

S
Ṫ33 dA = E (i) A ε̇,

Ṁ = −
∫

S
x1 Ṫ33 dA = E (i) J κ̇ (12)

where S indicates the beam cross-sectional domain.
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Fig. 2 Typical bending moment–curvature hysteretic curve. For
symmetric material responses, κ2 = −κ0 and κ3 = −κ1

In the plane beammodels that we present in the next
sections, bending is the directly induced driving strain
state while stretching of the base plane is indirectly
induced as a second-order strain effect, and hence it
is considered to be small. Therefore, here we focus
on the overall hysteretic bending–curvature constitu-
tive law of which we computed the linearized versions
given by Eq. (12) (see the tangents in Fig. 2). The
constitutive law describing the bending moment in the
whole range of curvatures can be expressed by mim-
icking the 3D law proposed in [14] and framed in the
Saint-Venant theory for beams in bending [12]; that
is,

Ṁ = E (1) J

{
1 −

(
1 − E (2) J

E (1) J

)

× [
β + γ sign((M − E (2) Jκ)κ̇)

]∣∣∣∣
M − E (2) Jκ

Mo

∣∣∣∣
n}

κ̇

(13)

where Mo is the threshold bending moment at which
the transition between the stick (elastic) phase and
the slip (post-elastic) phase occurs in the limit n →
∞. The limit moment Mo depend on the limit stress
So.

Letting M∗
z := (M − E (2) Jκ)/Mo and κ∗ := κ/κy

with κy := Mo/ΔB and ΔB := (E (1) J − E (2) J ), Eq.
(13) becomes

Ṁ/Mo = E (1) J/ΔBκ̇∗−(
β + γ sign(M∗

z κ̇)
) |M∗

z |n κ̇∗,
(14)

which, substituted into the rate of M∗
z , delivers

Ṁ∗
z = Ṁ/Mo − E (2) J/ΔBκ̇∗

= [
1 − (

β + γ sign(M∗
z κ̇∗)

) |M∗
z |n] κ̇∗. (15)

Thus the moment–curvature relationship given by Eq.
(13) upon partial integration can be expressed as the
classical form of the Bouc–Wen model

M = E (1) J [δκ + (1 − δ) χ ] (16)

where δ := E (2) J/E (1) J is the ratio between the post-
slip bending stiffness and the elastic bending stiffness
and χ := κy M∗

z is the hysteretic contribution to the
bending curvature given by

χ̇ = [
1 − (

β̄ + γ̄ sign(χκ̇)
) |χ |n] κ̇ (17)

with (β̄, γ̄ ) = (β, γ )/κn
y where κy is rewritten as κy =

M (o)/[(1 − δ)E (1) J ].
Note that the nonlinear effects of the hysteresis

described by Eqs. (16) and (17) can be predicted both
qualitatively and quantitatively by considering varia-
tions of the average nondimensional bending stiffness
with the curvature. Here the average of the bending
stiffness divided by the initial tangent stiffness E (1) J is
defined as

E J =
[
1 − (1 − δ)

∫
C
{ (

β̄ + γ̄ sign(χκ̇)
) |χ |n}dκ∫

C dκ

]

where C indicates the closed hysteresis cycles with the
loading and unloading branches. Indeed, increasing or
decreasing variations of E J with the cyclic amplitude
entail a hardening (softening) behavior. In the literature,
it is said that the hysteresis given by Eqs. (16) and
(17) is softening if (β̄ + γ̄ ) > 0 (i.e., the stiffness
degrades along the virgin loading branch), quasi-linear
if (β̄ + γ̄ ) = 0 (i.e., the stiffness does not change), and
hardening if (β̄ + γ̄ ) < 0 (i.e., the stiffness increases
along the virgin loading branch).

Equations of motion for nanocomposite beams. Con-
sider the fixed frame (O, e1, e2, e3) in Fig. 3 and the
restricted plane of motion described by (O, e3, e1).
Let s denote thematerial coordinate that spans the beam
centerline in the reference configuration. The beam is
subject to a base motion in the vertical direction (i.e,
e1−direction). The current position of the center of the
cross section is described by r(s, t) = se3 + y(t)e1 +
u(s, t)where y(t)e1 is the prescribedbasemotionwhile
the displacement vector relative to the moving frame is
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Fig. 3 The nanocomposite
beam models in plane
bending: (left)
hinged–hinged beam and
(right) cantilever beam e3 s

e1

u e3 + v e1

b3

b1

e3 s

e1

u e3 + v e1

b3

b1

y(t)y(t)

θ

u(s, t) = u(s, t) e3 + v(s, t) e1. Moreover, θ denotes
the counterclockwise angle by which the cross section
at s is flexurally rotated about e2.

The full derivation of the equations of motion is
provided in “Appendix” for the two cases of interest,
namely hinged–hinged and cantilever beams. The case
of hinged–hinged beams belongs to the class of axi-
ally restrained beams, while the cantilevers are treated
in line with the literature as unshearable–inextensible
beams.

Extensible beams. Axially restrained beams are sub-
ject to stretching induced by the transverse motion. An
approximate theory for axially restrained beams is due
toMettler and its proposed specialization to account for
the hysteretic nonlinearities in the constitutive law is
fully described in “Appendix”. The approximate equa-
tion of motion is given by

ρ A∂t tv + ∂ss M

− E (1) A

2�
∂ssv

∫ �

0
(∂sv)2ds = −ρ A∂t t y + f (18)

M = E (1) J [δκ + (1 − δ) χ ], (19)

∂tχ = [
1 − (

β̄ + γ̄ sign(χ∂tκ)
) |χ |n] ∂tκ (20)

where the curvature is givenbyκ ∼= ∂ssv+ 1
2 (∂sv)2∂ssv.

In particular, for hinged–hinged beams, the boundary
conditions are

v(0, t) = 0 = v(�, t), ∂ssv(0, t) = 0 = ∂ssv(�, t).

The mechanical boundary conditions are M(0, t) =
0 = M(�, t). The boundary conditions ∂ssv = 0 ensue
from letting the third-order expansion of the curvature
vanish at the beam ends.

Inextensible beams. Thebeamequations specialized for
the shear undeformability and longitudinal inextensi-
bility constraints (see “Appendix”) are cast in the form

ρ A∂t tv
[
1 − 1

2 (∂sv)2
]

+ ρ A∂sv

∫ s

0

[
∂ξ v∂ξ t tv + (∂ξ tv)2

]
dξ

− ∂ssv

∫ �

s

[
ρ A

∫ s

0

[
∂ξ v∂ξ t tv + (∂ξ tv)2

]
dξ

]
ds

+ ∂ssv

∫ �

s

[
ρ A∂t tv∂ξ v

]
dξ

+ c ∂tv − ∂ssv

∫ �

s
∂ssv∂s Mdξ + ∂ss M = f − ρ A ∂t t y.

(21)

The moment–curvature relationship for M is given
again by Eqs. (19) and (20) and the boundary condi-
tions are

v(0, t) = 0 = ∂sv(0, t), ∂ssv(�, t) = 0 = ∂sssv(�, t).

For the cantilever beam, the mechanical boundary con-
ditions at the beam tip require the bending moment and
the shear force to vanish.

3 Discretization and asymptotic treatment

We will treat in detail the case of axially restrained
beams with hinged–hinged boundary conditions, while
we will present briefly the unshearable–inextensible
cantilevers. We first nondimensionalize the equation of
motion rescaling space and time as s� = s/�, t� = ωc t
in which the characteristic circular frequency is set as
ωc =

√
k̄�/(ρ A �4) where k̄ will be determined at a

later stage to simplify the asymptotic analysis. The
deflection is also rescaled as v∗ := v/�, and for con-
ciseness, the notation ∂s g = 1/� g′ and ∂t g = ωc ġ is
introduced for any function g, thus letting the prime
and the overdot indicate differentiation with respect to
s� and t�, respectively.

The nondimensional equation of motion (18) thus
becomes

v̈∗ + 2 ζ v̇∗− E (1)A �

2k̄
v∗′′

∫ 1

0
(v∗′

)
2
ds� + 1

k̄
M ′′ = −ÿ.

(22)

It can also be recast according to the classical D’Alem-
bert principle as a balance between inertia ( fi ), damp-
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ing ( fd), restoring ( fr ) forces and the excitation p in
the form fi + fd + fr − p = 0 with

fi = v̈∗, fd = 2 ζ v̇∗, fr = fm + fg,

fm = 1

k̄
M ′′, fg = − E (1) A �

2k̄
v∗′′

∫ 1

0
(v∗′

)
2
ds�,

p = −ÿ (23)

where fm stands for the nonlinear hysteretic force
and fg indicates the geometrically nonlinear restoring
force.

We subsequently apply the Galerkin discretiza-
tion method retaining one mode only in the approx-
imate expression for the deflection. Such simplifying
assumption is plausible because the resulting gener-
alized (hysteretic) restoring force–displacement rela-
tionship is symmetric with respect to the origin and
thus the fundamental periodic oscillations of the har-
monically excited beams are expected to be symmetric
(i.e., without drift) about the rest (straight) equilibrium.
As known in the literature, spatially continuous, sym-
metric systems (i.e., endowed with a symmetric poten-
tial energy function) can be well approximated by the
directly excited mode via a primary resonance excita-
tion [44].

The one-mode approximation reads v∗(s�, t�) =
q j (t�) φ j (s�) where the normalized j th mode shape
of the hinged–hinged beam is

φ j (s
�) = √

2 sin( jπs�) , j ∈ N (24)

such that
∫ 1
0 φ j φ j ds� = 1. The nondimensional j th

frequency is given by

ω2
j = ( jπ)4

E (1) J

k̄�
.

We make the additional assumption that the frequency
of the first mode becomes unitary (i.e., ω1 = 1) so that

k̄ := π4 E (1) J

�
. (25)

The reduced-order model is obtained projecting
each term of the equation of motion, say fh, onto the
mode shape φ j according to

∫ 1

0
fhφ jds∗ =: D j [ fh]

where, for ease of notation, D j [·] was introduced to
indicate the projection operator onto the j th mode.

Asymptotic expressions of the discretized restoring
force. The restoring force associated with the mate-
rial nonlinearity in both beam models involves differ-
entiation of the bending moment with respect to the
arclength s∗. Note that the hysteretic part of the curva-
ture can be obtained in closed form integrating Eq. (20)
with n = 1, and accounting for sign(χ∂tκ) = ±1 and
|χ | = ±1 on each of the four branches of the hysteresis
loops (see Fig. 2). Four expressions of the hysteretic
curvature can thus be obtained on each of the corre-
sponding branches. To this end, Eq. (20) can be first
recast as
∂χl

∂κ
= (1 + sl χl), l = 1, . . . , 4

where sl denotes the lth component of s = (
γ̄ −β̄, γ̄ +

β̄, −γ̄ +β̄, −γ̄ −β̄
)
(i.e., the set of constitutive param-

eters combinations defined on each branch) and χl is
the hysteretic curvature defined on the lth branch. The
above equation can thus be solved analytically to yield

χl = − 1

sl
+ cl exp(sl κ). (26)

By letting κ0 and κ2 be the values of the curvatures at
which χ reaches the upper and lowers bounds, respec-
tively, and κ1 and κ3 be the values of the curvatures
at which χ vanishes, that is, crosses the positive and
negative κ−semi-axes, respectively, the rescaled hys-
teretic moment–curvature cycle (χ, κ) is made of four
branches, each bounded by two points:
(
κl−1, χl(κl−1)), (κl , χl(κl)

)
,

for any branch l = 1, 2, 3, 4.

The characteristic curvatures (κ0, κ1, κ2, κ3) are not
independent in force of the symmetry of the cycle
which requires κ2 = −κ0 and κ3 = −κ1: the inde-
pendent curvatures are then κ0 and κ1 =: κC. The four
coefficients cl in Eq. (26) are determined as function
of κC by imposing the following four conditions:

χ1(κC) = 0 = χ2(κC), χ3(−κC) = 0 = χ4(−κC),

together with the branch-to-branch continuity condi-
tions:

χ1(κ0) − χ4(κ0) = 0, χ2(−κ0) − χ3(−κ0) = 0.

We next expand in series of ε (i.e., a formal bookkeep-
ing parameter) the curvature as κ = εκ1 + ε2κ2 + ε3κ3
together with the characteristic curvatures κC and κ0 as
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κC = εκC1 + ε2κC2 + ε3κC3 and κ0 = εκ01 + ε2κ02 +
ε3κ03.We then substitute these expansions in the above
two inter-branch continuity equations which, in turn,
can be solved to yield κCi in terms of κ0i . In this way, the
piece-wise description of the hysteretic cycle is given
at each order in terms of κ0i and κi .

We thus express the bending moment for each
branch as

Ml = E (1) J [δκ + (1 − δ)χl ]

= E (1) J
[
κ + (1 − δ)χ nl

l

]
(27)

where χ nl
l := χl − κ is the purely nonlinear part of the

hysteretic curvature. Subsequently, the obtained piece-
wise nonlinear part of the hysteretic curvature upon
expansion in Taylor series of ε reads

χ nl
l = ε2χ nl

2l + ε3χ nl
3l

where

χ nl
2l = c1l κ2

01 + c2l κ2
1 , χ nl

3l = d1l κ01 κ02 + d2l κ1 κ2

+ d3l κ3
01 + d4l κ2

01 κ1 + d5l κ3
1 .

The coefficients (c jl , d jl) are listed in Table 1.
The bending curvature κ is expressed in terms of the

deflection v as

κ ∼= ∂ssv + 1
2 (∂sv)2∂ssv = [

v∗′′ + 1
2 (v

∗′
)2v∗′′]

/�.

Moreover, the expression of the deflection based on the
one-mode approximation, v∗(s�, t�) = q j (t�) φ j (s),
is expanded in Taylor series of ε. To this end, here and
henceforth, we will drop the subscript j in φ j and q j ,
as well as in D j , while the newly introduced subscript
i in qi will indicate the i th order of the asymptotic
expansion. Therefore, substituting

q = εq1 + ε2q2 + ε3q3 (28)

into the discretized deflection and the bending curva-
ture κ yields the expansion of the hysteretic restor-
ing force fm,l := M ′′/(�k̄) = E (1) J/(�k̄)[κ ′′ + (1 −
δ)(χ nl

l )′′] in the following piece-wise form:

fm,l ≈ E (1) J

�k̄

{
(εq1 + ε2q2 + ε3q3) φ′′′′

+ ε3q3
1

[
(φ′′)3 + 1

2 (φ
′)2φ′′′′ + 3φ′φ′′φ′′′]

+ ε2 (1 − δ) 2
(
(φ′′′)2 + φ′′φ′′′′)

(c1l

�
q2
01 + c2l

�
q2
1

)

+ ε3 (1 − δ)
[
2
(
(φ′′′)2 + φ′′φ′′′′)

(
d1l

�
q01 q02 + d2l

�
q1 q2

)

+ 3φ′′ (2(φ′′′)2 + φ′′φ′′′′)
(

d3l

�2
q3
01 + d4l

�2
q2
01 q1 + d5l

�2
q3
1

)]}
.

The obtained restoring force per unit reference beam
length associated with the shear/bending load-carrying
mechanism is present in both extensible and inextensi-
ble beams. However, the actual computation of the total
restoring forceswhich include thematerial andgeomet-
ric/inertia nonlinearities differs depending on whether
the beam is extensible or inextensible. We provide next
the results for hinged–hinged beams.

Hinged–hinged beams. The discrete form of the restor-
ing force, including the material and geometric nonlin-
ear terms, can be expressed as

fr = k1
k̄

3∑
i=1

εi qi + ε2
k1
k̄

(1 − δ) znll,2 + ε3

[
(E (1) A) �( jπ)4

2k̄
+ k3

k̄
+ k1

k̄
(1 − δ)znll,3

]
q3
1

(29)

Table 1 Coefficients of the asymptotic expansions of the nonlinear part of the hysteretic curvature

Branch c1l c2l d1l d2l d3l d4l d5l

1 − 1
2 γ̄ 1

2 (γ̄ − β̄) −γ̄ (γ̄ − β̄) − 1
6 γ̄ β̄ − 1

2 (γ̄ − β̄)γ̄ 1
6 (γ̄ − β̄)2

2 − 1
2 γ̄ 1

2 (γ̄ + β̄) −γ̄ (γ̄ + β̄) − 1
6 γ̄ β̄ − 1

2 (γ̄ + β̄)γ̄ 1
6 (γ̄ + β̄)2

3 1
2 γ̄ − 1

2 (γ̄ − β̄) γ̄ −(γ̄ − β̄) 1
6 γ̄ β̄ − 1

2 (γ̄ − β̄)γ̄ 1
6 (γ̄ − β̄)2

4 1
2 γ̄ − 1

2 (γ̄ + β̄) γ̄ (γ̄ + β̄) 1
6 γ̄ β̄ − 1

2 (γ̄ + β̄)γ̄ 1
6 (γ̄ + β̄)2
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where

znll,2 = kz2

k1
(c1 q2

01 + c2 q2
1 ),

znll,3 = kz2

k1
(d1l q01 q02 + d2l q1 q2)

+ kz3

k1
(d3l q3

01 + d4l q2
01 q1 + d5l q3

1 ).

(30)

The coefficients reported in “Appendix” are computed
for any j th mode. The values for the lowest mode are

k1 = k̄ = E (1) J
�

π4, k3 = k̄ π2

4 , kz2 = − k̄
�

8
√
2

3 , kz3 =
k̄
�2

3π4

2 . Moreover, the damping force is expressed in
discrete form as fd = 2ζ q̇ and the excitation as
p = D[ÿ] = F cosΩ t with F := |ÿ| ∫ 1

0 φds∗ with
|ÿ| indicating the amplitude of the assumed sinusoidal
base acceleration ÿ.

The reduced-order equation of motion for the low-
est mode expressed up to third-order asymptotic terms
thus becomes
3∑

i=1

εi [q̈i + 2ζ q̇i + qi ] + ε2(1 − δ) znll,2

+ ε3[αq3
1 + (1 − δ)znll,3] =

3∑
i=2

εi Fi cosΩt (31)

where α = (E (1) A) �2

2(E (1) J )π4 + π2

4 .

Cantilever beams. The nondimensional form of the
equation of motion (21) can be treated in the same way
as for the hinged–hinged beams. Different definitions
of the forces are obtained; that is,

fi =
{
v̈∗ [1 − 1

2 (v
∗′

)2
]

+ v∗′
∫ s

0

[
v∗′ ¨v∗′ + ( ˙v∗′)2

]
ds

− v∗′′
∫ 1

s

[∫ s

0

(
v∗′ ¨v∗′ + ( ˙v∗′)2

)
dξ

]
ds

+ v∗′′
∫ 1

s

[
v̈∗v∗′] dξ

}
, (32a)

fr = (M ′′ − v∗′′
∫ 1

s
v∗′′ M ′dξ)/k̄. (32b)

The mode shapes of cantilever beams read

φ j (s
∗) = cos(λ j s∗) − cosh(λ j s∗) − c j

[
sin(λ j s∗)

− sinh(λ j s∗)
]

where c j := (cos λ j + cosh λ j )/(sin λ j + sinh λ j ).

The frequencies are expressed as ω2
j = λ4j E (1) J/(k̄�)

with the roots for the lowest five modes given by

λ1 = 1.875, λ2 = 4.694, λ3 = 7.854, λ4 = 10.995,
λ5 = 14.130. We again assume ω1 = 1 so that
k̄ := λ41E (1) J/�.

The discretization of the restoring force, contain-
ing material and geometric nonlinearities, is treated
next. The reduced-order form of the inertial terms is
obtained as

fi =
3∑

i=1

εi q̈i + ε3(m1 q2
1 q̈1 + m2 q1 q̇2

1 ) (33)

where m1 = (i2+ i3+ i4− 1
2 i1) and m2 = i2+ i3 with

i1 := D
[
φ (φ′)2

]
, i2 := D [

φ′I1(s)
]
,

i3 := D [
φ′′I2(s)

]
, i4 := D [

φ′′I3(s)
]
,

and the functions Ik(s) are defined in “Appendix”.
The generalized damping force and excitation have the
same expressions as for the hinged–hinged beam. For
the computation of the other nonlinear forces, besides
the term M ′′/(�k̄) already discussed, we show the treat-
ment of (v∗)′′

∫ 1
s (v∗)′′ M ′

ldξ . Discarding all terms in q
of order greater than three, only the linear elastic contri-
bution from the bending moment εE (1) Jκ1 is retained,
that is,

(v∗)′′
∫ 1

s
(v∗)′′ M ′

ldξ ≈ E (1) J (v∗)′′
∫ 1

s
(v∗)′′ κ ′dξ

≈ ε3
E (1) J

�

(
φ′′

∫ 1

s∗
φ′′ φ′′′dξ

)
q3
1 .

In the contribution of the hysteretic part of the
moment to the restoring force, znll = ε2 znll,2 + ε3 znll,3,

the quadratic and cubic terms are given by

znll,2 = 2 sz2

λ41 �
(c1 q2

01 + c2 q2
1 ),

znll,3 = 2 sz2

λ41 �
(d1l q01 q02 + d2l q1 q2) + 3 sz3

λ41 �2
(d3l q3

01

+ d4l q2
01 q1 + d5l q3

1 )

where (sz2, sz3) are defined in “Appendix”.The ensuing
discrete form of the equation of motion can be conve-
niently written as

3∑
i=1

εi (q̈i + 2ζ q̇i + qi ) + ε2(1 − δ)z(nl)l,2

+ ε3(m1 q2
1 q̈1 + m2 q1 q̇2

1 )

+ ε3[α q3
1 + (1 − δ)z(nl)l,3] =

3∑
i=2

εi Fi cosΩ t

(34)
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where the ratio between the nonlinear and linear stiff-
ness is α = s3

λ41
= k3

k1
.

4 Asymptotic solutions via the method
of multiple scales

Equation (34) is more general than Eq. (31) since it
includes the inertia nonlinear terms. This is why we
treat asymptotically Eq. (34) which is recast in state
space form:

3∑
i=1

εi (q̇i − pi ) = 0,

3∑
i=1

εi ( ṗi + 2ζ pi + qi ) + ε2(1 − δ)z(nl)l,2

+ε3(m1 q2
1 ṗ1 + m2 q1 p21)

+ε3[α q3
1 + (1 − δ)z(nl)l,3] =

3∑
i=2

εi Fi cosΩ t (35a)

where (m1, m2) are nontrivial for cantilever beams,
while m1 = 0 = m2 for hinged–hinged beams. By
introducing the fast time scale t0 and slow time scales
t1 = εt and t2 = ε2t , the asymptotic terms of the gen-
eralized coordinate qi , velocity pi , and hysteretic force
zl,i are assumed to depend on (t0, t1, t2), namely,

qi (t; ε) = qi (t0, t1, t2), pi (t; ε)

= pi (t0, t1, t2), zl,i (t; ε) = zl,i (t0, t1, t2). (35b)

The time derivatives are expressed as

d

dt
(·) = ∂0(·) + ε∂1(·) + ε2∂2(·) (35c)

where ∂i−1(·) := ∂(·)/∂ti−1. We also scale the damp-
ing term as ζ → ε ζ , the excitation term as a second-
order term (i.e., F3 = 0), and further express the fre-
quency detuning from resonance as Ω = 1+ ε σ . This
asymptotic scaling is tuned to tackle the primary res-
onance condition of the lowest bending mode away
from internal resonance conditions. Since the quadratic
piece-wise hysteretic terms imply a solvability condi-
tion at second order, the excitation and damping forces
are scaled so as to appear at this order.

Therefore, substituting Eqs. (35b) and (35c) into
(35a), the following hierarchy of problems is obtained:
order ε:

∂0q1 − p1 = 0,

∂0 p1 + q1 = 0
(36)

order ε2:

∂0q2 − p2 = −∂1q1,

∂0 p2 + q2 = −∂1 p1 − 2ζ p1

− (1 − δ)zl,2 + F cos(t0 + σ t1)

(37)

order ε3:

∂0q3 − p3 = − ∂1q2 − ∂2q1,

∂0 p3 + q3 = − ∂1 p2 − ∂2 p1 − 2ζ p2 − (1 − δ)zl,3

− α q3
1 − m1q2

1∂0 p1 − m2 q1 p21 .

(38)

First-order problem. The solution of the first-order
problem (36) can be expressed as

q1 = a(t1, t2) cos(t0 + ϑ(t1, t2)),

p1 = −a(t1, t2) sin(t0 + ϑ(t1, t2)).
(39)

The first-order solution reaches its maximum when
p1 = 0 at τ0 = −ϑ(t1, t2). Moreover, the instant
of time when the displacement goes through zero is
τ1 = τ0 + π/2, the instant when the velocity is zero
again (reaches the maximum displacement in the nega-
tive direction) is τ2 = τ0+π ; the instant when it passes
through zero again is τ3 = τ0 + 3π/2 and finally the
solution reaches the maximum again after one period,
namely, at τ4 = τ0 + 2π . These instants of time have
themeaning of branch-to-branch switching times so the
solution for the lth branch is defined for t0 ∈ [τl−1, τl ].
Second-order problem. Substituting thefirst-order solu-
tion (39) into the second-order problem (37) yields the
inhomogeneous terms given in piece-wise fashion as

r2,l =
[ −∂1q1
−∂1 p1 − 2ζ p1 − (1 − δ)zl,2 + F cos(t0 + σ t1)

]
.

An alternative way to express the right-hand side over
one period is to make use of the Heaviside functions,
namely, r2 = ∑4

l=1 r2,l [H(t0 − τl−1) − H(t0 − τl)].
The problem is made solvable imposing the following
two solvability conditions:
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∫ τ0+2π

τ0

w�
j r2dt0 =

4∑
l=1

∫ τl

τl−1

w�
j r2,ldt0 = 0, j = 1, 2

withw1 = [sin t0, cos t0]� andw2 = [cos t0, − sin t0]�
being the solutions of the adjoint homogeneous prob-
lem. The followingmodulation equations are obtained:

∂1a = −ζ a − 2 β̄(1 − δ) kz2 a2

3π

+ F

2
sin(t1 σ1 − ϑ),

∂1ϑ = −2 γ̄ (1 − δ) kz2 a

3π
+ F

2a
cos(t1 σ1 − ϑ). (40)

These solvability conditions are inserted into the
second-order problem which is then solved for q2,l and
p2,l . The ensuing piece-wise solutions are determined
within 4×2 integration constants. The continuity con-
ditions are imposed on the obtained expressions as

q2,l(τl) = q2,l+1(τl),

p2,l(τl) = p2,l+1(τl), for l = 1, 2, 3

which yield six of the eight constants. The remaining
two coefficients are obtained by enforcing the follow-
ing orthogonality conditions:

4∑
l=1

∫ τl

τl−1

w�
1

[
q2,l
p2,l

]
dt0 = 0 ,

4∑
l=1

∫ τl

τl−1

w�
2

[
q2,l
p2,l

]
dt0 = 0.

The second-order solution can be also expressed
for the time duration of the excitation period (i.e.,
t0 ∈ [τ0, τ0 + 2π ]) as before making use of the Heav-
iside functions to obtain

q2 =
4∑

l=1

q2,l [H(t0 − τl−1) − H(t0 − τl)] ,

p2 =
4∑

l=1

p2,l [H(t0 − τl−1) − H(t0 − τl)]. (41)

Third-order problem Substituting the second-order
solution (41) into the third-order problem (38) and
making use of themodulation equations at second order
yield the following right-hand side:

r3,l = −
[

∂1q2∂2q1
h3,l + (1 − δ)zl,3 + α q3

1

]

with h3,l = ∂1 p2 + ∂2 p1 + 2ζ p2 + m1q2
1∂0 p1 +

m2 q1 p21

To make the problem solvable, we enforce again the
solvability conditions

4∑
l=1

∫ τl

τl−1

w�
1 r3,l dt0 = 0 ,

4∑
l=1

∫ τl

τl−1

w�
2 r3,l dt0 = 0

thus obtaining the modulation equations in (∂2a, ∂2ϑ).
Note that all terms with derivatives greater than one

in both t1 and t2 are dropped since they are of order
greater than two in the modulation equations.

Modulation equations. According to the method of
reconstitution, the modulation equations at third order
are combined with the modulation equations at second
order to obtain

ȧ = ε ∂1a + ε2 ∂2a, ϑ̇ = ε ∂1ϑ + ε2 ∂2ϑ. (42)

Moreover, we substitute ψ = σ t1 − ϑ and make use
of the detuning condition Ω = 1 + ε σ , so that

ψ̇ = ε(σ − ∂1ϑ) − ε2 ∂2ϑ ≡ σ − ϑ̇ .

The reconstituted modulation equations become

ȧ = −ζ a + f
( 1
2 − a gs

)
sinψ

+ f
(

ζ
4 − a gc

)
cosψ − ga2 a2 − ga3 a3,

aψ̇ = − f
(

ζ
4 − a hs

)
sinψ

+ f
( 1
2 + a hc

)
cosψ − (1 − Ω − 1

2ζ
2) a

+ ha2 a2 − ha3 a3

(43)

with

gs = kz2(1 − δ)
β̄

6π
, gc = kz2(1 − δ)

γ̄

3π
,

hc = kz2(1 − δ)
β̄

3π
,

ga2 = kz2(1 − δ)
2γ̄

3π
,

ga3 = k2z2(1 − δ)2(3π − 4)
γ̄ β̄

9π2 ,

hs = kz2(1 − δ)
γ̄

6π
,

ha2 = kz2(1 − δ)
2β̄

3π
,
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ha3 = 1
432π2 k2z2(1 − δ)2[(256 − 45π2)β̄2

− (512 − 63π2)γ̄ 2]
+ α 3

8 − kz3(1 − δ) 1
16 (3 γ̄ 2 − β̄2)

+ 1
8 (m2 − 3m1). (44)

Frequency response and bifurcations. The implicit
form of the frequency response function is obtained
solving (43) for (sinψ, cosψ) and making use of the
fundamental trigonometric identity sin2 ψ + cos2 ψ =
1. The result for the implicit form is

G(Ω, a) = G1(a)Ω2 + G2(a)Ω

+G3(a)−G f (a) F2 = 0, (45)

whereas the explicit form can be obtained solving the
above equation in Ω:

Ω = − G2(a)

2G1(a)
±
√

(G2(a))2 − 4G1(a)(G3(a)−G f (a) F2)

2G1(a)
.

(46)

The coefficientsGk are omitted for their lengthy expres-
sions. The backbone curves determined as the loci of
the peaks of the frequency response curves are given by

Ω = − G2(a)

2G1(a)
. (47)

A qualitative switch of behavior is observed in gen-
eral nonlinear oscillators when the backbone curve
exhibits a wiggle due to a change of bending of the
curve which entails that the frequency response turns
from being hardening to softening or vice versa. The
above transitions occur at threshold amplitudes where
the local change of frequency with respect to the oscil-
lation amplitude vanishes, that is, dΩ

da = 0. This entails
a linear response of the oscillator to within the sought
order of approximation. Such amplitudes aS are found
as roots of the following equation:

(G1 ∂aG2 − G2 ∂aG1)
∣∣∣
aS

= 0 (48)

We will refer to these points as nonlinearity switching
points.

On the other hand, the stability of the periodic
solutions is dictated by the eigenvalues of the mod-
ulation equations. It is known that a loss of stability

occurs along the frequency response curves at the so-
called fold bifurcation points where vertical tangency
is attained. In other words, dΩ

da = 0 computed for
the frequency response function. This condition can
be obtained as ∂aG(Ω, a) = 0 which yields the loci of
the fold bifurcation points in the form:

C(Ω, a) = Ω + ∂aG2
2 ∂aG1

∓
√

(∂aG2)2 − 4∂aG1(∂aG3−∂aG f F2)

2 ∂aG1
= 0.

(49)

The two fold lines obtained using Eq. (49) coalesce into
a point (codimension-two fold point) at a given driv-
ing excitation amplitude and frequency and disappear
thereafter upon changes of the frequency/amplitude.
The loci of these bifurcation points have a special
meaning for the system dynamics as they represent the
boundary between regions of globally stable responses
and regions of multi-stable responses.

5 Asymptotic results

In this section, we discuss the main results obtained in
terms of backbone curves, frequency response curves,
and behavior charts considering the primary reso-
nance of the lowest mode (i.e., choosing the mode
with j = 1 in (24) and subsequent equations). The
behavior charts depict softening/hardening regions in
the space of the constitutive parameters and excita-
tion amplitude/frequency. The softening versus hard-
ening regions depend on the choice of material param-
eters such as those regulating the CNT–polymer inter-
facial constitutive properties, the CNT volume frac-
tion, etc. The computations were carried out consid-
ering the physical parameters of the nanocomposite
beams which were experimentally tested and charac-
terized in [12] with span � = 34.5 × 10−3m, width
b = 9.78×10−3m, thickness h = 0.79×10−3m, PBT
polymer Young’s modulus Em = 2.1 GPa, Poisson’s
ratio νm = 0.39, mass density ρm = 1, 310 kg/m3,
CNT Young’s modulus Ec = 970 GPa, CNT Poisson’s
ratio νc = 0.1, mass density ρc = 1, 750 kg/m3. More-
over, the damping ratio was set to ζ = 1.85%, the
baseline CNT %wt was 2% (i.e., volume fraction φc =
1.505%). The corresponding nondimensional parame-
ters are: k̄ = 21.259, δ = 0.672637, α = 122.407,
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Fig. 4 (left) Backbone curves of the lowest mode of hinged–
hinged nanocomposite beams with n = 1, (γ̄ ,−β̄) = [(5.2, 4.7),
(5.6, 5.1), (6.0, 5.5), (6.4,5.9), (6.8, 6.3), (7.2,6.7), (7.6, 7.1),
(8.0,7.5), (8.4,7.9)]×10. The backbone curve of the beam with-

out hysteresis is represented by the gray line. (top right)Moment–
curvature hysteresis cycles and (bottom right) average bending
stiffness E J versus curvature amplitude

kz2 = − 0.343411, kz3 = 0.122759 for hinged–hinged
beams; k̄ = 2.69802, δ = 0.672637, α = 1.11737,
m1 = 2.44287, m2 = 4.59677, kz2 = − 0.301221,
kz3 = 0.0697131 for cantilever beams. The results are
presented first for hinged–hinged beams followed by
the results obtained for the cantilevers.

Hinged–hinged beams. A sequence of backbone curves
given by Eq. (47) corresponding to various parameters
(β̄, γ̄ ) is shown in Fig. 4. In particular, such curves are
obtained varying β̄ in the range [−1, 1]×103 and γ̄ as
γ̄ = 1/zmax − β̄, with the aim to prescribe a constant
maximum value zmax = 0.2 for the hysteretic (nondi-
mensional) displacement. The curves show a soften-
ing nonlinearity until reaching the threshold amplitude
aS represented by the black diamonds where a change
from softening to hardening occurs. Such change is
explained by the fact that at low amplitudes the soften-
ing hysteretic frictional CNT–polymer sliding embed-
ded in the moment–curvature relationship dominates
the cubic stretching-induced hardening which, con-
versely, becomes dominant at larger oscillation ampli-
tudes. The softening feature of hysteresis is confirmed
by the decreasing trend of the average bending stiffness
in Fig. 4 (bottom right). Therefore, the nanocompos-
ite beam with suitably tuned interfacial CNT/polymer

Fig. 5 Frequency response curves of the lowest mode of
hinged–hinged nanocomposite beams with n = 1, (γ̄ ,−β̄) =
(5.6, 5.1) × 10, and F = [0.02, . . . , 8] × 10−2

properties can undergo a qualitative change in its non-
linear dynamic flexural behavior with respect to the
baseline linearly elastic hinged–hinged beam which,
without hysteresis, exhibits a hardening response (see
gray line in Fig. 4).

A family of frequency response curves obtained for
(γ̄ ,−β̄) = (5.6, 5.1) × 10 is shown in Fig. 5 together
with the shaded unstable regions bounded by the loci
of fold bifurcation points [i.e., solutions of Eq. (49)]
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Fig. 6 A zoom of the frequency response curves in Fig. 5
exhibiting the DRC obtained for F in the range F = [FDR −
10−4, . . . , FDR + 10−4]

indicated by the solid gray lines. Along the softening
branch of the backbone we observe a closed region
bounded by gray lines which signals the existence of
unstable branches on both sides of the backbone.

A close analysis of the solutions in that region
reveals the existence of detached resonance curves
(DRC). Detached resonance curves have been widely
investigated both theoretically and experimentally in
a variety of nonlinear oscillators [45–48]. Recently, a
spectral submanifold theory was proposed to provide
analytic predictions of the periodic responses including
isolated forced responses belonging to detached reso-
nance curves [49,50].

The occurrence of DRC can be detected as the con-
dition for which the implicit form of the FRC given by
Eq. (45) satisfies the following two equations and two
inequalities [45]:

∂G
∂a

= 0 and
∂G
∂Ω

= 0, with detH > 0 and
∂2G
∂a2 	= 0

(50)

with H being the Hessian of G. On the other hand, the
coalescence of the DRCwith the main resonance curve
occurs when the same above equations hold but with
detH < 0 [45].

To find the above critical conditions, we substitute
the explicit form of the FRF given by Eq. (46) into Eq.
(50) which yields two equations in (a, F) whose solu-
tion is aDR = 6.7947×10−3 and FDR = 1.2612×10−4.
In turn, Eq. (46) provides the associated critical fre-
quency ΩDR = 0.99283. By letting (aB, FB) denote the

solution of the bifurcation condition for the coalescence
of the DRC with the main resonance curve, the DRC
is predicted to exist in the excitation amplitude range
FDR < F < FB.

The evolution of the DRCs is portrayed in Fig. 6.
For F < FDR, the frequency response curves are soft-
ening, single-valued and stable. At F = FDR, a DRC
is born as an isola (see purple line in Fig. 6) and grows
with increasing F up to the critical force F = FB

where the DRC and themain resonance curve coalesce.
Upon further force increases, the DRC disappears (see
green line in Fig. 6). Above FB, the entire (single) res-
onance curve has two regions of unstable solutions one
of which (the right branch) becomes stable past the
condition in which the resonance curve touches tan-
gentially the right fold line. Moreover, for increasing
F the left unstable branch gets smaller until becom-
ing a singular point when the resonance curve touches
tangentially the left fold line. The associated excitation
level is denoted by FF1. For F > FF1, the softening res-
onance curve becomes single-valued and stable. Upon
further increasing the amplitude, the resonance curves
show a wiggle due to the change of nonlinearity from
softening to hardening at aS. The force F such that the
corresponding FRC has its peak corresponding to aS is
denoted by FS. Thus, for F > FS, the FRCs become
hardening, single-valued and stable until touching the
codimension-two fold bifurcation point where the two
fold lines coalesce at FF2. Past FF2, the hardening FRCs
becomemulti-valued and multi-stable with an unstable
branch and two stable branches.

A closer understanding of the wiggling of the back-
bones and associated FRFs can be gained observing in
Fig. 7 the evolution of the restoring force–deflection
hysteresis cycles corresponding to the periodic solu-
tions. The hysteresis loops are obtained substituting
the second-order periodic solution into the expansion
of the restoring force up to cubic terms. As shown in
Fig. 7, notwithstanding the fact that the cycles obtained
along the low-amplitude branch of the backbone show
a thin hysteresis, such softening hysteresis confers a
softening character to the response because the beam
stretching nonlinearity is not activated at such small
amplitudes. On the other hand, at larger amplitudes
the geometric stretching nonlinearity changes the hys-
teresis cycles making them hardening due to a clear
increase of stiffness at higher amplitudes.

The overall nonlinear dynamic behavior of the inves-
tigated hinged–hinged nanocomposite beams can be
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Fig. 7 a, b, c
Force–deflection curves and
(bottom) frequency
response curves of the
lowest mode of
nanocomposite
hinged–hinged beams when
n = 1,
(γ̄ ,−β̄) = (5.6, 5.1) × 10

better pictured using the so-called behavior charts
constructed in the space of the constitutive param-
eters and excitation amplitudes (i.e., charts exhibit-
ing regions of different behavior bounded by curves
obtained as loci of bifurcation points and nonlinear-
ity switching points). An interesting behavior can be
obtained via continuation of the nonlinearity switching
points together with continuation of the codimension-
two fold points in the plane (F, β). The first curve
separates regions of softening and hardening behavior.
The second curve separates regions of single-valued
and stable responses from regions of multi-valued and
multi-stable responses. One of such examples is shown
in Figs. 8 and 9where the shaded region indicates hard-
ening responses, while the white region denotes soften-
ing responses.Moreover, the shaded light blue region is
themulti-valued, multi-stable region separated through
the black line from the region below of single-valued,
stable responses. Figure 9 is a zoom of Fig. 8 restricted
to the range of lower excitation amplitudes where we
observe the existence of two curves obtained as loci of
codimension-two fold points denoted by left-pointing
triangles (coalescence of the two left fold lines in Fig. 6)
and right-pointing triangles (coalescence of the two
right fold lines in Fig. 6). These curves, in turn, coa-

Fig. 8 Behavior chart of the lowest mode of hinged–hinged
beams obtained with the starting values of the parameters
employed in Fig. 5. The black solid curve is the continuation
of the codimension-two fold points (black up-pointing trian-
gles) and the blue solid line indicates the loci of the nonlinearity
switching points (filled black diamonds)

lesce ataDR = 6.7947×10−3 and FDR = 1.2612×10−4

(onset of DRC) for the same constitutive parameter val-
ues used in Fig. 6. In the region between the two lines,
the softening responses are multi-valued and multi-
stable with the coexistence of DRC (only within a sub-
region between the two lines decorated with left- and
right-pointing triangles).

Hinged–hinged versus cantilever beams. It is of theo-
retical and technical interest to compare the nonlinear
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Fig. 9 A zoom of the behavior chart in Fig. 8. The black solid
curve is the continuation of the codimension-two fold points
(black up-triangles) and the blue solid line indicates the loci of
the nonlinearity switching points (filled blue dots). The black
left-pointing triangles and right-pointing triangles indicate the
continuation of the left and right codimension-two fold points
corresponding to the DRC

behaviors of axially restrained beams (hinged–hinged)
against the behavior of axially unrestrainedbeams (can-
tilevers). These two kinds of beams are often employed
as archetypal components in the design of structures
across various scales. Just to mention a few, cantilever
beams are employed as micromass [2] or bio-chemical
sensors due to their greater flexibility. The comparison
is here carried out using only the backbone curves com-
puted for the nanocomposite beams and for the beams
without hysteresis (i.e., beams made of pure polymer).
Elastic cantilever beams are known to be mildly hard-
ening in the lowest mode and softening in the higher
modes (see dashed gray line in Fig. 10). The addition
of nanostructural hysteresis introduces the softening
characteristic nonlinearity (i.e., the backbone curves
are bent to the left). Conversely, elastic hinged–hinged
beams are strongly hardening due to the stretching
contribution whereas the introduction of CNT/polymer
hysteresis turns them into softening at low amplitudes
albeit they maintain the hardening characteristic at
large amplitudes. Note that the slope of the hardening
backbones does not change since it is dominated by the
geometric stretching nonlinearity which is independent
from the nonlinear constitutive parameters.

Finally, to investigate all features of the cantilever
beams, the backbone curve and the frequency response
curves of the cantilevers are shown in Fig. 11where two
regions of multi-stable responses are present. While
this trend has a clear theoretical interest, the underlying
constitutive behavior is being experimentally proved in
the investigated nanocomposites.

Fig. 10 Backbone curves of the lowest mode of nanocom-
posite hinged–hinged and cantilever beams. The constitutive
parameters are: n = 1, (γ̄ ,−β̄) = [(5.2, 4.7), (5.6, 5.0),
(6.0, 5.5), (6.4,5.9), (6.8, 6.3), (7.2,6.7), (7.6, 7.1), (8.0,7.5),
(8.4,7.9), (8.8,8.3)]×10. The dashed (solid) line indicates can-
tilever (hinged–hinged) beams. The backbone curves of the elas-
tic beams (without hysteresis) are indicated by the gray lines

Fig. 11 (left) Backbone curve and frequency response curves of
the lowest mode of nanocomposite cantilevers. The constitutive
parameters are: n = 1, (γ̄ ,−β̄) = (5.6, 5.1) × 10

6 Conclusions

This work proposed an original asymptotic model-
ing approach and analysis tailored for carbon nan-
otube nanocomposite beams with different boundary
conditions. A nonlinear 3D nanocomposite constitu-
tive model capable of capturing the hysteretic nanos-
tructural stick-slip behavior between the CNTs and
the hosting polymer matrix was reduced to accommo-
date the Saint-Venant plane bending kinematic state
parametrized by two generalized strains (i.e., the elon-
gation of the centerline and the bending curvature). The
tension–elongation and moment–curvature relation-
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ships were obtained according to an unusual derivation
by which the tangent conditions in the CNT/polymer
stick phase at the origin and past the onset of CNT
slip were obtained employing the 1D-reduced consti-
tutive model. The transition between these two states
(namely, elastic and post-elastic phases) was assumed
to be regulated by a hysteresis operator that mimics
the Bouc–Wenmodel. Two nonlinear mechanical mod-
els were thus constructed, both featuring unshearabil-
ity, one valid for (axially restrained) extensible beams
and the other for (axially unrestrained) inextensible
beams.

The discretization of the underlying infinite-
dimensional systems incorporating hysteresis in the
constitutive relationships was another challenge. To
this end, the moment–curvature relationship in rate
form was integrated to yield a piece-wise closed-
form representation for each of the four branches of
the hysteresis cycles. The obtained piece-wise closed-
form moment–curvature relationship was expanded in
Taylor series and treated asymptotically in the con-
text of the one-mode Galerkin discretization of the
deflection field. The resulting piece-wise reduced-
order nanocomposite beam model was specialized for
hinged–hinged and cantilever beams. The ensuing
piece-wise ODEs were thus treated by the method of
multiple scales to obtain the periodic responses to har-
monic base excitations together with the frequency
response functions.

The families of frequency response curves and
behavior charts were unfolded by spanning suitable
ranges of the constitutive parameters and excita-
tion driving the primary resonance of the funda-
mental mode. The results showed how the inter-
play between the CNT/polymer nanostructural hys-
teretic nonlinearity and the geometric/inertia nonlin-
earities gives rise to rich and unexpected nonlin-
ear behaviors. The constitutive nonlinearity of the
nanocomposites was shown to be responsible for a
remarkable tunability of the nonlinear frequency (soft-
ening versus hardening) and multistability (single-
valued, stable responses versus multi-valued, multi-
stable responses).
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Appendix

Derivation of the equations of motion for nonlinear,
nanocomposite beams. Consider the fixed reference
frame (O, e1, e2, e3) in Fig. 3 and the restricted plane
of motion described by (O, e3, e1). Let s denote the
material coordinate that spans the beam base line in the
reference configuration. The local frame {b1,b2,b3}
with (b1,b2) describing the orientation of the material
cross sections is given by b1 = − sin θe3 + cos θe1,
b3 = cos θe3 + sin θe1 where θ denotes the coun-
terclockwise angle by which the cross section at s is
flexurally rotated about b2 = e2. The current position
of the base point of the cross section is described by
r(s, t) = se3 + y(t)e1 + u(s, t) where the displace-
ment vector relative to the moving frame is u(s, t) =
u(s, t) e3 + v(s, t) e1 and y(t)e1 is the prescribed base
excitation. The generalized strains are expressed as
ν(s, t) = νb3 + ηb1 where ν = ∂sr · b3 is the beam
stretch, η = ∂sr · b1 the shear strain, and ∂s denotes
differentiation with respect to the material coordinate.
Moreover, κ = ∂sθ (i.e., the spatial rate of change of
θ ) describes the bending curvature.

By lettingn andm denote the beamcontact force and
couple (i.e., generalized stress resultants), the equations
of motions are obtained enforcing the balance of linear
and angular momentum [11]

∂sn + f = ρ A∂t tr + ρ I ∂t tb1, (51)

∂sm + (ν × n) · e2 + c

= [b1 × (ρ I ∂t tr + ρ J ∂t tb1)] · e2 (52)

where ∂t indicates differentiation with respect to time.
The contact force n and contact couplem are expressed
in the local frame as n = Qb1 + Nb3, m = Mb2
where Q denotes the shear force, N the tension and
M the bending moment. Moreover, ρ I is the first mass
moment of the cross section about b2 and ρ J is the
mass moment of inertia. The external force in the fixed
frame is expressed as f = f e1. The first moment ρ I
vanishes if the base line is chosen to coincide with the
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beam centerline. Moreover, the local frame (b1, b2) is
further assumed to be collinear with the principal axes
of inertia of the cross section. In component form, the
equations of motion can be written as

∂s N − κ Q + f · b3 = ρ A[∂t t u e3
+ (∂t t y + ∂t tv) e1] · b3, (53)

∂s Q + κ N + f · b1 = ρ A[∂t t u e3
+ (∂t t y + ∂t tv) e1] · b1, (54)

∂s M + νQ − ηN + c = ρ J∂t tθ. (55)

For unshearable beams, the shear force Q is com-
puted using Eq. (55) and substituted into Eq. (54). The
constitutive equations are presented next in the context
of the two unshearable (extensible and inextensible)
beam models.

Extensible beams. Axially restrained beams are sub-
ject to stretching induced by the transverse motion.
These beams are often modeled according to the Met-
tler theory which is based on ad hoc kinematic and
mechanical assumptions [11]. Here the equations are
deduced directly from the geometrically exact equa-
tions of motion for unshearable beams and the main
steps are summarized in order to show how the model
incorporating the hysteretic constitutive nonlinearity is
forged.

The following assumptions are considered: (i) f ·
b1 = 0 ∀s ∈ (0, �); (ii) the rotations of the cross sec-
tions are sufficiently small, |θ | � 1; (iii) rotary iner-
tia is negligible. One direct consequence of hypothe-
sis (i) is that, under the prevailing assumption of axi-
ally restrained motion, the longitudinal inertia term
(ρ A∂t tu · b1) is negligible in Eq. (53). Moreover,
the load-bearing contribution associated with the shear
force, κ∂s M/ν, is of higher order with respect to the
tension gradient in Eq. (53). Thus, Eq. (53) yields
∂s N = 0 whose consequence is that the tension is con-
stant throughout the beam, within the range of valid-
ity of the stated assumptions. The beam elongation
ε = ν − 1 can be expanded in Taylor series up to
second-order terms as ε(s, t) = ∂su + 1/2(∂sv)2. We
make an important assumption that the elongations
caused by the transverse motion are sufficiently small
that the constitutive law for the tension is considered
within the linear range as N (s, t) = E (1) Aε(s, t) =
E (1) A[∂su + 1/2(∂sv)]. The uniformity of N allows its
computation as an average over the span [0, �]:

N̂ (t) = 1

�

∫ �

0
E (1) A

[
∂su + 1

2 (∂sv)2
]
ds

= E (1) A

�
[u(�, t) − u(0, t)] + E (1) A

�

∫ �

0

1
2 (∂sv)2ds

(56)

where uniform properties of the beam are considered
(i.e., E (1) A = const) and u(�, t) = u(0, t) = 0 is
the typical kinematic boundary condition for hinged–
hinged or clamed–clamped or hinged–clamped beams.

The next step is to consider the equation of motion
in the transverse direction (54) by introducing the fol-
lowing approximations: ∂s(∂s M/ν) ∼ ∂ss M , f · b1 ∼
f · e1 = f , ρ A∂t tr · b1 ∼ ρ A(∂t t y + ∂t tv), and
κ N ∼ (∂ssv)N where the linear part of the bending cur-
vature κ = ∂ssvwas used in order to retain only leading
order terms. Substituting in Eq. (54) the nonlinear hys-
teretic moment–curvature constitutive relationship for
M given by (16) and (17) yields the equation of motion
given by Eq. (18).

Inextensible beams. Reconsidering the equations of
motion (53)–(55), the model is specialized to incorpo-
rate the shear undeformability and longitudinal inex-
tensibility constraints putting η = 0 and ν = 1. The
above material constraints entail the following kine-
matic relationships [11]:

∂su = −1 +
√
1 − (∂sv)2, κ = ∂ssv√

1 − (∂sv)2
, (57)

u(s, t) = −s +
∫ s

0

(√
1 − (∂sv)2

)
ds,

cos θ = 1 + ∂su, sin θ = ∂sv. (58)

Acondensation procedure is enforced to eliminate from
the equations of motion the reactive shear force Q and
tension N. To this end, the rotary inertia term ρ J∂t tθ

is neglected. We further assume that f · b1 ∼ f and
f · b3 ∼ 0. From the balance of angular momentum
expressed by Eq. (55), the shear force Q is explicitly
solved for to give Q = −∂s M . In turn, this expression
is substituted into Eqs. (53) and (54). On the other hand,
Eq. (53) can be solved for ∂s N which, upon integration,
gives

N (s, t) = N (�, t) −
∫ �

s
[κ Q + ρ A(∂t t u cos θ

+(∂t t y + ∂t tv) sin θ)] dξ, (59)

where N (�, t) = 0 for a free end.
Substituting the obtained tension N into Eq. (54) pro-
vides the reduced equation of motion [11]
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ρ A(∂t tv cos θ − ∂t t u sin θ) + κ

∫ �

s
[ρ A(∂t t u cos θ

+∂t tv sin θ) − κ∂s M] dξ

+∂ss M = f − ρ A ∂t t y cos θ

−κ

∫ �

s
ρ A∂t t y sin θdξ (60)

which is further transformed once the longitudinal dis-
placement u is expressed in terms of the deflection v.
An approximate mechanical model can be obtained by
expressing in Taylor series the kinematic relationships.
By considering the following third-order approxima-
tions:

sin θ ∼= ∂sv, cos θ ∼= 1 − 1
2 (∂sv)2,

κ ∼= ∂ssv + 1
2 (∂sv)2∂ssv,

u ∼= −
∫ s

0

1
2 (∂sv)2ds,

∂t u ∼= −
∫ s

0
∂sv∂stvds,

∂t t u ∼= −
∫ s

0

[
∂sv∂sttv + (∂stv)2

]
ds (61)

the obtained equation of motion is (21) where the lead-
ing order term only was retained in the base excitation
expression, namely, ρ A ∂t t y cos θ − κ

∫ �

s �A∂t t y sin
θdξ � ρ A ∂t t y.

Coefficients in the reduced-order model of hinged–
hinged beams

k1 = E (1) J

�
D [

φ′′′′] = E (1) J

�
n4π4

k3 = E (1) J

�
D
[
(φ′′)3 + 1

2
(φ′)2φ′′′′ + 3φ′φ′′φ′′′

]

= k1
(nπ)2

4

kz2 = 2
E (1) J

�2
D
[
(φ′′′)2 + φ′′φ′′′′]

= 2
k1
�

2

3

√
2πn

(
1 − (−1)n

−4
(
(−1)n + 2

)
sin4

(πn

2

))

kz3 = 3
E (1) J

�3
D
[
φ′′ (2(φ′′′)2 + φ′′φ′′′′)]

= 3
k̄

�2

(nπ)4

2

Operators and coefficients in the reduced-order model
of cantilever beams

I1(s∗) =
[
4c2λλs∗ + (c2λ − 1) sin(2λs∗) + c2λ sinh(2λs∗)

− 4(c2λ + 1) cos(λs∗) sinh(λs∗)
+ 4 cosh(λs∗)

(
2cλ cos(λs∗)

−(c2λ − 1) sin(λs∗)
)

− 2cλ cos(2λs∗) − 2cλ cosh(2λs∗)

− 4cλ + sinh(2λs∗)
]
,

I2(s∗) = 2cλ(sin(2λs∗) − sin(2λ))

+ 4cλ sinh(λ)(cos(λ) − cλ sin(λ))

+ 4(cosh(λs∗) − cosh(λ))(cλ(sinh(λ)

− sin(λ)) + cos(λ))

+ 4cλ sinh(λs∗)(cλ sin(λs∗) − cos(λs∗)),
I3(s∗) = 8(cλ sinh(λ)(cλ sin(λ) − cos(λ))

+ cosh(λ)(cos(λ) − cλ sin(λ))

+ cλ sinh(λs∗)(cos(λs∗) − cλ sin(λs∗))
+ cosh(λs∗)(cλ sin(λs∗) − cos(λs∗))),

k̄ = E (1) J

�
D [

φ′′′′]≡ λ41
E (1) J

�
,

k3 = E (1) J

�
D
[
(φ′′)3 + 1

2
(φ′)2φ′′′′

+3φ′φ′′φ′′′ − φ′′
∫ 1

s
φ′′ φ′′′

]
:= k̄

λ41
s3,

kz2 = 2
E (1) J

�2
D
[
(φ′′′)2 + φ′′φ′′′′] := 2 k̄

λ41 �
sz2,

kz3 = 3
E (1) J

�3
D
[
φ′′ (2(φ′′′)2 + φ′′φ′′′′)]

:= 3 k̄

λ41 �2
sz3.
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