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Abstract Based on state feedback control approach
and disturbance observer method, a new composite
synchronization control strategy is presented in this
study for a class of delayed coupling complex dynam-
ical networks with two different types of disturbances.
Herein, one of the disturbances is produced by an
exogenous system which acts through the input chan-
nel, while the other is usual norm-bounded. The main
objective of this study is to exactly estimate the dis-
turbance at the input channel, whose output is inte-
grated with the state feedback control law. In this
study, the composite control strategy is designed in two
forms according to the present and past states’ infor-
mation about the system. By applying the Lyapunov–
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Krasovskii stability theory, a new set of sufficient con-
ditions is obtained for the existence of both control
strategies separately through the feasible solution of a
series of matrix inequalities. The superiority and valid-
ity of the developed theoretical results are demonstrated
by two numerical examples, wherein it is shown that
the proposed control strategy is capable of handling
multiple disturbances in the synchronization analysis.
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1 Introduction

For more than a couple of decades, several research
scholars fromscience and engineering community have
been paying their sincere attention to the investigation
of dynamical behavior and control problems of com-
plex dynamical networks [1–3]. This is because of the
fact that complex dynamical networks have tremen-
dous potential applications in numerous fields, includ-
ing metabolic systems, electronic power grids, biolog-
ical neural networks, large-scale sensor networks and
genetic regulatory networks. It is pointed out that one
of the most prominent dynamical behaviors in the con-
text of complex dynamical networks is synchronization
which has been broadly investigated in recent years. A
great number of significant works related to this issue
have been reported in the literature [4–8]. This peculiar
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behavior has a variety of real-time applications, such
as information processing, secure communication, neu-
ral networks and image processing [9–12]. However, it
is important to explore some modeling techniques for
the purpose of examining the synchronous behaviors
of a complex dynamical network. It is mentioned that
algebraic graph theory has been widely recognized and
utilized as themost convenient and elegant technique to
model the communications among nodes in a network.
At the same time, the role of controllers is very signif-
icant in driving the network to reach synchronization
in cases where a complex dynamical network cannot
achieve synchronization by itself. Consequently, some
interesting control methods in systems and control
theory, such as adaptive control [13], event-triggered
control [14], fault-tolerant control [15,16], impulsive
control [17,18], non-fragile control [19], pinning con-
trol [20,21] and sampled-data control [22], have been
applied to ensure synchronization and improve system
performance of various kinds of complex dynamical
networks.

It is well known that when modeling the real-world
complex dynamical networks, the phenomenon of time
delays is unavoidable owing to finite speed of sig-
nals transmission over the links, which may destroy
the desired synchronization or induce some undesir-
able dynamics. Therefore, it is of great importance to
consider time delays in the signal transmission among
nodes or through coupling of a dynamical network from
both practical and theoretical perspectives. By taking
this fact into account, many remarkable results on syn-
chronization of complex dynamical networkswith cou-
pling delay have been reported in the recent literature.
For instance, an interesting exponential synchroniza-
tion problem of complex dynamical network subject to
time-varying coupling delay and variable sampling has
been investigated in [23] by utilizing the Lyapunov–
Krasovskii functional method and convex combina-
tion technique. With the aid of input delay approach
and sampled-data control law, the exponential synchro-
nization problem for a class of complex dynamical
networks against distributed coupling delay has been
reported in [24]. A robust synchronization problem
of complex dynamical networks with additive time-
varying coupling delays has been investigated in [25]
by using the well-known passivity theory. In [26], the
issue of synchronization for complex dynamical net-
works in the presence of interval time-varying coupling

delays has been discussed by introducing the concept
of closeness centrality in the outer-coupling matrix.

Besides the above, external disturbances may often
exist in most practical engineering systems, which are
one of the crucial factors that deteriorate the closed-
loop system performance. In order to attenuate the
influence of external disturbances and enhance the sys-
tem performance, several methods, such as adaptive
control method [27], disturbance observer-based con-
trol method [28] and H∞ theory [29], have been pro-
posed in the literature. Among them, the disturbance
observer-based control method has been regarded as an
active disturbance rejection scheme and has received
increasing attention [30,31] because of its high effi-
ciency, practicability and strong robustness. The idea
behind this method is that an observer is constructed
to estimate the disturbance and a conventional control
law together with a feedback compensator, which is
obtained from the output of the observer, is applied
to reject the disturbance and accomplish the desired
goals. However, it should be mentioned that many
practical systems can be affected by multiple types
of disturbances that should be expressed in different
forms since they may have distinct characteristics. In
this situation, the aforementioned approaches unfortu-
nately could not lead to obtain high precision control
performance. To overcome this shortcoming, compos-
ite anti-disturbance control strategies have been com-
monly implemented in which the different types of
disturbances acting on the system under consideration
could be attenuated and rejected completely by inte-
grating the disturbance observer-based controller with
the known traditional control methods [32]. Recently,
a substantial amount of effort has been directed toward
developing composite anti-disturbance control algo-
rithms for various kinds of dynamical systems. For
example, see [33–35] and the references related to
them. Nevertheless, it is worth mentioning that so far
in the literature, the design problem of composite anti-
disturbance controller has not yet been discussed in
the context of synchronization for complex dynamical
networks despite its clear practical insight.

By considering the above concern, this paper aims
at making the first attempt to design a distributed com-
posite anti-disturbance control strategy for achieving
robust synchronization in a class of complex dynami-
cal networks with coupling delay and multiple distur-
bances. The significant contributions of this paper are
given in the following three points:
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– A new distributed composite control scheme that
involves the disturbance observer method and the
state feedback control law is proposed for the first
time to solve synchronization problem of delayed
coupling complex dynamical networks with two
distinct types of disturbances.

– According to the information about system states,
the proposed controller is designed in two forms
by utilizing the Lyapunov–Krasovskii functional
approach and the constructed disturbance observer,
which both can render the considered network be
asymptotically synchronized.

– Developed theoretical results are validated through
two numerical examples, wherein the proposed
control protocols provide much better performance
than the existing H∞ control method.

The remaining parts of this paper are listed as fol-
lows: The problem to be formulated and its necessary
preliminaries are given in Sect. 2. The required main
results are established in Sects. 3 and 4. Section 5
provides simulation examples to verify the proposed
results, which is followed by Sect. 6 to present the con-
clusion of the paper. Further, the notations and sym-
bols employed throughout this paper are fairly stan-
dard. Thus, they are not provided here in detail.

2 Problem formulation and preliminaries

Let us consider a class of complex dynamical networks
with time-varying coupling delay and multiple distur-
bances, described by the following set of differential
equations:

ẋi (t) = Axi (t) + Bgg(xi (t))

+ κ

M∑

j=1

αi j Dx j (t − h(t))

+ B[ui (t) + di (t)] + Bwwi (t),

xi (t) = ϕi (t), t ∈ [−h2, 0], i = 1, 2, . . . , M, (1)

whereM is the number of nodes in the network; xi (t) ∈
R
n denotes the state vector of the i th node; g(xi (t))

is a continuous vector-valued nonlinear function; κ >

0 represents the coupling strength; the scalars αi j

are associated with the zero-row-sum outer-coupling
matrix � = [αi j ]M×M ; D = diag{d1, d2, . . . , dn} > 0
stands for the inner-coupling matrix; ui (t) ∈ R

m and

di (t) ∈ R
m represent the control input and the distur-

bance performing in the input channel of the i th node,
respectively; wi (t) ∈ R

l describes an additional dis-
turbance and is assumed to be a square integrable func-
tion; the function h(t) denotes the time-varying cou-
pling delay satisfying 0 < h1 ≤ h(t) ≤ h2 < ∞
and ḣ(t) ≤ μ < 1, where h1, h2 and μ are known
constants; A, Bg , B and Bw are system matrices with
appropriate dimensions; and ϕi (t) stands for the initial
value of the state of the i th node.

In this study, without loss of generality, it is consid-
ered that di (t) is unknown and generated by a family
of exogenous systems whose dynamics are given as
follows:

δ̇i (t) = Adδi (t) + Bdηi (t),

di (t) = Cdδi (t), i = 1, 2, . . . , M, (2)

where δi (t) ∈ R
p represents the state vector of the i th

system; ηi (t) ∈ R
q denotes the disturbance caused by

the exogenous signals acting on the i th system and is
assumed to be a square integrable function. Further,
Ad ∈ R

p×p, Bd ∈ R
p×q and Cd ∈ R

m×p are given
constant matrices.

Remark 1 It is worth mentioning that the network
under consideration consists of two different kinds
of external disturbances, namely matched and mis-
matched disturbances. In order to efficiently deal with
these disturbances, two different methodologies are
applied in this study. To be precise, a distributed dis-
turbance observer method is adopted to accurately esti-
mate the matched disturbances in which the estimated
values are employed in the process of feedforward com-
pensation and the traditional H∞ control method is
used to attenuate the effect ofmismatcheddisturbances.
Thus, this kind of composite anti-disturbance control
strategy is more appropriate and flexible to deal with
the systems containing multiple disturbances.

Let s(t) be a solution to the unforced isolated node
whose dynamics are represented by the differential
equation ṡ(t) = As(t) + Bgg(s(t)). It should be men-
tioned that in the context of synchronization analysis
of complex dynamical networks, s(t) is referred to as
an equilibrium point and viewed as the reference state
that will be tracked by the states of complex dynami-
cal network. In order to realize the synchronization of
considered network (1) and the equilibrium point, an
error variable is defined by exi (t) = xi (t)− s(t) for all
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i = 1, 2, . . . , M . Then, by using the property of zero-
row-sum outer-coupling matrix (i.e.,

∑M
j=1 αi j = 0), a

set of error systems can be obtained as follows:

ėxi (t) = Aexi (t) + Bgg(exi (t))

+ κ

M∑

j=1

αi j Dex j (t − h(t))

+ B[ui (t) + di (t)] + Bwwi (t), (3)

where g(exi (t)) = g(xi (t)) − g(s(t)).
To ease the required analysis, it is very important to

consider the following two assumptions:

Assumption 1 For all i = 1, 2, . . . , M , the pair
(A, B) is controllable and the pair (Ad , BCd) is observ-
able.

Assumption 2 For all x, y ∈ R
n , the nonlinear func-

tion g(·) satisfies the following sector-bound condition:

[g(x) − g(y) −U (x − y)]T [g(x)
−g(y) − W (x − y)] ≤ 0,

whereU andW are given constantmatriceswith proper
dimensions. Moreover, without loss of generality, it is
chosen that g(0) = 0. Obviously, the above nonlinear-
ity condition is more general than the Lipschitz nonlin-
earity and the norm-bounded nonlinearity conditions.

In order to estimate the disturbance di (t), inspired by
the seminal works in [32,33], a distributed disturbance
observer according to systems (2) and (3) can be con-
structed as follows:

d̂i (t) = Cd δ̂i (t), (4)

δ̂i (t) = λi (t) − K1exi (t), i = 1, 2, . . . , M, (5)

λ̇i (t) = (Ad + K1BCd)(λi (t) − K1exi (t))

+ K1

[
Aexi (t) + Bgg(exi (t))

+ κ

M∑

j=1

αi j Dex j (t − h(t)) + Bui (t)
]
, (6)

where d̂i (t) and δ̂i (t) are the estimations of di (t) and
δi (t), respectively, λi (t) signifies the internal state of
the observer and K1 denotes the observer gain matrix
with appropriate dimension, which will be determined
in the forthcoming section.

For the purpose of achieving the required synchro-
nization in system (1) without any interruption, here a
robust control protocol is to be designed such that both
external disturbances are rejected and the synchroniza-
tion error system (3) is asymptotically stable and satis-
fies the performance of disturbance attenuation. Thus,
by combining the state feedback control scheme and
the disturbance observer method, a robust composite
synchronization control law is adopted in the follow-
ing form:

ui (t) = K2exi (t) − d̂i (t), (7)

where K2 is the state feedback gain matrix that to be
designed later. More specifically, the estimation term
d̂i (t) is subtracted in (7) for the purpose of compensat-
ing the impact of unknown disturbance in the control
channel.

By defining eδi (t) = δi (t) − δ̂i (t) and applying the
synchronization control law (7) to the error system (3),
it is easy to obtain the following two set of equations:

ėxi (t) = (A + BK2)exi (t) + Bgg(exi (t))

+ κ

M∑

j=1

αi j Dex j (t − h(t)) + BCdeδi (t)

+ Bwwi (t), (8)

ėδi (t) = (Ad + K1BCd)eδi (t)

+ K1Bwwi (t) + Bdηi (t). (9)

In this study, themeasured output of the i th node is con-
sidered as zi (t) = Cexi (t), whereC is a constantmatrix
with proper dimension. Thus, based on the systems (8)
and (9), the composite system can be formulated as
follows:

ζ̇i (t) = A1ζi (t) + A2g(ζi (t))

+
M∑

j=1

αi jB1ζ j (t − h(t))

+ B2
i (t),

zi (t) = C1ζi (t), (10)

where ζi (t) = [eTxi (t) eTδi (t)]T, 
i (t) = [wT
i (t)

ηTi (t)]T, g(ζi (t)) = [gT(exi (t)) gT(eδi (t))]T,
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A1=
[
A + BK2 BCd

0 Ad + K1BCd

]
, A2=

[
Bg 0
0 0

]
,

B1=
[

κD 0
0 0

]
, B2=

[
Bw 0

K1Bw Bd

]
and

C1=[
C 0

]
.

For representation convenience, denote

ζ(t) = [ζT
1 (t), ζT

2 (t), . . . , ζT
M (t)]T,

g(ζ(t)) = [gT(ζ1(t)), g
T(ζ2(t)), . . . , g

T(ζM (t))]T,


(t) = [
T
1 (t),
T

2 (t), . . . ,
T
M (t)]T and

z(t) = [zT1 (t), zT2 (t), . . . , zTM (t)]T.

By utilizing the Kronecker product properties, the
closed-loop composite system (10) can be equivalently
written in the compact from as

ζ̇ (t) = (I ⊗ A1)ζ(t) + (I ⊗ A2)g(ζ(t))

+ (� ⊗ B1)ζ(t − h(t)) + (I ⊗ B2)
(t),

z(t) = (I ⊗ C1)ζ(t). (11)

It should be mentioned that the synchronization prob-
lem of the network (1) is converted into the stability
problem of the augmented system (11). This stability
problem guarantees exi (t) → 0 for all i = 1, 2, . . . , M
from which it is straightforward that xi (t) → s(t) for
all i = 1, 2, . . . , M , which is the required synchro-
nization. Thus, it is sufficient to establish the stability
criterion for the system (11) in order to solve the prob-
lem under consideration.

The following definition and lemma are indispens-
able for the subsequent analysis.

Definition 1 The closed-loop composite system (11)
is said to be asymptotically stable and satisfies a given
H∞ disturbance attenuation level γ , if it is asymptot-
ically stable with 
(t) = 0, and under the zero ini-
tial condition, there exists a scalar γ > 0 such that
the inequality

∫ ∞
0 zT(t)z(t)dt ≤ γ 2

∫ ∞
0 
T(t)
(t)dt

holds for 
(t) �= 0.

Lemma 1 [36] For any constant matrix Z > 0 and
continuously differentiable function x in [a, b] → R

n,
the following inequality holds:

− (b − a)

∫ b

a
ẋT(s)Z ẋ(s)ds

≤ −[x(b) − x(a)]TZ [x(b) − x(a)] − 3�TZ�,

where � = x(b) + x(a) − 2
b−a

∫ b
a x(s)ds.

3 Synchronization analysis under the composite
control law

In this part, let us pay attention to solve the asymptotic
synchronization problemof system (1) via the designed
control protocol (7). More specifically, by using the
Lyapunov–Krasovskii functional method, the desired
synchronization criterion is obtained by means of the
augmented system (11) and the approach of the deter-
mination of the observer gain and controller gainmatri-
ces is given subsequently.

Theorem 1 Let us consider the complex dynamical
network (1) with the composite control law (7) under
Assumptions 1 and 2. Given positive scalars κ , α, h1 <

h2, μ < 1, νa (a = 1, 2) and matrices U ∈ R
n×n,

W ∈ R
n×n, the augmented system (11) is asymptoti-

cally stable and satisfies a prescribed H∞ disturbance
attenuation level γ > 0 if there exist symmetric positive
definite matrices Q1 ∈ R

n×n, Q2 ∈ R
p×p, Rb ∈ R

n×n

(b = 1, 2, 3), matrices X ∈ R
m×m, Y1 ∈ R

m×n,
Y2 ∈ R

p×n and a scalar ρ > 0 satisfying the following
conditions:

�̂ = [π̂a,b] < 0, a, b = 1, 2, . . . , 11, (12)
[−ρ I (I ⊗ XTBT) − (I ⊗ BTQ1)

∗ −ρ I

]
< 0, (13)

where the nonzero elements of the matrix �̂ are defined
by

π̂1,1 = (I ⊗ R1) + (I ⊗ R2) − 4ν1(I ⊗ Q1) − αU1

+ (I ⊗ CTC) + (I ⊗ Q1A) + (I ⊗ ATQ1)

+ (I ⊗ BY1) + (I ⊗ YT
1 BT),

π̂1,2 = (I ⊗ Q1BCd ), π̂1,3 = −2ν1(I ⊗ Q1),

π̂1,4 = κ(� ⊗ Q1D), π̂1,6 = 6ν1
h1

(I ⊗ Q1),

π̂1,8 = (I ⊗ Q1Bg) − αU2, π̂1,9 = (I ⊗ Ê1),

π̂1,10 = √
ν1h1(I ⊗ ATQ1) + √

ν1h1(I ⊗ YT
1 BT),

π̂1,11 = √
ν2(h2 − h1)(I ⊗ ATQ1) + √

ν2(h2 − h1)
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× (I ⊗ YT
1 BT),

π̂2,2 = (I ⊗ Q2Ad ) + (I ⊗ ATd Q2) + (I ⊗ Y2BCd )

+ (I ⊗ CT
d B

TYT
2 ),

π̂2,9 = (I ⊗ Ê2), π̂2,10 = √
ν1h1(I ⊗ CT

d B
TQ1),

π̂2,11 = √
ν2(h2 − h1)(I ⊗ CT

d B
TQ1),

π̂3,3 = −(I ⊗ R1) + (I ⊗ R3) − 4(ν1 + ν2)(I ⊗ Q1),

π̂3,5 = −2ν2(I ⊗ Q1), π̂3,6 = 6ν1
h1

(I ⊗ Q1),

π̂3,7 = 6ν2
h2 − h1

(I ⊗ Q1), π̂4,4 = −(1 − μ)(I ⊗ R2),

π̂4,10 = √
ν1h1κ(�T ⊗ DT)(I ⊗ Q1),

π̂4,11 = √
ν2(h2 − h1)κ(�T ⊗ DT)(I ⊗ Q1),

π̂5,5 = −(I ⊗ R3) − 4ν2(I ⊗ Q1),

π̂5,7 = 6ν2
h2 − h1

(I ⊗ Q1), π̂6,6 = −12ν1
h21

(I ⊗ Q1),

π̂7,7 = − 12ν2
(h2 − h1)2

(I ⊗ Q1), π̂8,8 = −2α I,

π̂8,10 = √
ν1h1(I ⊗ BT

g Q1),

π̂8,11 = √
ν2(h2 − h1)(I ⊗ BT

g Q1),

π̂9,9 = −γ 2 I, π̂9,10 = √
ν1h1(I ⊗ BT

wQ1),

π̂9,11 = √
ν2(h2 − h1)(I ⊗ BT

wQ1), π̂10,10

= − (I ⊗ Q1),

π̂11,11 = −(I ⊗ Q1), Ê1 = [Q1Bw 0],
Ê2 = [Y2Bw Q2Bd ], U1 = (I ⊗UTW )

+ (I ⊗ WTU )

and U2 = −(I ⊗ (UT + WT)).

If the conditions (12) and (13) have a feasible solution,
then the desired observer gain and control gain matri-
ces are determined by using the relations K1 = Q−1

2 Y2
and K2 = X−1Y1, respectively.

Proof In order to show that the composite system (11)
is asymptotically stable with a satisfactory disturbance
attenuation level γ > 0, the following Lyapunov–
Krasovskii functional is considered for the system (11):

V (t) =
3∑

b=1

Vb(t), (14)

where

V1(t) = ζT(t)(I ⊗ Q)ζ(t),

V2(t) =
∫ t

t−h1
eTx (s)(I ⊗ R1)ex (s)ds

+
∫ t

t−h(t)
eTx (s)(I ⊗ R2)ex (s)ds

+
∫ t−h1

t−h2
eTx (s)(I ⊗ R3)ex (s)ds,

V3(t) = h1

∫ 0

−h1

∫ t

t+v

ėTx (s)(I ⊗ ν1Q1)ėx (s)dsdv

+ (h2 − h1)

×
∫ −h1

−h2

∫ t

t+v

ėTx (s)(I ⊗ ν2Q1)ėx (s)dsdv,

where ex (t) = [eTx1(t), eTx2(t), . . . , eTxM (t)]T and
Q = diag{Q1, Q2}.

Now by calculating the derivative of the functional
V (t) along the solution trajectory of system (11), it
follows that

V̇1(t) = 2eTx (t)(I ⊗ Q1)ėx (t)

+ 2eTδ (t)(I ⊗ Q2)ėδ(t), (15)

V̇2(t) ≤ eTx (t)[(I ⊗ R1) + (I ⊗ R2)]ex (t)
− eTx (t − h1)[(I ⊗ R1)−(I ⊗ R3)]ex (t−h1)

− (1 − μ)eTx (t − h(t))(I ⊗ R2)ex (t − h(t))

− eTx (t − h2)(I ⊗ R3)ex (t − h2), (16)

V̇3(t) = ėTx (t)
[
h21ν1(I ⊗ Q1)

+ (h2 − h1)
2ν2(I ⊗ Q1)

]

× ėx (t) − h1

∫ t

t−h1
ėTx (s)(I ⊗ ν1Q1)ėx (s)ds

− (h2 − h1)
∫ t−h1

t−h2
ėTx (s)(I ⊗ ν2Q1)ėx (s)ds,

(17)

where eδ(t) = [eTδ1(t), eTδ2(t), . . . , eTδM (t)]T.
With the aid of Lemma 1, the integral terms in V̇3(t)

are bounded as follows:

− h1

∫ t

t−h1
ėTx (s)(I ⊗ ν1Q1)ėx (s)ds ≤ �T

1�1�1,

(18)

− (h2 − h1)
∫ t−h1

t−h2
ėTx (s)(I ⊗ ν2Q1)ėx (s)ds

≤ �T
2�2�2, (19)
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where

�a =
⎡

⎣
−4(I ⊗ νaQ1) −2(I ⊗ νaQ1) 6(I ⊗ νaQ1)

∗ −4(I ⊗ νaQ1) 6(I ⊗ νaQ1)

∗ ∗ −12(I ⊗ νaQ1)

⎤

⎦

(a = 1, 2),

�1 =
[
eTx (t) eTx (t − h1)

1

h1

∫ t

t−h1
eTx (s)ds

]T
and

�2 =
[
eTx (t − h1) eTx (t − h2)

1

h2 − h1

×
∫ t−h1

t−h2
eTx (s)ds

]T

.

On the other hand, for any positive scalar α, the
following inequality can be deduced from Assumption
2:

−α

[
ex (t)

g(ex (t))

]T [
U1 U2

∗ 2I

] [
ex (t)

g(ex (t))

]
≥ 0, (20)

whereU1 andU2 are specified in the theoremstatement.
Then, by combining the relations from (15) to (20),

it can be easily obtained that

V̇ (t) ≤ ξT(t)�1ξ(t) + ėTx (t)
[
h21ν1(I ⊗ Q1)

+ (h2 − h1)
2ν2(I ⊗ Q1)

]
ėx (t), (21)

where

�1 =
[

� �1

∗ 0

]
, � = [πa,b] (a, b = 1, 2, . . . , 8),

ξT(t) =
[
ψT(t) 
T(t)

]
,

ψT(t) =
[
eTx (t) eTδ (t) eTx (t − h1) eTx (t − h(t))

eTx (t − h2)
∫ t

t−h1
eTx (s)ds

∫ t−h1

t−h2
eTx (s)ds

gT(ex (t))
]
,

π1,1 = (I ⊗ R1) + (I ⊗ R2) − 4ν1(I ⊗ Q1) − αU1

+ (I ⊗ Q1(A + BK2))

+ (I ⊗ (A + BK2)
TQ1),

π1,2 = (I ⊗ Q1BCd), π1,3 = −2ν1(I ⊗ Q1),

π1,4 = κ(� ⊗ Q1D), π1,6 = 6ν1
h1

(I ⊗ Q1),

π1,8 = (I ⊗ Q1Bg) − αU2,

π2,2 = (I ⊗ Q2(Ad + K1BCd))

+ (I ⊗ (Ad + K1BCd)
TQ2),

π3,3 = −(I ⊗ R1) + (I ⊗ R3) − 4ν1(I ⊗ Q1)

− 4ν2(I ⊗ Q1), π3,5 = −2ν2(I ⊗ Q1),

π3,6 = 6ν1
h1

(I ⊗ Q1), π3,7 = 6ν2
h2 − h1

(I ⊗ Q1),

π4,4 = −(1 − μ)(I ⊗ R2),

π5,5 = −(I ⊗ R3) − 4ν2(I ⊗ Q1),

π5,7 = 6ν2
h2 − h1

(I ⊗ Q1), π6,6 = −12ν1
h21

(I ⊗ Q1),

π7,7 = − 12ν2
(h2 − h1)2

(I ⊗ Q1), π8,8 = −2α I,

�1 =
⎡

⎣(I ⊗ ET
1 Q1) (I ⊗ ET

2 Q2) 0 · · · 0︸ ︷︷ ︸
6

⎤

⎦
T

with E1 = [Bw 0], E2 = [K1Bw Bd ] and the rest of
the elements of � are zero.

In light of Schur complement, the matrix terms in
right-hand side of (21) can be put in the following form:

�2 =
⎡

⎣

[
�1

]
9×9

√
ν1h1�2

√
ν2(h2 − h1)�2

∗ −(I ⊗ Q1) 0
∗ ∗ −(I ⊗ Q1)

⎤

⎦ ,

where�2 =
[
(I ⊗ (A+ BK2)) (I ⊗ BCd) 0 κ(�⊗

D) 0 0 0 (I ⊗ Bg) (I ⊗ Bw)
]T

(I ⊗ Q1).

Now let us introduce some new variables in the
above matrix as Q1B = BX , Y1 = XK2 and Y2 =
Q2K1. It should be noted that the equality constraint
Q1B = BX might be hard to solve by usingMATLAB
LMI toolbox. Thus, according to the work in [37], it
can be converted into the inequality constraint (13) for
a relatively small value ρ > 0. Suppose that
(t) = 0,
then the matrix �2 can be deduced by

�3 =
⎡

⎣

[
�

]
8×8

√
ν1h1�̂2

√
ν2(h2 − h1)�̂2

∗ −(I ⊗ Q1) 0
∗ ∗ −(I ⊗ Q1)

⎤

⎦ ,

where �̂2 =
[
(I ⊗ (A + BK2)) (I ⊗ BCd) 0

κ(� ⊗ D) 0 0 0 (I ⊗ Bg)
]T

(I ⊗ Q1). Hence, it

is concluded from (12) that �3 < 0, which directly
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1608 B. Kaviarasan et al.

implies V̇ (t) < 0. Therefore, according to the Lya-
punov stability theory, the closed-loop composite sys-
tem (11) with 
(t) = 0 is asymptotically stable.

Moreover, to attenuate the influence of external dis-
turbances in system (11), the following performance
index is considered:

J =
∫ T

0

[
zT(s)z(s) − γ 2
T(s)
(s)

]
ds, ∀T > 0,

(22)

where γ > 0. To complete the proof, the above perfor-
mance index under V (0) = 0 can be rewritten as

J =
∫ T

0

[
zT(s)z(s) − γ 2
T(s)
(s) + V̇ (s)

]
ds

−
∫ T

0
V̇ (s)ds

=
∫ T

0

[
zT(s)z(s) − γ 2
T(s)
(s) + V̇ (s)

]
ds

− V (T ) + V (0)

≤
∫ T

0

[
zT(s)z(s) − γ 2
T(s)
(s) + V̇ (s)

]
ds.

(23)

According to (21), the computation of the integrand in
(23) yields the following matrix:

�4 =
⎡

⎣

[
�̂1

]
9×9

√
ν1h1�2

√
ν2(h2 − h1)�2

∗ −(I ⊗ Q1) 0
∗ ∗ −(I ⊗ Q1)

⎤

⎦ ,

where �̂1 =
[

� + �3�
T
3 �1

∗ −γ 2 I

]
and �3 =

⎡

⎣(I ⊗ C) 0 · · · 0︸ ︷︷ ︸
7

⎤

⎦
T

.

Now by using the property of matrix addition, it
can be observed that (12) is equivalent to �4 < 0,
and consequently, if the inequalities (12) and (13)
are satisfied, then it is clear to see that J < 0,
∀T > 0. This guarantees the required condition∫ ∞
0

[
zT(t)z(t) − γ 2
T(t)
(t)

]
dt < 0. Thus, the

composite system (11) is asymptotically stable and sat-
isfies the H∞ disturbance attenuation level γ according
to Definition 1, which completes the proof. �

In the above, a robust composite control protocol
is designed that ultimately ensures the synchronization
of considered complex dynamical networks, where the
information of past states of system (1) is not involved
in its design though the system containing a time-
varying delay. Therefore, the designed protocol does
not need to provide exact synchronization results. By
considering this scenario, in an aim to achieve the exact
synchronization and enhance the overall system perfor-
mance, the information about past states of system (1)
is incorporated into the proposed control design. Then,
the composite synchronization control law (7) can be
modified in the form of

ui (t) = K2exi (t) + K3exi (t − h(t)) − d̂i (t), (24)

where K3 is the memory state feedback gain matrix
that will be designed in the upcoming theorem.

According to the synchronization control law (24),
the error system (3) can be written as

ėxi (t) = (A + BK2)exi (t) + Bgg(exi (t))

+ BK3exi (t − h(t))

+ κ

M∑

j=1

αi j Dex j (t − h(t))

+ BCdeδi (t) + Bwwi (t). (25)

Moreover, by combining the systems (9) and (25), a
new set of composite systems is obtained as follows:

ζ̇i (t) = A1ζi (t) + A2g(ζi (t)) + A3ζi (t − h(t))

+
M∑

j=1

αi jB1ζ j (t − h(t)) + B2
i (t),

zi (t) = C1ζi (t), i = 1, 2, . . . , M, (26)

where A3 =
[
BK3 0
0 0

]
and the remaining parameters

are defined in (10). Then, the closed-loop composite
system (26) can be expressed in the following compact
form:

ζ̇ (t) = (I ⊗ A1)ζ(t)

+ (I ⊗ A2)g(ζ(t)) + [(I ⊗ A3)

+ (� ⊗ B1)]ζ(t − h(t)) + (I ⊗ B2)
(t),

z(t) = (I ⊗ C1)ζ(t). (27)
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4 Synchronization analysis under the composite
memory control law

In this part, let us concentrate on the issue of asymptotic
synchronization problem of system (1) via the memory
control protocol (24). For this case, the synchronization
criterion and the associated gain matrices relations can
be easily obtained by following the same procedure
carried out as in Theorem 1 with the new augmented
system (27) and the controller (24).

Theorem 2 Let U ∈ R
n×n and W ∈ R

n×n be given
matrices, κ , α, h1 < h2, μ < 1 and νa (a = 1, 2)
be given positive scalars, and Assumptions 1 and 2 be
true. Then, the composite system (27) is asymptotically
stable and satisfies a prescribed H∞ disturbance atten-
uation level γ > 0, if there exist symmetric positive def-
inite matrices Q1 ∈ R

n×n, Q2 ∈ R
p×p, Rb ∈ R

n×n

(b = 1, 2, 3), matrices X ∈ R
m×m, Y1 ∈ R

m×n,
Y2 ∈ R

p×n, Y3 ∈ R
m×n and a positive scalar ρ, such

that the inequality (13) and the condition below are
satisfied:

�̃ = [π̃a,b] < 0, a, b = 1, 2, . . . , 11, (28)

where the matrix �̃ has the same elements that the
matrix �̂defined inTheorem1has, except the following
elements:

π̃1,4 = (I ⊗ BY3) + κ(� ⊗ Q1D),

π̃4,10 = √
ν1h1

{
(I ⊗ Y T

3 BT)

+ κ(�T ⊗ DT)(I ⊗ Q1)
}

and

π̃4,11 = √
ν2(h2 − h1)(I ⊗ Y T

3 BT)

+ √
ν2(h2 − h1)κ(�T ⊗ DT)(I ⊗ Q1).

Moreover, the desired gain matrices are determined by
using the relations K1 = Q−1

2 Y2, K2 = X−1Y1 and
K3 = X−1Y3.

Proof With the use of Theorem 1, the proof of this the-
orem can easily be completed. More precisely, by con-
structing the same Lyapunov–Krasovskii functional
(14) and following a similar line proof of Theorem 1
with respect to system (27) together with an assump-
tion that Y3 = XK3, the matrix �̃ given in (28) can be

obtained directly. Thus, the proof of this theorem is not
displayed here. As a result, if the conditions in (13) and
(28) hold, then the composite system (27) is asymptot-
ically stable and satisfies a prescribed H∞ disturbance
attenuation level γ > 0. This concludes the proof. �
Remark 2 It should be noted that the analysis and con-
trol synthesis for synchronization problems of complex
dynamical networks have receivedmuch attention from
research communities in recent years. For instance, see
[4–7,13–15,17,19,21] and the references cited therein.
However, most of the existing works including the
above-cited ones concentrated on the issue of synchro-
nization in various kinds of complex dynamical net-
works only with single external disturbance. From the
viewpoint of practical applications, dynamical systems
are often affected bymultiple types of disturbances that
may have different properties. Therefore, it is indeed
important and interesting to examine the synchronous
behavior of complex dynamical networks in the pres-
ence of multiple disturbances. It should be noted that
the aforementionedworks could not provide the desired
system performance when dealing with multi-source
disturbances. To cope with this situation, composite
anti-disturbance control scheme has been developed
and successfully applied in many kinds of dynamical
systems [32–35]. However, to the best of our knowl-
edge, this is the first paper to consider the composite
control strategy to solve the synchronization problem
of complex dynamical networks with multiple distur-
bances.

Remark 3 Based on the idea of composite control
scheme, two synchronization control strategies, namely
memoryless and memory controllers, are proposed to
the considered complex dynamical networks in Theo-
rems 1 and 2, respectively. In particular, different from
the control design of (7), the past states’ information is
utilized to enrich the dynamics in the control design of
(24). It should be mentioned that the composite mem-
ory controller (24) reduces to the composite memory-
less controller (7)when the control gainmatrix K3 = 0.
However, the advantages of both control strategies will
be illustrated by conducting simulation studies in the
following section.

Remark 4 It is commonly known to research commu-
nities employing the LMI technique that when con-
sidering a large number of decision variables in the
proposed synchronization criterion, the computational
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1610 B. Kaviarasan et al.

burden certainly increases and also the required time
to solve the criterion is being very large. Therefore,
the number of decision variables should be a trade-off
between the aforementioned factors. Besides, the com-
putation of results proposed in Sect. 3 is luckily offline.
So by making use of the available convex optimization
software, it is very easy to solve the established LMI-
based synchronization criterion.

Remark 5 The proposed composite synchronization
control strategy is more effective in dealing with multi-
source disturbances when compared to the traditional
H∞ control strategy. This will be clearly depicted in
Sect. 5. However, this control strategy has the follow-
ing limitations: (i) the complete information about the
states of the network under consideration should be
required; (ii) it may not be robust when the network
takes into account uncertain parameters. These limita-
tions could be relaxed in our near-future works.

5 Demonstrative examples

Here, two simulation examples are provided to demon-
strate the advantage and effectiveness of the theoretical
results developed in the preceding section. Moreover,
a comparative analysis between the proposed method
and the traditional H∞ control method is presented,
which substantiates the superiority of the method put
forward in this paper.

Example 1 Let us consider the complex dynamical net-
work (1) with four identical nodes, and the correspond-
ing system matrices are chosen as follows:

A =
[−2.2 −0.3

0.1 −2.5

]
, D =

[
1 0
0 1

]
,

B =
[−1.5

2.5

]
,

Bw =
[
0.2
0.3

]
and Bg =

[
1 0
0 1

]
.

Also the outer-coupling matrix and the measured sys-
tem output matrix are, respectively, considered as

� =

⎡

⎢⎢⎣

−3 2 1 0
1 −2 1 0
0 2 −2 0
1 1 1 −3

⎤

⎥⎥⎦ and C = [
0.3 0

]
.

Table 1 External disturbances wi (t) and ηi (t) for i = 1, 2, 3, 4

wi (t) ηi (t)

w1(t) = 2
(1+t2)

η1(t) = 3e−0.5t sin(3t)

w2(t) = 1
(5+10t) η2(t) = sin(t)

(1+t2)

w3(t) = 4
(t+2) η3(t) = 3

(1+5t)

w4(t) = 0.1 sin(0.2t) η4(t) = sin(t)

In this example, the coefficientmatrices associatedwith
the exogenous system (2) are taken as follows:

Ad =
[

0 2
−2 0

]
, Bd =

[
0.01
0.02

]
and Cd = [

1 2
]
.

From the above values, it is easy to verify that the pairs
(A, B) and (Ad , BCd) are controllable and observable,
respectively.

The nonlinear time-varying function is selected as

g(xi (t))=
[−0.5xi1(t)+tanh(0.2xi1(t))+0.2xi2(t)

0.95xi2(t)−tanh(0.75xi2(t))

]

for all i = 1, 2, 3, 4, which undoubtedly satisfies the

matrices U =
[−0.5 0.2

0 0.95

]
and W =

[−0.3 0.2
0 0.2

]
.

Further, to check the feasibility of the obtained the-
oretical results, the remaining parameters’ values are
fixed as h1 = 1, h2 = 6.98, μ = 0.4, κ = 0.4,
γ = 0.9822, νa = 0.01 (a = 1, 2) and α = 1. In
what follows, based on the above values, the perfor-
mance of system (1) with respect to the controllers in
(7) and (24) is discussed separately.

Case (i) Performance under the memoryless controller
(7)

By resorting to the LMI control toolbox in MAT-
LAB, it can be verified that the established conditions
(12) and (13) in Theorem 1 have a feasible solution
for the aforementioned parameters’ values. Based on
which, the desired control gain matrices are computed
as

K1 =
[
0.3441 −0.2353
0.4486 −0.3184

]
and

K2 = [− 0.0115 − 0.2190
]
.

To conduct simulation study, the external distur-
bances acting on system (1) are chosen in Table 1.
The initial conditions are randomly selected as s(0) =
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Fig. 1 Closed-loop error trajectories exi (t) (i = 1, 2, 3, 4)
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Fig. 2 Error trajectories eδi (t) (i = 1, 2, 3, 4)

[5 5]T, x1(0) = [1 − 1]T, x2(0) = [2 − 2]T,
x3(0) = [3 − 3]T, x4(0) = [4 − 4]T, δ1(0) =
[15 − 15]T, δ2(0) = [−10 20]T, δ3(0) = [30 −
25]T and δ4(0) = [−30 30]T. Then, under the mem-
oryless controller (7) with the above-obtained gain
matrices, the synchronization error trajectories are
given in Fig. 1 and the estimation error trajectories
of external disturbances are plotted in Fig. 2. From
these figures, it is clearly revealed that the trajectories
of both error states tend to zero within a satisfactory
time interval. Further, to exhibit the efficiency of the
designed disturbance observer, the disturbance di (t),
its estimation d̂i (t) and the estimation error di (t)−d̂i (t)
(i = 1, 2, 3, 4) are depicted in Fig. 3. It can be easily

observed from this figure that the designed disturbance
observer works effectively. Besides that, a comparison
result is presented in the sequel, in which the overall
system output is compared under the proposed com-
posite control strategy and the traditional H∞ control
strategy, whose simulations are given in Figs. 4 and
5. After seeing these figures, it can be said that the
proposed control strategy has the ability to reject and
attenuate the multiple disturbances, whereas the H∞
control strategy is not appropriate to deal with the sys-
tems affected by multiple disturbances.

Case (ii) Performance under the memory controller
(24)
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Fig. 3 Disturbance estimation performance
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Fig. 4 System output under the proposed method

In this case, let us consider the same parameters’
values chosen in the previous case. Then, by solving the
convex optimization problem formulated in Theorem
2, it is easy to get the following feedback control gain
matrices:

K1 =
[
0.2709 −0.0884
1.0298 −0.3286

]
,

K2 = [
0.0056 −0.2327

]
and

K3 = [−0.1516 0.1817
]
.

In what follows, the performance of system (1) is
examined according to the control law (24) with the
new set of gain matrices mentioned above. For this pur-
pose, the initial conditions of associated systems’ states
and the external disturbances are taken the same in the
previous case. The corresponding simulation results are
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Fig. 5 System output under the H∞ method

presented in Figs. 6, 7, 8, 9 and 10. More specifically,
Figs. 6 and 7 display the synchronization error trajec-
tories and the estimation error trajectories of external
disturbances, respectively, wherein both set of error tra-
jectories converge to zero over a relatively short period
of time.As similar to the preceding case, the trajectories
of disturbance di (t), its estimation d̂i (t) and estimation
error di (t) − d̂i (t) (i = 1, 2, 3, 4) are plotted in Fig. 8,
where the constructed disturbance observer provides an
excellent estimation performance. In this case too, the
efficiency of the proposed control strategy is compared
with the well-known H∞ control strategy and the cor-
responding graphs are depicted in Figs. 9 and 10. It can
be realized from these figures that the control strategy
presented in this paper leads to achieving much better
performance than the H∞ one.
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Fig. 6 Closed-loop error trajectories exi (t) (i = 1, 2, 3, 4)
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Fig. 7 Error trajectories eδi (t) (i = 1, 2, 3, 4)
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Fig. 8 Disturbance estimation performance
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Fig. 9 System output under the proposed method
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Fig. 10 System output under the H∞ method
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Table 2 Maximum upper bound of h2 for different values of h1

h1 (Given) h2 (Estimated)
Theorem 1

h2 (Estimated)
Theorem 2

Proposed
method

1.0 6.9800 7.1288

1.5 7.3620 7.5258

2.0 7.7222 7.8790

2.5 8.0241 8.1841

3.0 8.2740 8.4369

3.5 8.4530 8.6293

4.0 8.5583 8.7497

As a conclusion, based on the discussions above, it
can be stronglymentioned that the system performance
under the composite memory controller is highly bet-
ter than that under memoryless composite controller.
In addition, since the time-varying delay h(t) exists
in the considered system (1), the maximum allowable
upper bound of h2 is estimated for different values
of h1 in respect of the aforementioned cases sepa-
rately, which are listed in Table 2. From these table
values, it can be identified that the proposed method
via the composite memory control law yields good
results than those via the memoryless one. There-
fore, it is of great significance to consider the con-
trol strategy with memory property for delayed com-
plex dynamical networks as well as time delay sys-
tems.

Example 2 In this example, five nodes are considered
in the network (1) and each node is viewed as the well-
known Chua’s circuit. The dynamics and the system
parameters of the Chua’s circuit can be seen in [38]
and are given by

ẋ = β1(y − f (x)),

ẏ = x − y + z,

ż = −β2y, (29)

where [x, y, z] ∈ R
3, β1 = 9, β2 = 14.28 and

the nonlinear function is chosen as f (x) = q2x +
0.5(q1 − q2)(|x + 1| − |x − 1|) with q1 = −1/7 and
q2 = 2/7. Now the dynamics (29) can be expressed
in the compact form as (1) with the following parame-
ters:

A =
⎡

⎣
−β1q1 β1 0

1 −1 0
0 −β2 0

⎤

⎦ , Bg =
⎡

⎣
−β1(q1 − q2)

0
0

⎤

⎦

and g(xi (t)) = 0.5(|xi1(t) + 1| − |xi1(t) − 1|)
for all i = 1, 2, 3, 4, which belongs to the sector
[0, 1].

The remaining system matrices of (1) are taken
as

B =
⎡

⎣
1
0
0

⎤

⎦ , Bw =
⎡

⎣
0.2
0.3
0.1

⎤

⎦

and C = [
0.3 0.4 0.1

]
.

The inner- and outer-coupling matrices of the network
(1) are, respectively, selected as follows:

D = 0.25I3 and � =

⎡

⎢⎢⎢⎢⎣

−2 1 0 0 1
1 −3 1 0 1
0 1 −2 1 0
0 0 1 −2 1
1 1 0 1 −3

⎤

⎥⎥⎥⎥⎦
.

Also, the coefficient matrices of the exogenous system
(2) are assumed as

Ad =
[

0 5
−5 0

]
, Bd =

[
0.5
0.8

]
and Cd =[

1 2
]
.

In what follows, the results proposed in Theorem 2
are applied to accomplish the synchronization of the
network (1). For this, the scalars involved in Theo-
rem 2 are chosen as h1 = 0.25, h2 = 3.2, μ = 0.3,
κ = 0.2, γ = 0.2, ν1 = 0.1, ν2 = 0.001 and
α = 1.

According to the values considered above, the
matrix inequalities (13) and (28) are solved under
which the disturbance observer and the memory state
feedback control gains are obtained as

K1 =
[−162.0191 97.8251 30.5621

−850.4832 509.9797 171.0223

]
,

K2 = [−62.7094 −1.8027 −0.1965
]

and

K3 = [
0.1150 −0.0141 −0.0030

]
, respectively.

For the simulation purposes, the initial states’ val-
ues are randomly selected as s(0) = [−0.2 −
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Fig. 11 Synchronization trajectories of xi (t) (i = 1, 2, 3, 4, 5) and s(t)
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Fig. 12 Disturbance estimation error trajectories eδi (t) (i = 1, 2, 3, 4, 5)

0.6 0.2]T, x1(0) = [−0.1 0.01 − 0.1]T, x2(0) =
[0.2 0.05 0.1]T, x3(0) = [−0.2 − 0.1 0.05]T,
x4(0) = [0.5 − 0.05 − 0.2]T and x5(0) =

[−0.3 0.1 − 0.15]T. Further, the external distur-
bances acting on system (1) are chosen as wi (t) =
i/(1 + t2) and ηi (t) = sin(t)/(i + t2) for i =
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1, 2, 3, 4, 5. Now simulations are carried out under the
control law (24) with the obtained gain values. The
synchronization trajectories are depicted in Fig. 11,
where the entire states of network trace the state of
prescribed isolated node within an acceptable time
period. Figure 12 provides the error trajectories asso-
ciated with the disturbance estimation, which shows
that the disturbance observer used in this study effec-
tively estimates the disturbances performing in the
input port from the beginning itself. To present a
comparative analysis between the proposed method
and the H∞ control method, the trajectories of the
network output are plotted in Fig. 13, where it is
clearly exhibited that the method proposed in this
study is too effective and better than the existing H∞
one. In addition, the phase portrait graph of the con-
sidered Chua’s circuit is given in Fig. 14 to view
its chaotic behavior. Overall, this simulation exam-

ple confirms the developed theoretical results in this
paper.

Remark 6 It is easily observed from the simulation
results of Examples 1 and 2 that the composite anti-
disturbance control scheme proposed in this paper pro-
vides a good flexibility for the system design and
significantly improves the control performance when
compared with the conventional H∞ control scheme.
Therefore, the results developed in this paper are more
general and superior than those by the existing H∞
control method.

6 Conclusion

In this paper, the problem of asymptotic synchroniza-
tion of delayed coupling complex dynamical networks
with multiple disturbances has been investigated by
developing a composite control strategy. Based on the
Lyapunov–Krasovskii functional method, the required
synchronization criteria have been derived by employ-
ing theWirtinger-based integral inequality. Under such
criteria, two types of composite control laws have been
designed according to the information about consid-
ered system states. Two numerical examples with sim-
ulation results have been furnished to exhibit the effi-
ciency and superiority of the designed control schemes.
It has been revealed from the simulations that the pro-
posed control schemes not only guarantee the asymp-
totic synchronization of the considered network but
also reject one kind of disturbance and attenuate the
influence of another disturbance input acting on the
control channel. Thus, the developed results in this
paper might have some potential benefits from the
practical perspectives. As a direction for future work,
the control method developed in this paper can be
extended to stochastic complex dynamical networks
with multiple couplings under the output feedback
approach.
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