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Abstract Introduction of stiffness nonlinearities to
broaden the frequency bandwidth of vibratory energy
harvesters has the adverse influence of complicating
the response behavior of the harvester. As such, unlike
linear energy harvesters, for which direct performance
metrics can be easily developed, it is not always easy
to develop metrics to assess the performance of nonlin-
ear energy harvesters. One particular issue arises when
the harvester operates in its chaotic regime resulting in
an unpredictable response, under which the harvester’s
performance is hard to assess. In this paper, we present
a statistical technique to estimate the charging time of
a battery being charged by a chaotic vibratory input.
The proposed approach, which accounts for the pres-
ence of a rectifier circuit, a buck converter, and the
dependence of the battery voltage on the state of charge,
only requires the knowledge of the probability density
function of the open-circuit voltage of the harvester.
Using the proposed technique, it is also possible to
obtain the optimal duty cycle of the buck converter.
Results of the proposedmethodologywere compared to
numerical data generated using MATLAB’s Simscape
toolbox demonstrating excellent agreement. Not only
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does the proposed technique provide a valuable tool to
assess performance of a chaotic energy harvester, but it
can also be easily applied to other chaotic and random
energy sources.
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1 Introduction

The advent of vibratory energy harvesting as an effec-
tive means for harnessing energy to maintain low
power consumption electronics has created various new
research problems worthy of investigation. Most of
such problems deal with finding the optimal conditions
to maximally transfer energy from a vibration source
to an electric load. Examples include: (i) active and
passive tuning of the mechanical/electrical properties
of the harvester to achieve resonance coupling between
the source and the load [1–6], (ii) enhancing the elec-
tromechanical properties of the transduction materi-
als [7,8], (iii) designing charging circuits capable of
dealing with very low power inputs [9–11], and (iv)
understanding the response of the harvester under ran-
dom and non-stationary excitations [12–20].

One particular research thrust is focused on devis-
ing means to improve the bandwidth of the harvester
and reduce its sensitivity to variations in the excitation
characteristics [21–26]. The motivation behind such
research stems from a shortcoming in the very funda-
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mental operation principle of the harvester itself. In par-
ticular, typical energy harvesters are linear electrome-
chanical oscillators that operate based on the principle
of resonance. The amplitude of the harvester’s reso-
nance response drops sharply when the excitation fre-
quency shifts away from the harvester’s natural fre-
quency. Thus, operating the harvester outside the reso-
nance bandwidth reduces its already small power out-
put even further worsening the energy harvesting effi-
ciency. This, combined with the fact that most excita-
tion sources have non-stationary characteristics, neces-
sitates the design of energy harvesters with a broader
effective bandwidth.

An efficacious approach to broaden the effective
bandwidth of the harvester and reduce its sensitivity
to variations in the excitation characteristics lies in
intentionally introducing stiffness nonlinearities into
the harvester’s restoring force [21]. Because stiffness
nonlinearities result in a response frequency which
depends on the response amplitude, introducing non-
linearities can extend the coupling between the envi-
ronmental excitation and the harvester to a wider range
of frequencies. Consequently, unlike linear energy har-
vesters, the resulting response amplitude of a nonlinear
energy harvester does not drop sharply as the excitation
frequency shifts away from the resonance frequency of
the harvester.

However, nonlinear energy harvesters have their
own shortcomings. In particular, the nonlinearity com-
plicates the response behavior of the harvester because
it produces regions in the frequency domain where
coexisting responses with competing basins of attrac-
tion exist. Therefore, depending on the initial condi-
tions, the harvester can end up producing very different
levels of power for the same exact excitation parame-
ters. Moreover, the nonlinearity can result in chaotic
responses and bifurcations that occur as the excitation
parameters vary. As such, unlike linear energy har-
vesters, for which direct performance metrics can be
easily developed, it is not always easy to develop met-
rics to assess the performance of nonlinear energy har-
vesters.

One particular problem arises when the harvester
operates in its chaotic regime resulting in an unpre-
dictable yet bounded response. These chaotic responses
are a very common occurrence for nonlinear energy
harvesters with bi-stable characteristics. It has been
shown that, following a cascade of period doubling
bifurcations, a chaotic region appears over a relatively

wide excitation frequency bandwidth for moderate lev-
els of excitation [24,27,28]. While many studies in
the literature focused on understanding the response
of an energy harvester to random inputs [29–33], to the
authors’ knowledge none dealt with understanding the
response when the response is deterministic yet chaotic
in nature. It is therefore the goal of this paper to estab-
lish a metric to assess the performance of a chaotic
energy harvester.

In our approach of this paper, the charging time of a
storage device, i.e., a battery, is chosen as a metric for
performance assessment. In the process, we will devise
a newmethodology bywhich the charging timeof a bat-
tery can be estimated solely based on the characteristics
of the chaotic open-circuit voltage of the harvester. The
proposed approach accounts for the presence of a rec-
tifier circuit, a buck converter, and the dependence of
the battery voltage on the state of charge.

To achieve this goal, the rest of the paper is orga-
nized as follows: Sect. 2 provides an overview of the
system components, i.e., the harvester, the rectifier, the
buck converter, and the battery. Sect. 3 investigates
the open-circuit response of the harvester. Section 4
demonstrates the process of estimating the charging
time of the battery for a single-period harmonic input.
Section 5 devises a methodology to estimate the charg-
ing time for a chaotic signal. Finally, Sect. 6 presents
the pertinent conclusions.

2 Overview of the system components

Figure 1 shows a typical harvesting system that con-
sists of four main components: a harvester, a full-wave
rectifier, a buck converter, and a battery. The harvester
transforms external harmonic vibrations into an alter-
nating electric current. The rectifier and the filter capac-
itor, CR, rectify the incoming electrical signal from the
harvester and reduce the variance of the signal so that
it becomes closer to a DC current source. The result-
ing output is fed into the buck converter, which max-
imizes the transferred power to the load by matching
the impedances of the source and load. This is achieved
by stepping down the voltage and stepping up the cur-
rent. The output current from the buck converter is then
used to charge the battery. In what follows, we pro-
vide more detailed discussions of each system compo-
nent.
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Fig. 1 A schematic of the
harvester and associated
electric components
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2.1 Harvester

While the analysis presented in this paper can be
applied to any energy source with a chaotic output;
here we focus on vibration types of energy harvesting.
The harvester used in this paper is the bi-stable axi-
ally loaded piezoelectric harvester analyzed byMasana
and Daqaq in 2011 [27]. The harvester, shown in
Fig. 2, has a bi-stable potential function, U (x), with
two potential wells separated by a potential barrier.
As such, the harvester can perform intra- and inter-
well motions and has been shown to exhibit complex
dynamic responses, which includes inter-well chaos.
The harvester consists of a clamped–clamped alu-
minum beam with two piezoelectric patches attached
to either side of its surface. The clamped boundary
conditions were created using carefully designed alu-
minum clamps with one of the clamps placed on a lin-
ear sliding bearing such that it can be used to exert
an axial load. The rest of the geometric and material
properties of the axially loaded harvester are listed in
Table 1.

In Masana’s and Daqaq experiments, the beam was
subjected to a compressive static axial loading of mag-
nitude, P = 39.3N, which was beyond the critical
buckling load of the beam, Pcr = 37.6N. The static
load forced the beam to buckle into a nonzero static
equilibrium position. To simulate the environmental
vibrations, the whole setup was then subjected to a
transverse dynamic acceleration, ẍb(t), generated by
an electrodynamic shaker. In response to these exci-
tations, the beam starts to perform finite amplitude
oscillations about the static position. Depending on
the magnitude and frequency of the input accelera-
tion, the beam would either undergo small oscilla-

tions about the buckled position (intra-well motion)
or large amplitude snap-through motion between the
static equilibria (inter-well motion). These oscilla-
tions produce a dynamic strain in the piezoelectric
patches, which, in turn, produces an electric volt-
age, Vp, across the terminals of the piezoelectric ele-
ments.

Under the assumptions that the static mid-span
deflection of the beam is small and that the external
excitation frequency is always close to the frequency
of the lowest vibration mode, which is assumed to be
free of any internal resonances or an external combi-
nation resonance with any of the other modes, Masana
and Daqaq [27] showed that the dynamics of the mid-
span deflection of the beam can be well approximated
by using a damped bi-stable oscillator whose dynamics
is given by:

mẍ + cm ẋ + dU

dx
+ αVp = −mλẍb, (1)

where x represents the mid-space deflection of the
beam, m is the effective mass of the harvester, cm
is a linear mechanical damping coefficient, U (x) =
− 1

2ax
2 + 1

4bx
4 is the mechanical potential energy of

the beam, a and b are constants determined experi-
mentally, α is the piezoelectric electromechanical cou-
pling coefficient, Vp is the voltage generated across the
piezoelectric capacitor, Cp, and λ is a constant rep-
resenting the projection of the base acceleration, ẍb,
onto the first vibration mode. As shown in Fig. 1, the
voltage, Vp, depends on the effective dynamics of the
circuit. Under open-circuit conditions, CpVp = α ẋ , or
Vp = Voc = αx/Cp. The current, is , generated by the
harvester in the absence of an external electric load is
equal to α ẋ .
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Fig. 2 Schematic
representation of the
bi-stable harvester

Table 1 Material and geometric properties of the harvester

Parameter (symbol) Value

Structural member

Young’s modulus (Es ) 69GPa

Mass density (ρs ) 2700 kg/m3

Length (L) 15.00 × 10−2 m

Width (bs ) 1.32 × 10−2 m

Thickness (ts ) 6.35 × 10−4 m

Piezoelectric member

Young’s modulus (Ep) 62GPa

Mass density (ρp) 7800 kg/m3

Length (L1) 1.27 × 10−2 m

Length (L2) 3.43 × 10−2 m

Width (bp) 1.27 × 10−2 m

Thickness (tp) 1.90 × 10−4 m

Permittivity (ε̂) 3800

Piezoelectric constant (e31) −19.84 cm−2

Using the parameters listed in Table 1, the coeffi-
cients in Eq. (1) can be calculated as following [27]:
m = 0.0232159 kg, a = −6.8712 × 104 N/m, b =
7.6135× 1010 N/m3, α = 2.24503× 10−4 N/V, cm =
0.2 kg/s, and Cp = 4.61487 nF.

2.2 Rectifier

A full-wave rectifier typically with a capacitor CR at
its output rectifies the alternating signal generated by
the harvester. Here each solid-state diode in the recti-
fier is assumed to have a cutoff voltage of 0.7V and
a negligibly small series resistance. The value of the
filter capacitor, CR, is chosen to be sufficiently large
(CR = 5µF) such that it has a very slow discharge
rate so that the rectified voltage is almost constant. The
series resistance of the capacitance is assumed to be
negligible.

2.3 Battery

While the analysis presented in this paper is valid
for any type of battery, a GMB-300910 rechargeable
lithium ion battery with a capacity Q = 12mAh was
used here for the purpose of simulating the results
presented throughout this paper. The cutoff voltage
of the cell is 3V while the maximum charge volt-
age is 4.23V. The change of the open-circuit voltage
of the battery, VB, is governed by a polynomial func-
tion of the state of charge z; VB(z) = ∑N

i=0 βi zi . For
this specific battery, the best polynomial fit yielded
VB(z) = 3.0+ 3.31496z − 6z2 + 3.9z3. The battery is
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modeled using an equivalent electric circuit consisting
of an open-circuit voltage connected in series to a inter-
nal resistance R0 = 0.35�, which is used to reflect the
instantaneous drop of terminal voltage when a current
passes through the cell. Since battery polarization hap-
pens at a very slow time scale when compared to the
harvester’s dynamics, its influence on the dynamics is
neglected.

The battery draws a current ib from the buck con-
verter causing charges to accumulate in the cell accord-
ing to ż = ηc

Q z, where ηc = 0.98 is the Columbic
efficiency of the cell. The accumulation of charges
causes the cell voltage, VB, to increase as stated ear-
lier. This process continues until the battery is fully
charged when z ≈ 1. Using a constant direct current of
12mA, this battery was shown to have a charging time
of 2.5h [34].

2.4 Buck converter

A buck converter is implemented to maximize the
power transfer from the harvester to the battery by
matching the impedance of both. This is achieved by
stepping down the voltage of the rectifier output and
stepping up the associated current. This process is
essential, or otherwise, a large portion of the energy
generated by the harvester is reflected back to the
source. In particular, a piezoelectric energy harvester
has a large terminal voltage but produces very little
current. Only a small portion of the voltage is needed
to overcome the rectifier and battery voltage. The buck
converter steps down the voltage to the necessary volt-
age while using the resulting power to boost up the cur-
rent, and therewith improves the power transfer. For an
ideal buck converter, the following holds:

VBib = VRir , VB = kVR, ib = 1

k
ir (2)

where, as shown in Fig. 1, ib and ir are, respectively, the
battery and rectifier currents; VB and VR are, respec-
tively, the battery and rectifier voltages, and 0 < k < 1
is the voltage conversion ratio, which is determined by
the duty cycle of the converter. k is the key parameter
to be optimized for maximum power transfer.

Fig. 3 Bifurcation maps of a the mid-span deflection of the
beam and b the associated open-circuit voltage versus the exci-
tation frequency. Dashed lines represent the equilibrium points
of the harvester. Here, BL denotes the large orbit branch of solu-
tions, Br denotes the small-orbit branch, CH denoted chaos, pd
denotes a period doubling bifurcation, and cf denotes a cyclic-
fold bifurcation

3 Open-circuit response

The response of the harvester for open-circuit condi-
tions was first simulated using a harmonic base accel-
eration of magnitude ẍb = 13m/s2. Bifurcation maps
of the mid-span deflection x of the harvester and the
associated open-circuit voltage Voc versus the excita-
tion frequency are depicted in Fig. 3. The maps were
obtained by integrating Eq. (1) at each excitation fre-
quency for sufficiently long time, which allows the sys-
tem to reach steady state, then recording the points at
which the velocity vanishes. To obtain the open-circuit
voltage, the harvester was disconnected from the bat-
tery and the piezoelectric resistance was assumed to
approach infinity. This results in an open-circuit volt-
age Voc = αx/Cp.

It is evident that, at this acceleration level, the har-
vester performs complex dynamic responses charac-
terized by coexisting intra- and inter-well motions.
Depending on the initial conditions in the range of
frequencies 40–46Hz and 52–60Hz, the harvester can
either perform small periodic oscillations, Br , within a
single potential well or large periodic oscillations, BL,
between the two wells. Again, depending on the initial
conditions, in the range of frequencies 44–51Hz, the
harvester can either performcross-well chaoticmotions
(CH) or large amplitude inter-well motions, BL. The
size of the chaotic window is loosely bounded by two
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Fig. 4 Time histories of the
harvester’s steady-state
displacement for a harmonic
base acceleration of
ẍb = 13m/s2 magnitude
and different excitation
frequencies a 53Hz, b
52Hz, and c 50Hz

bifurcations: a cycling fold (cf) bifurcation near 44Hz
and a period doubling bifurcation (pd) near 52Hz.

In this system, transition to chaos occurs when the
intra-well response undergoes a sequence of period
doubling bifurcations as the excitation frequency is
reduced. For instance, as shown in Fig. 4a, at an exci-
tation frequency of 53Hz the response is periodic with
a frequency matching the excitation frequency. As the
excitation frequency is reduced to 52Hz, the response
period doubles as shown in Fig. 4b, and the harvester’s
response becomes periodic with a frequency that is half
the frequency of the excitation. Further reduction in
the excitation frequency results in a cascade of period
doubling bifurcations that ultimately results in a chaotic
response as shown in Fig. 4c for an excitation frequency
of 50Hz. The chaotic response continues to exist for a
range of frequencies down to an excitation frequency of
around 46Hz—except for a small window of periodic
responses near 48Hz. The chaotic attractor ultimately
disappears in a boundary crisis near an excitation fre-
quency of 46Hz [35].

4 Periodic oscillations

As stated earlier, our main objective is to estimate the
charging time of the battery using characteristic data
of the open-circuit voltage of the harvester. We first

treat the simplest case where the harvester’s mechani-
cal oscillations and, hence, the generated input current
is (= α ẋ) is a single-period periodic function. Here,
is = Io sin(ωt), where Io and ω are the amplitude and
frequency of the generated current, respectively. When
the piezoelectric element undergoes strain, charges of
equal magnitude and opposite sign build on either
side of its surface resulting in a voltage difference
across its electrodes. Initially, this voltage difference,
Voc = Io

Cpω

∫ t
0 sin(ωτ)dτ , is too small to overcome the

threshold voltage, VTH, which is equal to the activation
voltage of the diodes, 2VD, plus the rectifier voltage,
VR, i.e., VTH = 2VD + VR. As a result, an internal cur-
rent loop, i p, forms within the piezoelectric element.
During that time, the voltage across the piezoelectric
element, Vp, is equal to the open-circuit voltage, Voc.

When the open-circuit voltage Voc overcomes the
threshold voltage VTH, a current ir flows through the
full-wave rectifier and, as shown in Fig. 5a, the voltage
across the piezoelectric element, Vp, becomes equal to
the threshold voltage, VTH. During this current conduc-
tion period, the current ir is approximately equal to the
input current is . Once Voc drops below VTH, the cur-
rent ir drops back to zero for a time period, tcr, wherein
−VTH < Voc < VTH. When Voc drops below −VTH,
the oppositely polarized diodes are activated again and
Voc becomes equal to −VTH. During this period, the
current ir is equal to negative is as shown in Fig. 5b.
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Fig. 5 Variation in a
voltage and b current with
time for is = 1 × 10−4

sin(100π t)Amp

To calculate the time required to fully charge the
battery, we first find ib. Following Eq. (2), the mean
current 〈ib〉 can be approximated using the mean value
of ir as:

〈ib〉 = 〈ir 〉
k

= π

ωk

∫ π/ω

tcr
|is |dt, (3)

where tcr is the time interval when the current ir = 0.
This time interval corresponds to −VTH < Voc < VTH
and can be calculated by knowing that tcr is the time
required for the voltage, Voc, to rise from−VTH to VTH.
Knowing that

Voc = 1

Cp

∫ t

0
Io sinωτdτ (4)

and letting Voc = VTH, we obtain

cos(ωtcr) = 1 − CpωVTH
Io

. (5)

Substituting Eq. (5) into Eq. (3), we obtain

〈ib〉 = 2

kπ
(2Io − CpωVTH). (6)

The time required to fully charge the battery can then
be obtained by using the state of charge equation

ż = ηc

Q
〈ib〉 = 2ηc

Qkπ
(2Io − CpωVTH). (7)

Upon separating the variable, z, from time, t , and inte-
grating, we obtain the following expression for the
charging time

t f =
∫ 1

0

πkQ

2ηc(2Io − CpωVTH)
dz. (8)

Bearing in mind that VTH = 2VD + VB(z)/k is a func-
tion of the state of charge, the previous integral can only
be computed analytically for special cases of VB(z).
When VB(z) is constant, Eq. (8) reduces to

t f = πQ

2ηc(2Io − Cpω(2VD + VB
k ))

. (9)

The charging time can be further expressed in terms of
the open-circuit voltage, Voc, by knowing that Voc =
1

Cpω
Io. This yields

t f = πQ

2ηcCpω(2(Voc − VD) + VB
k ))

. (10)

Similarly, for battery voltage that depends linearly on
the state of charge, i.e., VB(z) = V1 + V2z, we obtain
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t f = πkQ

2ηcV2Cpω
ln

(
2k(Voc − VD) − V1)

2k(Voc − VD) − V1 − V2

)

,

(11)

and for a quadratic dependence VB(z) = V1 + V2z +
V3z2,

t f = πkQ

ηcCpω

(

tan−1 V2√
4V3(V1−2k(Voc−VD))−V 2

2

− tan−1 V2+2V3√
4V3(V1−2k(Voc−VD))−V 2

2

)

√
4V3(V1 − 2k(Voc − VD)) − V 2

2

. (12)

For higher-order polynomial functions of z, it becomes
more efficient to integrate Eq. (8) numerically to obtain
t f .

To optimize the power flow form the harvester to
the battery, it is essential to obtain the optimal voltage
conversion ratio of the converter. To this end, we maxi-
mize the mean value of the battery current with respect
to k, which yields

kopt = 2VB(z)

Voc − 2VD
. (13)

The battery charging time obtained analytically is
compared to numerical results obtained by simulat-
ing the response of the combined system using the
Simpscape toolbox in MATLAB. Results are depicted
in Fig. 6 illustrating excellent agreement between the
model and the simulations. Clearly, it shows that there
exists an optimal voltage conversion ratio, kopt, at
which the charging time isminimized. On either side of
the kopt, the charging time increases rapidly. It can also
be noted that underestimation of the optimal voltage
conversion ratio results in a much sharper increase in
the charging time than overestimation. Thus, it is much
safer to operate the converter at voltage conversion
ratios that are slightly higher than the optimal value.

5 Chaotic signal

Estimation of the charging time for chaotic signals
requires knowledge of the expected value of the cur-
rent, ib, which enters the battery. As shown in Fig. 7,
the current ib take two values: a value of zero when
−VTH < Voc < VTH, and the value of |is | other-
wise. Since the signal is chaotic, the exact timings of

those time intervals are unknown. Instead, we can rely
on the response statistics of the open-circuit voltage,
Voc, to estimate the charging time. To this end, we first
assume that the chaotic open-circuit voltage signal can
be described by a stationary random variable whose
probability distribution function (PDF) is obtained by

using a sufficiently long portion of the chaotic signal
itself [36]. In other words, we use a portion of the
time history of the open-circuit voltage to estimate the
PDF, P(Voc), of the chaotic voltage. Once P(Voc) is
obtained, the probability that the open-circuit voltage
is in the interval−VTH < Voc < VTH can be calculated
using

p(−VTH < Voc < VTH) =
∫ VTH

−VTH
P(Voc)dVoc. (14)

Since chaos in the system emanates from bi-stability,
the PDF of the voltage signal exhibits a bimodal distri-
bution that can be constructed by adding two or more
normal distributions as follows:

P(Voc) =
n∑

i=1

αi
√
2πσ 2

i

exp

(

− (Voc − mi )
2

2σ 2
i

)

, (15)

Fig. 6 Battery charging time for a base acceleration of 13m/s2

and a frequency of 40Hz. The solid line represents analytical
data while the markers represent numerical simulation results
obtained via the Simscape toolbox in MATLAB
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Fig. 7 Variation in the voltage Vp and currents is and ib with
time. Shaded time intervals represent voltages when −VTH <

Voc < VTH and ib = 0

Fig. 8 Probability density function of the chaotic signal for dif-
ferent numbers of excitation cycles

where mi and σi are, respectively, the means and vari-
ances of the normal distributions and αi are weighting
factors. Using the software Mathematica, time histo-
ries of the open-circuit voltage were used to construct
a best-fit PDF following Eq. (15). In Fig. 8, the conver-
gence of the PDF of the open-circuit voltage was stud-
ied as the number of excitation cycles used in the esti-
mation of the PDF is increased. Startingwith a small set
which contains data from the first 250 excitation cycles
N = 250, the length of the data sets was increased until
convergence was achieved. We noticed that there is a
negligible change in the PDF beyond N = 4000. At
this value, we note that the PDF becomes almost sym-
metric about Voc = 0, which is expected given that the
bi-stable potential function describing the dynamics of
the harvester is symmetric about the unstable equilib-
rium point.

Fig. 9 Intervals where the voltage is in the region −VTH <

Voc < VTH. Light shades represent the case when k = 0.1 while
dark shades represent the case when k = 1

Once the PDF is obtained, the probability that the
voltage is in the interval −VTH < Voc < VTH can be
computed using Eq. (14). The average current in the
battery can then be obtained using

〈ib〉 = k(1 − p(−VTH < Voc < VTH))Iavg, (16)

where Iavg is the mean of |is | in the time intervals
when the open-circuit voltage satisfies |Voc| > VTH.
A crude way to estimate Iavg is to assume that it can
be approximated by the mean of |is | over the whole
data set, i.e., Iavg ≈ 〈|is |〉. This assumption is accurate
when the time intervals where −VTH < Voc < VTH
are extremely small, which is the case when k is close
to one. However, as shown in Fig. 9, when k becomes
small, the time intervals where −VTH < Voc < VTH
become longer resulting in a larger error in the assump-
tion that Iavg can be approximated by using the mean
of |is(t)| over the whole data set.

To overcome this issue, we propose an approach to
estimate Iavg as a function of k based on our under-
standing of how the open-circuit voltage, Voc, and the
generated current, is , are related. Because of the capaci-
tive nature of the piezoelectric transducer,Voc and is are
90◦ out of phase. Thus, as shown in Fig. 10, when the
voltage is large, the current is small, and vice versa. To
obtain Iavg(k), the current, is , and voltage, Voc, are first
assumed to be purely sinusoidal of the following form:

is = Io cos θ, Voc = Vo sin θ, (17)

where Io and Vo are the amplitudes of the current and
voltage, respectively. The values of Io and Vo are not
arbitrary, but are chosen such that, on average, the
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Fig. 10 Probabilistic sinusoidal model of is and Voc for two different VTH

Fig. 11 PDFs of a the
current, is , and b the voltage
Voc for ẍb = 13m/s2 and an
excitation frequency of
50Hz

assumed sinusoidal form is a best representation of the
original chaotic signal. To find Io and Vo, we carefully
inspect the PDF of the current and voltage as shown
in Fig. 11. Note that while the PDF of the voltage is
bimodal, the PDF of the current follows a normal dis-
tribution. Thus, for the current, choosing Io to be the
mean of |is |, i.e., Io = 〈|is |〉 is a good assumption to
capture the essence of the current signal on average.
On the other hand, since Voc follows a bimodal distri-
bution, using 〈|Voc|〉 to estimate Vo will underestimate
the real contribution of the input voltage. In such a sce-
nario, it makes more sense to choose Vo such that the
average power of the sinusoidal signal is equal to the
average power of the chaotic signal. This yields

Vo = π

2

〈|Vocis |〉
〈|is |〉 . (18)

Next to estimate Iavg as function of k, we find the
phase angle, θTH, at which the current is flows to the
battery. This occurs when |Voc| ≥ VTH (shaded regions
in Fig. 10). Thus, the phase angle can be expressed as

sin θTH = VTH
Vo

. (19)

The average current Iavg during the current conduction
time can then be calculated as

Iavg = 1

π/2 − θTH

∫ π/2

θTH

Io cos θdθ (20)

= 〈|is |〉
π/2 − θTH

(

1 − VTH
Vo

)

. (21)

Figure 12 depicts variation of the average current
ratio, Iavg/〈|is |〉, with the voltage conversion ratio k. It
can be clearly seen that the variation reflects the desired
trend, that is, for large values of k, Iavg approaches
〈|is |〉, while for small values of k, Iavg is much smaller
than 〈|is |〉. When VTH is larger than Vo, Iavg is zero and
no current flows from the harvester to the battery.

Using Eq. (16) in conjunction with Eq. (21), we
estimate the charging time, t f = πQ/(ηc〈ib〉), of
the battery for an excitation frequency of 50Hz and a
base acceleration of 13m/s2. These specific excitation
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Fig. 12 Variation in the
average current ratio with
the duty cycle, k, for
Vo = 60V, VB = 3.7V and
VD = 0.7V
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Fig. 13 Charging time of the battery as function of the duty cycle
k. Dashed lines represent results obtained using Iavg = 〈|is(t)|〉
while the solid line represents results obtained using Eq. (21).
Markers represent data obtained usingMATLAB Simscape tool-
box

Fig. 14 Variation in the charging time with the duty cycle for
the different PDFs shown in Fig. 8

parameters yield a chaotic response as shown earlier in
Fig. 3. The PDF of the open-circuit voltage was con-
structed using 4000 excitation cycles resulting in the
bimodal distribution shown in Fig. 8. The PDFwas then
used to calculate the charging time as function of the
duty cycle, k, of the converter. Results shown in Fig. 13
depict the charging time using Iavg = 〈|is(t)|〉 (dashed
line) and as obtained using Eq. (21). It can be clearly
seen that Eq. (21) results in a charging time that is in
very good agreement with the numerical simulations
(markers) obtained by MATLAB Simscape toolbox.
On the other hand, results based on the average current,
〈|is(t)|〉, clearly underestimate the charging time of the
battery. It is also worth noting that the numerical sim-
ulations obtained using the Simscape toolbox are com-
putationally expensive due to the discrete nature of the
diodes. Thus, the analytical approach described in this
paper provides an effective technique to estimate the
charging time especiallywhen knowing that the PDF of
the chaotic signal will need to be generated only once.

To study the sensitivity of the results to the shape of
the PDF, we generated the curves of the charging time
for the PDFs shown in Fig. 8. As shown in Fig. 14,
it appears that the charging time is not very sensitive
to variations in the shape of the PDF. While the PDF
associatedwith the 250 cycles data set looks very differ-
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(a) (b)

Fig. 15 aProbability density function of the chaotic open-circuit
voltage, Voc, as obtained for different applied harmonic base
accelerations. Numbers at the end of the arrows pointing to each

PDF represent the magnitude and frequency of the base acceler-
ation at which the chaotic open-circuit voltage was obtained. b
Variation of the charging time with k

ent from that associated with N = 4000, the charging
time curves are similar with a maximum difference of
about 7% between the two curves. We also generated
the charging time curves for different chaotic signals
obtained using different excitation levels, as shown in
Fig. 15. When comparing the results obtained using
the chaotic signal to those shown in Fig. 6 for a peri-
odic signal, it becomes evident that, at the optimal duty
cycle, the charging time of the battery is at least four
times longer when using the chaotic input.

The optimal voltage ratio, kopt, associated with the
chaotic input can be obtained by maximizing the cur-
rent ib as given by Eq. (16) with respect to k. The pro-
cess, which involves setting the derivative of ib with
respect to k to zero, yields a complex nonlinear equa-
tion for kopt that can only be solved numerically. For
the case involving the (13 m/sec2, 50Hz) base acceler-
ation, the numerical optimization yields kopt = 0.145.
A simpler, yet still accurate way of estimating kopt is
to use Eq. (13), but with Voc = Vo as obtained using
Eq. (18) that is;

kopt = 2VB(z)

Vo − 2VD
. (22)

Equation (22) yields kopt = 0.152 (4% error).

6 Conclusion

In this paper, we devised a methodology to estimate the
time required to charge a battery via a chaotic input.

The proposed approach, which accounts for the rec-
tifier circuit, a buck converter, and the battery depen-
dence on the state of charge, requires only the knowl-
edge of the chaotic open-circuit voltage of the har-
vester and the design parameters of the harvesting cir-
cuit. Results obtained using the proposed methodology
agree very well with numerical simulations obtained
using the Simscape toolbox in MATLAB. Using the
new approach, we were able to estimate the optimal
voltage conversion ratio of the buck converter as func-
tion of the battery voltage. Results also illustrate that
charging the battery using a chaotic input is not very
efficient and takes longer time when compared to peri-
odic inputs. Not only does the proposed technique pro-
vide a valuable tool to assess performance of a chaotic
energy harvester, but it can also be easily applied to
other chaotic and random energy sources.
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