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Abstract Quasi-satellite orbits are of great interest
for the exploration of planetary moons because of their
dynamical features and close proximity with respect to
the surface of scientifically relevant objects like Pho-
bos and Deimos. This paper explores the equations
of the elliptical Hill problem, offering a new analyti-
cal insight into the long-term evolution of mid-altitude
quasi-satellite orbits. Our developments are based on
the Yamanaka–Ankersen solution of the Tschauner–
Hempel equations and capture the effects of the sec-
ondary’s gravity and orbital eccentricity on the shape
and orientation of near-equatorial retrograde relative
trajectories. The analytical solution of the in-plane
and out-of-plane components of the secular motion is
achieved by averaging over the relative longitude of a
spacecraft as seen from the co-rotating frame of the
two primaries. Developments are validated against the
numerical integration of quasi-periodic trajectories that
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densely cover the surface of three-dimensional invari-
ant tori. This analysis confirms the stable nature of
quasi-satellite orbits and provides new tools for future
spacecraft missions such as the Martian Moons eXplo-
ration envisaged by JAXA.
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1 Introduction

The study of retrograde relative trajectories around the
secondary of two attracting masses has always been of
interest to astronomers and orbital mechanicists since
their original discovery in 1897 [1]. Already in 1913,
Jackson was theorizing that this type of orbits may be
more stable than direct trajectories [2], a result that
was eventually confirmed by Hénon in his numeri-
cal investigations of the restricted three-body prob-
lem [3]. Based on the results of Hénon’s analysis, ret-
rograde relative orbits, also known in the literature
as distant retrograde or quasi-satellite orbits (QSO),
have gained the attention of several space agencies and
astrodynamics researchers looking for efficient trajec-
tories to explore the solar system.Many spacecraftmis-
sions have recently been proposed to fly on retrograde
relative orbits around planetary moons, including the
Russian Phobos-Grunt, NASA’s ARM, and the Euro-
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pean DePhine [4–6]. JAXA is also planning the Mar-
tian Moons eXploration mission (MMX) in order to
finally settle the debate on themoons’ origin and further
deepen our understanding of the Martian system. The
spacecraft will be placed on quasi-satellite trajectories
near the largest of theMartian moons Phobos, studying
its dynamical and geophysical features for more then
3years [7].

In order to better understandmotion near small irreg-
ular moons and prepare for the proximity operations
of MMX, this paper focuses on the design and long-
term evolution of quasi-satellite orbits. Recent devel-
opments on this matter can be separated in numeri-
cal and analytical investigations of a point mass sub-
ject to the gravitational attraction of a massive primary
and a much lighter secondary. In the case of numer-
ical investigations, shooting techniques are typically
applied to calculate periodic or quasi-periodic solu-
tions in the vicinity of planetary satellites [8–10]. Once
these particular solutions are obtained, stability anal-
ysis can be carried out using Floquet theory and/or
chaos indicators [11–14]. As for analytical develop-
ments, disturbing functions and variational equations
are typically averaged over the time scales of fast vari-
ables to obtain qualitative information on the system
dynamics. Belonging to the first category are the con-
tributions inspired by Mikkola and Innanen, who first
considered quasi-satellite trajectories as slightly per-
turbedKeplerian orbits in a 1:1meanmotion resonance
[15]. Building on this idea, Namouni, Brasser et al., and
Mikkola et al. later found out that transitions between
QSOs and other 1:1 resonant orbit types are not only
possible but also frequent [16–18]. Necessary condi-
tions for transitioning between different 1:1 orbital
regimes were recently developed by Sidorenko et al.
using Hamiltonian theory and double-averaging [19].
A second approach is to consider quasi-satellite orbits
as perturbed relative trajectories that deviate from 2:1
ellipses because of the gravitational attraction of the
secondary body. Starting from the equations of the cir-
cular restricted three-body problem (CRTBP), Kogan
used linearization and averaging to prove the stabil-
ity of QSO orbits when Phobos is in a circular orbit
around Mars [20]. Lidov and Vashkov’yak extended
this approach to the elliptical three-body problem, but
failed to come up with an analytical solution that was
valid in the orbital regime of the Martian moon [21].
Owing to small mass ratios and QSO altitudes, Lara
more recently considered Lie–Deprit transformations

within the framework of the planar circular Hill prob-
lem [22]. Differently from theCRTBP, theHill problem
does not depend on any external parameter and is the
ideal laboratory for dynamical investigations of many
planetary systems. Cabral recognized this advantage
and included eccentricity and out-of-plane oscillations
to increase the fidelity of his analytical developments
[23]. Unfortunately, despite thorough derivations with
the variation of parameters, the differential equations
of QSO amplitudes, offsets, and phase angles do not
seem to adequately capture the long-term evolution of
point masses in this orbital regime.

In this paper, we investigate the long-term evolution
of mid-altitude quasi-satellite orbits within the frame-
work of the spatial elliptical Hill problem (EHP). Our
developments are also based on the analytical solu-
tion of the Tschauner–Hempel equations derived by
Yamanaka and Ankersen in [24], but yields differ-
ent equations than the ones found in Cabral’s thesis.
The analytical derivations are validated by comparison
with the numerical integration of initial conditions on
the surface of three-dimensional quasi-periodic invari-
ant tori [25]. These invariant manifolds are obtained
through the invariant tori of a stroboscopic mapping
[26,27] andwell represent the equivalent of QSOorbits
whenever eccentricity and cross-track oscillations are
taken into account. Next, we average over one QSO
period and derive a new set of equations of motion
for the long-term evolution of satellites in this orbital
regime. An analytical solution of these equations is
then achieved. A near-identity transformation is imple-
mented to accurately map averaged elements into their
osculating counterpart. The solution is finally validated
by comparison with the numerical integration of the
osculating equations of motion.

The article is organized as follows. First, dynamical
models andQSO are introduced in Sect. 2. A novel ana-
lytical solution for both the in-plane and out-of-plane
components of motion is achieved in Sect. 3 after aver-
aging the dynamical system over one orbital period.
The near-identity transformation is presented in Sect. 4,
along with the numerical validation of the analytical
solution.

2 Dynamical models

Dynamical models and assumptions necessary for the
analytical developments of Sect. 3 are hereby intro-
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duced. Starting from the equations of the elliptical
restricted three-body problem (ERTBP), we linearize
the dynamics in the vicinity of the secondary body
and discuss validity regions for the equations of the
EHP. Examples of quasi-satellite orbits are then illus-
trated along with their dynamical substitutes when the
eccentricity of planetary moon is taken into account
(Sect. 2.1). In Sect. 2.2, we momentarily neglect
the gravitational attraction of the secondary body to
overview the analytical solution of the unperturbed
problem as developed by Yamanaka and Ankersen in
[24]. We then introduce Gauss variational equations
(GVEs) in Sect. 2.3 to discuss the effects of the moon’s
gravity on the solution of the integrable problem. The
results of this investigation are validated in Sect. 2.4
by comparison with the numerical integration of the
EHP over 100 orbital revolutions (i.e., approximately
one month in the Mars–Phobos system).

2.1 Elliptical Hill problem

Consider the motion of a massless satellite subject to
the gravitational attractionof amoonand its host planet.
As seen from the barycenter of the secondary body, the
dynamics of the spacecraft is better expressed in a rotat-
ing reference frame S ′ centered on the moon and such
that x̂ is constantly aligned with the separatrix between
the two primaries, ẑ is parallel to the orbital angular
momentum of the moon, and ŷ = ẑ × x̂ completes the
right-handed triad. The equations of motion are given
by the equations of ERTBP:

r̈ + 2

(
γ̇

γ
I + [ ẑ]

)
ṙ = ∇U(r), (1)

where dots denote differentiation with respect to the
true anomaly of the planetary satellite, ν; r and ṙ are
the position and velocity components of the spacecraft
in S ′, respectively; I is the identity matrix; [ ẑ] is a
skew-symmetric matrix such that [ ẑ] r = ẑ × r; and

U(r) = 1

ω2

[
G m

r
+ G M

r1
+ G M

r312
rT12 r

]

−1

2
rT

(
2

γ̇

γ
[ ẑ] + [ ẑ] [ ẑ]

)
r (2)

is the effective potential, with G,m, and M as the grav-
itational constant, mass of the secondary, and mass of

the primary, respectively. Also note that

ω = √
G (M + m) p−3/2 γ 2

is the angular velocity of the rotating reference frame

(along ẑ), whereas r12 = p

γ
x̂ is the relative position

vector of the secondary as seen from the barycenter
of the primary body. The variables p = a (1 − e2)
and γ = (1 + e cos ν) depend on the semimajor axis
and eccentricity of the moon, hereby referred to as a
and e. Finally, r12 = ‖r12‖ = p γ −1 and r1 = ‖r1‖,
where r1 = r+ r12 is the relative position vector of the
spacecraft as seen from the barycenter of the primary.

It is assumed that themass of the secondary is signifi-
cantly smaller than the mass of the primary (m/M <<

1), as well as that the relative distance between the
spacecraft and the secondary is much smaller than the
distance between the two attractors (r << r12). Based
on these assumptions, the term proportional to r−1

1 in
Eq. (2) can be expanded up to the second order in r to
obtain

G M

r1
� G M

r12
− G M

r312
rT12 r + G M

2 r312
rT

(
−I + 3 x̂ x̂T

)
r + O(r3). (3)

Moreover, since ω2 � G M p−3 γ 4 = G M γ r−3
12 , the

effective potential may be rewritten as

V(r) = ε3

(
r312
γ r

)
+ r212

γ
+ 1

2 γ
rT

(
−I + 3 x̂ x̂T

+ 2 e sin ν [ ẑ] − γ [ ẑ] [ ẑ]) r, (4)

where ε = (m/M)1/3 is the cubic root of the mass ratio
parameter.

Figure 1 illustrates the logarithm of |V − U |/U for
several three-body systems and mass ratio parameters
when e = 0. Red contours mark the boundary of a
region where the relative error between the three-body
problem and the so-called Hill approximation of the
effective potential is four orders of magnitude smaller
than the absolute value of U . As a result, the truncation
errors canbe considered negligible as long as (m/M) <

10−4 and r < 0.05 a.
Within the validity region of the Hill approximation,

the equation of motion (1) can be further simplified
by introducing pulsating coordinates r = ε p γ −1 r̃ .
This yields the first-order system of ordinary differen-
tial equations in ν known as the EHP [28]:
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Fig. 1 Relative error between the effective potential of the
restricted three-body problem and its Hill approximation. Values
are shown in logarithmic scale for different mass ratio parame-

ters and three-body systems assuming e = 0. Axes are chosen to
match 0.1a of the corresponding three-body system
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Fig. 2 Period vs positive x-crossing for the family of quasi-
satellite orbits with e = 0. Only the periodic orbits whose period
is resonant with 2π survive when e �= 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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ẋ = u,

ẏ = v,

ż = w,

u̇ = 1

γ

(
− x

r3
+ 3 x

)
+ 2 v,

v̇ = − y

γ r3
− 2 u,

ẇ = − z

γ r3
− z.

(5)

Here, x , y, z and u, v,w are the dimensionless position

and velocity components of r̃ and ˙̃r = γ

ε p

[
ṙ + γ̇

γ
r
]
,

respectively, whereas g = − r̃
γ r̃3

stands for the grav-

itational attraction of the planetary moon in pulsating
normalized units.

As it can be seen from Eq. (5), the EHP depends
explicitly on the independent variable ν through γ =
(1 + e cos ν). Because of this dependency, periodic
orbits must be resonant with 2π and cannot be orga-
nized in families as in the circular case [29]. This
change of paradigm is illustrated in the chart of Fig. 2,
showing the orbital period of QSO of theMars–Phobos
system as a function of their positive x-axis crossing
when e = 0. Among the infinite family members,
only those whose period is resonant with 7.66 hrs—the
orbital period of Phobos around Mars—survive when
the eccentricity of Phobos, e = 0.0151, is taken into
account (i.e., intersections with the horizontal lines of
Fig. 2).

When the resonant condition is not met, periodic
orbits are replaced by two-dimensional quasi-periodic
invariant tori that belong to a family of quasi-periodic

retrograde orbits [30]. To compute these manifolds, we
adapt the numerical algorithm outlined in Gómez &
Mondelo [26] and Olikara & Scheeres [27] and hereby
referred to as “GMOS”. The main idea of GMOS is
that quasi-periodic invariant tori can be calculated via
invariant curves of a stroboscopic mapping by solv-
ing the boundary value problem described in [31]. The
interested reader may find more details on the method-
ology in the authors’ original papers as well as in
[31,32]. In particular, Olikara provides an exhaustive
explanation of the collocationmethod used in this work
to march along the QSO family branch and generate a
variety of quasi-periodic invariant tori with e = 0.0151
[32]. Several examples of planar quasi-periodic QSO
orbits are shown in Fig. 3.

An advantage of the GMOS algorithm is that addi-
tional frequencies can be included to search for higher-
dimensional solutions of Eq. (5). This feature was
demonstrated by Baresi and Scheeres in [25] and is
hereby adopted for calculating quasi-periodic QSOs
that extend beyond the equatorial plane of Phobos. We
refer to this type of orbits as “3D QSOs” and discuss
an example of them in Sect. 2.4.

Despite the GMOS algorithm succeeds in generat-
ing three-dimensional QSOs, the numerical procedure
remains cumbersome and computationally expensive.
Accordingly, the purpose of this paper is to study the
long-term evolution of 3DQSOs via GVE and the aver-
aging process so as to

– gain analytical insight into the dynamical environ-
ment of planetary moons;

– provide high-quality initial guesses for trajectory
optimization without GMOS;

– support onboard spacecraft operations with aver-
aged analytical solutions to the relative motion
problem.

2.2 General solution of the Keplerian relative motion
problem

The EHP admits two equilibrium points in correspon-

dence of r̃∗ = [±(1/3)(1/3) 0 0
]T
. These points of

equilibrium are often referred to as Lagrangian points
and delimit a region of the phase space where the
dynamics is dominated by the gravity field of the sec-
ondary body. Since the magnitude of the gravitational
force due to the secondary is proportional to the inverse
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Fig. 3 Family members of
the a QSO and b quasi-QSO
orbit families

squared distance between its barycenter and the space-
craft, the dynamics inside the red curves of Fig. 1
remains dominated by the primary body as long as
r∗ = ε p γ −1 r̃∗ is significantly smaller than 0.05 a. As
a preliminary rule of thumb, let us consider the cases
where

r∗ = ε p γ −1
(
1

3

)1/3

≤ ε a (1 + e)

(
1

3

)1/3

< 0.005 a, (6)

so that motion above 0.01 a would be only slightly per-
turbed by the gravity field of the moon. This implies( m

3M

)1/3
<

0.005

1 + e
< 0.005 or (m/M) < 3.75 ×

10−7 like in the Mars–Phobos, Saturn–Enceladus,
Sun–Mars, and many other three-body problems of the
solar system.

In what follows, we consider the Mars–Phobos case
as an example of a large class of three-body systems that
complywith the assumptions of the elliptical Hill prob-
lem while satisfying the negligible mass conditions
given by Eq. (6). Our goal is to describe the long-term
evolution of mid-altitude quasi-satellite orbits crossing
the positive x-axis between 0.01 a and 0.025 a.We note
that this corresponds to 93.77 km and 234.425 km for
the Mars–Phobos system, which is the orbital region
under consideration for the proximity operations of the
Martian Moons eXploration mission [7].

Assuming that the gravitational attraction of Phobos
is negligible, the dynamics of a satellite near the plan-
etary satellite would be governed by the simplified set
of equations given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = u,

ẏ = v,

ż = w,

u̇ = 3
x

γ
+ 2 v,

v̇ = −2 u,

ẇ = −z.

(7)

System (7) is equivalent to the Tschauner–Hempel
equations describing the relative motion of two neigh-
boring satellites in eccentric Keplerian orbits and
was analytically solved by Yamanaka and Ankersen
[24,33]. The authors provide an expression for the rel-
ative position and velocity vectors in terms of the six
integrals of motion K1, K2, K3, K4, K5, K6. The solu-
tion reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(ν) = K2 γ sin ν + K3 γ cos ν

+K4 (2 − 3 e J γ sin ν),

y(ν) = K1 + K2 (1 + γ ) cos ν

−K3 (1 + γ ) sin ν − 3 K4 J γ 2,

z(ν) = K5 sin ν + K6 cos ν,

u(ν) = K2 s∗ + K3 c∗ − 3 e K4

(
sin ν

γ
+ J s∗

)
,

v(ν) = −2 K2 γ sin ν − K3 (2 γ cos ν − e)
−3 K4 (1 − 2 e J γ sin ν),

w(ν) = K5 cos ν − K6 sin ν,

(8)

where s∗ = cos ν + e cos 2 ν, c∗ = −(sin ν +
e sin 2 ν), and J is an integral term defined as J =∫ ν

ν0
1/γ (τ)2 d τ .
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Equation (8) can be easily rewritten in matrix
form as X(ν) = Φ(r, v, ν) K , with K =[
K1, K2, K3, K4, K5, K6

]T
. We note that the deter-

minant of Φ(r, v, ν) is equal to (e2 − 1), so that the
matrix is nonsingular for any e ∈ [0, 1). It follows that
the values of K can be inferred from rectangular coor-
dinates through the inverse transformation [34]

K = Φ(r v, ν)−1 X(ν). (9)

Following Cabral [23], auxiliary variables can be
now introduced to gain geometrical insight into the ana-
lytical solution of the Tschauner–Hempel equations.
Specifically, let

Ax = K3, (10a)

Ay = K2 − 3 e J K4, (10b)

δx = 2 K4, (10c)

δy = K1 − 3 J K4, (10d)

A =
√
A2
x + A2

y, (10e)

α = arctan

(−Ay

Ax

)
, (10f)

B =
√
K 2
5 + K 2

6 , (10g)

β = arctan

(
K6

K5

)
(10h)

so that⎧⎨
⎩
x(ν) = γ A cos (ν + α) + δx ,

y(ν) = −(1 + γ ) A sin (ν + α) + δy,

z(ν) = B sin (ν + β).

(11)

Equation (11) reveals that a mass particle in orbit
around a massless Phobos would remain in the vicinity
of the Martian moon if A, δx , and δy have no secular
growth. This is guaranteed when K4 = 0 as Ay and δy
would both remain constant regardless of the integral
term appearing in Eqs. (10b) and (10d). If K4 = 0,
the trajectory described by the spacecraft in the equa-
torial plane becomes a pulsating ellipse with frequency
ωxy = 1 and semimajor and semiminor axes equal to
(1 + γ ) A and γ A, respectively. The phase angles α

and β represent the longitude and latitude of the satel-
lite at periarion, i.e., when ν = 0, as specified in Fig. 4.
Meanwhile, the out-of-plane motion is decoupled from
the planar one and follows an harmonic oscillationwith
amplitude B and frequency ωz = 1.

Fig. 4 Orbital evolution of a satellite in a 100-km quasi-QSO
orbit with δx = δy = 0. The red point illustrates the position of
the spacecraft at periarion, i.e., when ν = 0

2.3 Gauss variational equations

As specified in Eq. (9), values of K can be inferred
from the Cartesian coordinates of a spacecraft while
knowing the true anomaly of Phobos around Mars. In
consequence, the total differential of K = K (r, v, ν)

reads as

K̇ = ∂K
∂ r

ṙ + ∂K
∂v

v̇ + ∂K
∂ν

(12)

and must be equal to zero when the dynamics is gov-
erned by the unperturbed system (7), where v̇ = a =[
3
x

γ
+ 2 v, −2 u, −z

]T
.

Let us now consider the perturbed dynamics{
ṙ = v,

v̇ = a + u,
(13)

where u = [
ux , uy, uz

]T
is a vector of disturbing

forces per unit mass in the pulsating synodic reference
frame S′. Substituting Eq. (13) in Eq. (12) yields the

GVE for the K integrals ofmotion given by K̇ = ∂K
∂v

u

[34].
The rates of change for orbit elements A, α, δx , δy ,

B, and β can be deduced from the application of the
chain rule and yield
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Ȧ = −
[
γ sin (ν + α) − 2 e sin α

1 − e2

]
ux

−
[
e cosα + (1 + γ ) cos (ν + α)

1 − e2

]
uy

+ 3 e sin α

2 γ 2 δx , (14a)

α̇ = −
[
γ cos (ν + α) − 2 e cosα

A (1 − e2)

]
ux

+
[
e sin α + (1 + γ ) sin (ν + α)

A (1 − e2)

]
uy

+ 3 e cosα

2 A γ 2 δx , (14b)

δ̇x =
(
2 e γ sin ν

1 − e2

)
ux +

(
2 γ 2

1 − e2

)
uy, (14c)

δ̇y =
[
e γ cos ν − 2

1 − e2

]
ux −

[
e (1 + γ ) sin ν

1 − e2

]
uy

− 3

2 γ 2 δx , (14d)

Ḃ = cos (ν + β) uz, (14e)

β̇ = − sin (ν + β)

B
uz . (14f)

We note that the rate of change of the latitude at peri-
arion is inversely proportional to the magnitude of the
out-of-plane motion B. To avoid singularities, we con-
sider

K̇5 = (cos ν) uz, (15a)

K̇6 = −(sin ν) uz . (15b)

instead of Eqs. (14e) and (14f) when studying the
dynamical evolution of planar QSO orbits such as the
one in Fig. 4. The final set of equations of motion
for the osculating orbit elements œ
= [

A, α, δx , δy, K5, K6
]T ∈ M becomes

œ̇ = F(ν, œ) + G(ν, œ) u, (16)

where M is the phase space of the orbit elements œ,

F(ν, œ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 e sin α

2 γ 2 δx ,

3 e cosα

2 A γ 2 δx ,

0,

− 3

2 γ 2 δx ,

0,
0,

(17)

andG(ν, œ) is a six-by-threematrixwith nonzero com-
ponents

G1,1 = −γ sin (ν + α) − 2 e sin α

1 − e2
, (18a)

G1,2 = −e cosα + (1 + γ ) cos (ν + α)

1 − e2
, (18b)

G2,1 = −γ cos (ν + α) − 2 e cosα

A (1 − e2)
, (18c)

G2,2 = e sin α + (1 + γ ) sin (ν + α)

A (1 − e2)
, (18d)

G3,1 = 2 e γ sin ν

1 − e2
, (18e)

G3,2 = 2 γ 2

1 − e2
, (18f)

G4,1 = e γ cos ν − 2

1 − e2
, (18g)

G4,2 = −e (1 + γ ) sin ν

1 − e2
, (18h)

G5,3 = cos ν, (18i)

G6,3 = − sin ν. (18j)

Equation (16) can be now integrated to obtain the
evolution of the osculating orbit elements without
converting from the Cartesian coordinates adopted in
Eq. (13). The system of ordinary differential equa-
tions will be referred to as GVE and validated against
the numerical integration of the EHP in the next sec-
tion. Furthermore, analytical expressions for the effects
of Phobos’ gravity can be now derived and analyzed.
The result of these investigations will produce a linear
model that will be averaged and solved analytically in
Section 6 to grasp the secular evolution of the QSO
mean relative orbit elements.

2.4 The effects of Phobos’ gravity

Let us replace the terms ux , uy , uz appearing in (16)
with the gravitational attraction of a spherical object
with mass m significantly smaller than the mass of the
primary (M >> m) in the pulsating reference frame
S ′:

u = − 1

γ

⎡
⎣x/r

3

y/r3

z/r3

⎤
⎦ , (19)
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where r(ν) = √
x(ν)2 + y(ν)2 + z(ν)2. Based on

Eq. (11), r changes as a function of the relative orbit
elements œ through a fairly complicated expression
that yields the instantaneous relative distance between
the satellite and the barycenter of the secondary body,
e.g., Phobos. Nevertheless, a satellite on a QSO orbit
remains close to the equatorial plane of the Martian
moon if δx and δy are close to zero. In addition,
the eccentricity of the Phobos is relatively small and
allows for simplifications in the expressions of theGVE
presented in Sect. 3. These considerations justify the

first-order expansion of the equations of motion in e,

δ =
(

δx

A

)
, χ =

(
δy

A

)
, η5 =

(
K5

A

)
, η6 =

(
K6

A

)

under the assumption that δ, χ, η5, η6 O(e) << 1.
This assumptionwas investigated by Cabral in [23] and
seems to be reliable for mid-altitude QSO orbits based
on numerical experiments. In this orbital regime, the
expressions of x , y, and z in Eq. (11) imply

r(e) � A
{
d2 + 2 e cos ν

[
cos2 θ + 2 sin2 θ

]

+ 2 δ cos θ − 4χ sin θ}1/2 , (20)

where e = [
e, δ, χ

]T
, d =

√
cos2 θ + 4 sin2 θ , and

θ = ν + α.

Replacing the ux , uy , and uz terms of Eq. (14c) with
(19) then yields

δ̇x � 2 A

[r(e)]3 {2 sin θ + e [3 cos ν sin θ − sin ν cos θ] − χ} ,

� 2

A2

{[
2 sin θ + e [3 cos ν sin θ − sin ν cos θ] − χ

d3

]

−6 sin θ

[
e cos ν

[
cos2 θ+2 sin2 θ

]+δ cos θ−2χ sin θ

d5

]}
.

(21)

Similarly, the other GVEs become

Ȧ � 1

A2 d3

{
−3

2
sin (2 θ) − 2 e [sin (ν + 2 α) − 0.25 cos ν sin (2 θ)] + δ sin θ + 2χ cos θ

+9

2
sin (2 θ)

[
e cos ν

(
cos2 θ + 2 sin2 θ

)+ δ cos θ − 2χ sin θ

d2

]}
, (22a)

α̇ � 1

A3

{
1

d
− e

cos ν

d
− e

[
2 cos (ν + 2α) + cos ν (cos2 θ + 2 sin2 θ)

]+ 2 δ cos θ − 4χ sin θ

d3

}
, (22b)

δ̇y � 1

A2 d3
{2 cos θ − e [cos ν cos θ + 4 sin ν sin θ ]

+δ

(
4 − 3 A3 d3

2

)
− 6 cos θ

[
e cos ν

(
cos2 θ + 2 sin2 θ

)+ δ cos θ − 2χ sin θ

d2

]}
, (22c)

K̇5 � −cos ν

A2

(
η5 sin ν + η6 cos ν

d3

)
, (22d)

K̇6 � sin ν

A2

(
η5 sin ν + η6 cos ν

d3

)
, (22e)

or

œ̇ = g(ν, œ) (23)

in vectorial form.
Equation (23) summarizes a linear model (LM) in

e, δ, χ , η5, and η6 that accurately predicts the dynam-
ics of mass particles in mid- and high-altitude QSO
orbits for several orbital periods around Phobos. This
claim is supported by Figs. 5 6 7 and 8, which com-
pare trajectories of the original and linearized systems
obtained by numerical integration of the same set of
initial conditions:
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Fig. 5 Quasi-QSO orbit integrated over 100 Phobos revolution
with the LM (blue) and GVEs (red) models

x(ν0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4.223784177246
− 0.0814069532286406
− 0.317146285024353
0.0342016222056316
− 8.42418511932641
0.139224827215046

⎤
⎥⎥⎥⎥⎥⎥⎦

,

œ(ν0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4.22922122381657
0.61341331263205

− 0.0576706532250935
− 0.0778356681681636
0.296336249720383

− 0.179304617116979

⎤
⎥⎥⎥⎥⎥⎥⎦

, (24)

in Cartesian coordinates and osculating orbit elements,
respectively, with ν0 = 324.8780 deg. Table 1 summa-
rizes the models and relevant assumptions introduced
throughout these subsections.

As depicted in Fig. 8a, the error between the integra-
tion of Eqs. (16) and (13) is purely numerical and neg-
ligible after 100 orbital revolutions of Phobos around
Mars (i.e., almost 32 days). In contrast, the position
error of the linearized model exhibits a secular growth,
but never exceeds 5 kilometers over the same interval
of time. Such an error is deemed reasonable for the pur-
pose of this article, as navigation errors and mismod-
eled dynamics would likely overtake the inaccuracies
of the linearizedmodel over the time span of a fewdays.
Accordingly, the LM is considered as a good candidate
for describing the long-term evolution of satellites in
mid-altitude QSO orbits and can be used for the analy-
sis of the secular motion as described in the following
section.

Fig. 6 Variables A, α, δx , δy obtained with the LM (blue) and
GVEs (red) models

Fig. 7 Variables K5, K6, B, β obtained with the LM (blue) and
GVEs (red) models

3 Averaged equations

The long-term evolution of quasi-QSO orbits is now
analyzed by averaging Eq. (23) over one orbital period
around Phobos, i.e., ˙̄œ = ∫ 2π

0 œ̇ dθ . We find that the
averaged orbit elements Ā, ᾱ, δ̄x , δ̄y , K̄5, and K̄6 evolve
with the true anomaly as

˙̄A = 0, (25a)

˙̄α = K
π Ā3

, (25b)

˙̄δx = −2
e

Ā2

(K − 7 E
9π

)
sin ᾱ + 2

δ̄y

Ā3

(K − E
3π

)
,

(25c)
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Table 1 Dynamical models
and corresponding
assumptions

Dynamics Physical assumptions i.c. assumptions

Elliptical Hill problem (EHP) (m/M) < 10−4 r < 0.05 a

Gauss variational equation (GVE) (m/M) < 3.75 × 10−7 r∗ << 0.05 a

Linear model (LM) e < 0.1 0.01 a < r < 0.025 a

χ < 0.1

δ < 0.1

η5 < 0.1

η6 < 0.1

Fig. 8 a Position error between the GVEs and EHP models. b Position error between the LM and EHP models

˙̄δy = e

Ā2

(K − 52 E
9π

)
cos ᾱ − 3

2
δ̄x

+ 2
δ̄x

Ā3

(K − 4 E
3π

)
, (25d)

˙̄K5 = − K̄5

Ā3

(
2K − 5 E

6π

)
sin (2 ᾱ) − K̄6

Ā3

E
2π

+ K̄6

Ā3

(
2K − 5 E

6π

)
cos (2 ᾱ), (25e)

˙̄K6 = K̄5

Ā3

E
2π

+ K̄5

Ā3

(
2K − 5 E

6π

)
cos (2 ᾱ)

+ K̄6

Ā3

(
2K − 5 E

6π

)
sin (2 ᾱ), (25f)

where K � 2.156516 and E � 1.211056 are the com-
plete elliptical integrals of the first and second kind,
respectively, evaluated with modulus k = √

3/2 [35].

We note here that our expressions approach the ones
ofKogan [20]whenever e → 0, but differ from the ones
found in Cabral’s thesis [23]. There, the author derived
secular equations using Lagrange planetary equations
on the averaged disturbing potential due to the gravity

field of Phobos, omitting the −3

2
δ̄x term appearing in

Eq. (25d). Coefficients that model the long-term evo-
lution of the relative orbit elements are also presented
differently and in terms of different elliptical integrals,
leading to erroneous frequencies of motion.

Equation (25) exhibits cross-coupling between some
of the orbit elements, as well as long-term oscillations
due to the secular growth of α, i.e., the longitude at
periarion. Such a growth causes the geometry between
the spacecraft, Mars, and Phobos, to change at every
periarion passage, i.e., when the gravitational attraction
of Mars is at its strongest. To grasp the secular effects
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Fig. 9 Comparison between the numerical value of nQSO and
its theoretical prediction 1 + ˙̄α. The time unit TU is equal to
1.288h

of this phenomenon, observe that ᾱ grows linearly with
the true anomaly and with a rate ωα = (K/π) Ā−3 �
0.686440 Ā−3 that depends on the amplitude of the in-
plane motion:

ᾱ(ν) = ωα (ν − ν0) + ᾱ0, (26)

where ᾱ0 = ᾱ(ν0), and ν0 is the true anomaly of Phobos
at epoch.

Observe that ωα is constant due to Eq. (25a). Fur-
thermore, the value of ωα defines the period of the
QSO orbit via T = 2π/nQSO and nQSO = θ̇ =
ν̇+ α̇ � 1+ωα . This relationship is demonstrated with
the chart of Fig. 9, illustrating the comparison between
the analytical prediction of nQSO and the numerical
value computed with the GMOS algorithm of Sect. 2.1.
We find that the proposed linearization and averaging
approach are valid as long as Ā > 3.36, corresponding
to 80 km for the Mars–Phobos system.

In the validity regime of Eq. (25), the in-plane and
out-of-plane components of motion can be decoupled
and reduced to the linear systems[ ˙̄δx˙̄δy

]
=
[
0 Dx

Dy 0

] [
δ̄x
δ̄y

]
− e

[
dx sin ᾱ

dy cos ᾱ

]
, (27)

[ ˙̄K5˙̄K6

]
=
[ −ζ sin (2 ᾱ) −Υ + ζ cos (2 ᾱ)

Υ + ζ cos (2 ᾱ) ζ sin (2 ᾱ)

] [
K̄5

K̄6

]
,

(28)

where

Dx = 2

(K − E
3π Ā3

)
> 0, (29a)

Dy = −3

2
+ 2

(K − 4 E
3π Ā3

)
< 0, (29b)

dx = 2

(K − 7 E
9π Ā2

)
< 0, (29c)

dy =
(
52 E − K
9π Ā2

)
> 0, (29d)

and

ζ =
(
2K − 5 E
6π Ā3

)
, (30a)

Υ = E
2π Ā3

. (30b)

Using the Laplace transform, we find that the secular
evolution of δ̄x and δ̄y becomes

δ̄x (ν) = [
δ̄x,0 − e d1 cos (ᾱ0)

]
cos (ωd ν̃) . . .

+
[
δ̄y,0

(
Dx

ωd

)
+ e

(
ωd

Dy

)
d2 sin (ᾱ0)

]

sin (ωd ν̃) + e d1 cos (ᾱ), (31a)

δ̄y(ν) =
[
δ̄x,0

(
Dy

ωd

)
+ e

(
ωd

Dx

)
d1 cos (ᾱ0)

]

sin (ωd ν̃) . . .

+ [
δ̄y,0 − e d2 sin (ᾱ0)

]
cos (ωd ν̃)

+ e d2 sin (ᾱ), (31b)

where ν̃ = (ν − ν0), δ̄x,0 = δ̄x (ν0), δ̄y,0 = δ̄y(ν0),

d1 =
(
Dx dy + ωα dx

ω2
α − ω2

d

)
, (32a)

d2 =
(
Dy dx − ωα dy

ω2
α − ω2

d

)
, (32b)

and

ω2
d = −Dx Dy = K − E

π Ā3
− 4

9

(K2 − 5KE + 4 E2

π2 Ā6

)

� 0.30095 Ā−3 − 0.11443 Ā−6. (33)

Themotion of the center of the in-plane ellipse is there-
fore characterized by two frequencies whose ratio is
givenbyωα/ωd � 1.251283 Ā−1.5. In the limiting case
e → 0, such a center traces out ellipses in the (δ̄x , δ̄y)

plane with period 2π/ωd . The maximum deviations

in δ̄x and δ̄y occur at (ωd ν̃)δ̄x = arctan

(
Dx δ̄y,0

ωd δ̄x,0

)
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Fig. 10 Maximum δ̄x deviations as a function of the initial conditions δ̄x,0, δ̄y,0 when e = 0

and (ωd ν̃)δ̄y = arctan

(
Dy δ̄x,0

ωd δ̄y,0

)
, respectively, and

can be quantified numerically for different values of Ā
as in Figs. 10 and 11. In the plots of Figs. 10 and 11,
we ignore those combinations of δ̄x,0, δ̄y,0, and Ā for
which the maximum values of δ̄x , δ̄y violate the lin-

earization assumptions of Sect. 5, i.e., δ � δ̄x

Ā
< 0.1,

χ � δ̄y

Ā
< 0.1. As a result, we obtain a preliminary

visualization of the δ̄x,0, δ̄y,0 values that comply with
the validity requirements of Eq. (31).

Within this region, the eccentricity of the secondary
body plays an important role by introducing δ̄x and
δ̄y oscillations regardless of the initial conditions δ̄x,0,
δ̄y,0, ᾱ0. To quantify these effects, we investigate the
magnitudes of the terms proportional to the eccentricity
in Eq. (31) over a uniform grid of Ā ∈ [3.36 , 7] values

(corresponding to approximately 80 and 160 km for the
Mars–Phobos system). The results of this analysis are
portrayed in Fig. 12 and reveal that δ̄y/ Ā oscillations
can be as large as 4.45 e even when δ̄x,0 = δ̄y,0 = 0.
In the worst-case scenario, ᾱ0 = ±π/2, the validity
of Eq. (31) holds as long as the eccentricity of the sec-
ondary is no larger than 0.022. In contrast,when ᾱ0 = 0
or π , librations of δ̄y/ Ā do not violate the linearization
assumptions of Sect. 5 for eccentricities up to 0.044.

Assuming the validity of Eq. (31)with δ̄x,0 = δ̄y,0 =
0, the eccentricity of the secondary body causes quasi-
periodic oscillations in δ̄x and δ̄y that densely cover the
surface of a two-dimensional invariant torus with fre-
quencies ωα < ωd . The general case (e, δ̄x,0, δ̄y,0 �= 0)
is a linear combination of the two limiting scenarios
in which the center of the in-plane relative trajecto-
ries remains bounded with respect to the origin of the
coordinate system. An interesting situation occurs for
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Fig. 11 Maximum δ̄y deviations as a function of the initial conditions δ̄x,0, δ̄y,0 when e = 0

Fig. 12 Relative magnitude of the terms proportional to the
eccentricity of the secondary body as a function of Ā. The top
panel refers to terms in δ̄x , whereas the bottom panel is for terms
in δ̄y

those values of Ā for which ωd/ωα is rational. In this
resonant case, the motion of the center becomes fully
periodic in the δ̄x , δ̄y plane as illustrated in Fig. 13d.

Concerning theout-of-plane component,weobserve
that neither ofEqs. (22d), (22e), (25e), and (25f) depend
on the eccentricity of Phobos’ orbit. The same situation
occurs when considering the expressions of Ḃ and β̇

instead of Eqs. (22d) and (22e):

Ḃ � − B

2 A3 d3
sin [2 (θ − ϕ)] (34a)

β̇ � sin2 (θ − ϕ)

A3 d3

{
1 − 4 e cos (θ − α)

+ 6 e cos (θ−α) sin2 (θ)+6 δ sin θ−3χ cos θ

d2

}
,

(34b)

where ϕ = (α − β) is the relative phase between the
longitude and latitude at periarion.
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Fig. 13 Examples of δ̄x , δ̄y motion for different combinations
of e, δ̄x,0, δ̄y,0 and Ā values. All of the trajectories have been
computed assuming ᾱ0 = 0 rad. Note the different scales of the

axes as well as that the value of Ā in the bottom right panel has
been computed so that ωd/ωα = 5

By averaging over one orbital period, the differential
equations of B̄ and β̄ read as

˙̄B = −
(
2K − 5 E
6π Ā3

)
B̄ sin (2 ϕ̄) (35a)

and

˙̄β = E
2π Ā3

+
(
2K − 5 E
6π Ā3

)
cos (2 ϕ̄), (35b)

respectively. The true anomaly rate of change of ϕ̄

becomes

˙̄ϕ =
(
2K − E
2π Ā3

)
−
(
2K − 5 E
6π Ā3

)
cos (2 ϕ̄) (36)

and admits

ϕ̄(ν) = arctan

{
1

2

√
2K + E
K − E tan

[
ωϕ (ν − ν0) + φ

]}

(37)

as an analytical solution with

ωϕ = 2

√
2K2 − KE − E2

3π Ā3

= 0.70649ωα � 0.484965 Ā−3, (38)
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φ = arctan

[
2

√ K − E
2K − E tan ϕ̄0

]
, and ϕ̄0 = ϕ̄(ν0).

By plugging Eq. (37) in Eq. (35), we find

B̄(ν) = B0
[
1 − Bϕ cos (2 ϕ̄)

]−1/2
, (39)

where Bϕ =
(
2K − 5 E
6K − 3 E

)
� −0.18722, B0 =

B̄0
√
1 − Bϕ cos (2 ϕ̄0), and B̄0 = B̄(ν0). This result

illustrates that the amplitude of the out-of-planemotion
oscillates with a frequency of 2ωϕ � 1.4ωα and

is bounded by B̄max = B̄0

√
1−Bϕ

1+Bϕ
� 1.20859 B̄0.

Accordingly, in order to satisfy the linearization assump-
tions of Sect. 5, B̄0 must be less than or equal to
0.08274 Ā (corresponding to approximately 8 km in
the Mars–Phobos system when Ā = 4.18 � 100 km).
Also notice that β̄ varies with a time-varying frequency

ωβ ∈
[K − E
3π Ā3

,
4 E − K
3π Ā3

]
that is always smaller than

ωα . Moreover, analytical expressions for the evolution
of K̄5 and K̄6 can be finally derived:

K̄5(ν) = B̄(ν) cos β̄(ν)

= B0
[
1 − Bϕ cos (2 ϕ̄)

]−1/2 cos (ᾱ − ϕ̄), (40a)

and

K̄6(ν) = B̄(ν) sin β̄(ν)

= B0
[
1 − Bϕ cos (2 ϕ̄)

]−1/2 sin (ᾱ − ϕ̄), (40b)

respectively.
We note that both of Eqs. (31) and (40) depend on

sines and cosines multiplied by time-periodic ampli-
tudes atworst. This observation confirms that 3Dquasi-
QSO orbits are stable for as long as the assumptions
of the LM model are valid. To validate this hypothe-
sis, we apply the analytical solution of System (25) to
obtain the dynamical evolution of a spacecraft under the
assumption that œ̄(ν0) = œ(ν0). Figure 14 shows the
behavior of the mean orbit elements δ̄x and δ̄y obtained
from the osculating orbit elements of Eq. (24) over 400
orbital revolutions. Although the secular evolutions of
δ̄x and δ̄y differ quite significantly from the osculat-
ing values, we find that the trajectory of the spacecraft
does not drift away from the vicinity of Phobos’ orbit.
This shows that, in the averaged system, trajectories are
bounded even when δ̄x is not exactly zero. At the same

time, we can also conclude that an appropriate trans-
formation between osculating and mean orbit element
is mandatory in order to adequately capture the secu-
lar evolution of spacecraft in mid-altitude QSOs. The
problem of finding accurate initial conditions for the
averaged system is addressed in the next section along
with the numerical validation and analysis of Eqs. (31)
and (40).

4 Mean-to-osculating orbit element mapping

In order to provide a detailed mapping between mean
and osculating orbit elements, differentmethods of per-
turbation theories can be considered (see for instance
[36], [22] and references therein). We choose to intro-
duce the near-identity transformation T : [0, 2π ] ×
M → M so as to reconstruct the unbiased oscillations
of motion of the original system from the averaged tra-
jectories. That is,

œ̂ = œ̄ + ε T (ν, œ̄) (41)

where ε is a formal small parameter (consider ε � A−2

for practical purposes) emphasizing the slow evolu-
tion of the mean orbit elements œ̄ with respect to the
fast variables ν. Under this assumption, the averaged
dynamics given by Eq. (25) may be rewritten in vecto-
rial form as ˙̄œ = ε ḡε(œ̄), whereas

˙̂œ = ε gε(ν, œ̂) + O(ε2) (42)

in agreement with Eq. (23) and the formal definition
g(ν, œ) = ε gε(ν, œ). From the true anomaly rate of
change of Eq. (41), it now follows that

ε gε(ν, œ̄ + ε T (ν, œ̄)) = ε ḡε(œ̄)

+ε

(
∂T

∂ν
+ ∂T

∂œ̄
ε ḡε(œ̄)

)
, (43a)

which implies

∂T

∂ν
� gε(ν, œ̄) − ḡε(œ̄) (44)

up to the first order in ε. To obtain unbiased oscillations,
let us also impose the integral constraint

∫ 2π

0
T (ν, œ̄) dν = 0, (45)
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Fig. 14 Evolution of the
in-plane center of motion
over 400 Phobos revolutions
with œ̄(ν0) = œ(ν0)

so that the analytical solution of the problem (44)–(45)
may be written as [37]:

T (ν, œ̄) = −i
∞∑
i=1

(
g(k)

ε

k

)
exp [−i k ν]. (46)

Equation (46) is a Fourier series that depends on the
Fourier coefficients g(k)

ε of gε(ν, œ̄) − ḡε(œ̄). The
series is practically truncated at the N -th order in com-
puter implementations, where N is an adequate high
number.

We highlight that transforming δx first is mandatory
for the problem at hand. On the one hand, the oscilla-
tions of δ̄x are ε-small as long as the satellite remains on
a mid-altitude 3DQSO orbit like the one in Fig. 5. This
argument can be verified by inspection of the osculat-
ing and averaged evolution of δx portrayed in Fig. 6.
On the other hand, the differential equation of ˙̄δy con-
tains a linear term in δ̄x that is not multiplied by ε-small

coefficients, i.e.,
3

2
δ̄x . Hence, an ε-small error would

be introduced in the ε-slow dynamics of δ̄y if δ̄x is not
properly handled (i.e., if oscillations of δx are biased
with respect to δ̄x at epoch).

To improve the accuracy of the near-identity trans-
formation, we propose the nested transformation

⎧⎪⎪⎨
⎪⎪⎩

∂Tδy

∂ν
� gε,δy

(ν, Ā, ᾱ, δ̄x

+ ε Tδx , δ̄y, K̄5, K̄6) − ḡε,δy
(œ̄),

0 = ∫ 2π

0 Tδy (ν, œ̄) dν,

(47)

where Tδx and Tδy represent the δx and δy components
of the T map. The advantages of the nested approach
are illustrated in the plots of Fig. 15, portraying the
reconstruction of δy from δ̄y with and without the pre-
emptive transformation of δx (Fig. 15a, b, respectively).
As it can be seen, the nested transformation performs
much better than the classic one by accurately recon-
structing the short-periodic oscillations of δy up to 25
Phobos revolutions aroundMars (8 days circa). In con-
trast, the biased value of δ̄x (ν0) at the epoch of Fig. 15b
causes larger oscillations in δ̄y that translate into inac-
curate osculating values.

Based on this result, we apply the nested approach
to calculate an approximate value of œ̄ and compare the
numerical integration of (25) with Eqs. (31) and (40).
The averaged initial conditions obtained from Eq. (24)
are

œ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

4.21151847992516
0.613104203916773

− 0.00104870967949794
− 0.0793524699676065
0.296432612194867

− 0.179780157819618

⎤
⎥⎥⎥⎥⎥⎥⎦

(48)

and yield the relative errors of Fig. 16. We find that the
relative error is negligible and use this information to
validate our analytical developments.

We can also investigate the long-term evolution of
mid-altitude QSO orbits and compare it with the oscu-
lating orbit elements obtained in Section 2.4. Starting
from the in-plane component of motion, it is found
that satellites in orbit around Phobos trace out prolate
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Fig. 15 aOsculating (black), mean (red) and reconstructed (dashed red) values of δy with preemptive transformation of δx . bOsculating
(black), mean (blue) and reconstructed (dashed blue) values of δy without the preemptive transformation of δx

Fig. 16 Relative error between numerically integrated and ana-
lytical mean orbit elements

Fig. 17 In-plane offset evolution over 100 Phobos orbits

ellipses whose center oscillates in the δy direction. This
is verified in the plot of Fig. 17, illustrating the evolu-
tion of a typical QSO orbit in the δx–δy plane along
with the analytical solution presented in Eq. (31).

Fig. 18 Out-of-plane motion over 400 Phobos orbits

Similar comparisons can be carried out for the values
of K5 and K6 by noting that the out-of-plane compo-
nent of motion should follow a pulsating circle with
radius B̄(ν). This behavior is demonstrated in the chart
of Fig. 18 after integrating the initial conditions ofFig. 5
for 400 orbital periods of Phobos (128 days circa). The
numerical simulation provides us with the time his-
tories of the α, β, and ϕ angles disclosed in Fig. 19,
thus proving that the true anomaly rate of change of
the α and ϕ angles is also in good agreement with
the analytical values derived in Eqs. (26) and (38),
respectively.

Finally, Fig. 20 shows the osculating and averaged
values of the in-plane amplitude A, thereby demon-
strating that the secular evolution of mid-altitude 3D
QSOs can be adequately captured by Eq. (46).
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Fig. 19 α, β, and ϕ angles evolution over 100 Phobos orbits

Fig. 20 Mean (red) and osculating (black) values of A over 100
Phobos orbits

5 Conclusions

This paper investigated quasi-satellite orbits around
small secondary bodies to gain analytical insight into
the elliptical restricted three-body problem. Start-
ing from gravitational perturbation of the Tschauner–
Hempel equations, we considered small eccentricities,
in-plane, and out-of-plane oscillations to simplify the
expressions of the QSO relative orbit elements rates
of change with respect to the true anomaly of the sec-
ondary body. The linearized model obtained through
these developments depends on the relative longitude
between the spacecraft and the secondary attractor,
which is a fast variable comparing to QSO orbit ampli-
tude, offsets, and phase angles at epoch. Based on
this observation, the equations of motion were aver-
aged over one orbital period and solved analytically.
We found that the eccentricity of the secondary body
plays a key role by triggering librations in the radial
and along-track directions of the primaries co-rotating

frame. It was also verified that the amplitude of the rela-
tivemotion remains constant as long as the assumptions
of the linearized model are valid. These results extend
the stability of near-equatorial retrograde orbits to the
elliptical Hill problem, thereby validating the selection
of QSO orbits for the proximity operations of future
spacecraft missions to eccentric planetary moons (e.g.,
the Phobos sample retrieval MMX mission).

Future work will explore the advantages offered
by the analytical solution of the averaged relative
motion problem to the mission design and operations
around small eccentric bodies. Apart from provid-
ing better initial guesses for trajectory design in full-
ephemeris model, our analytical derivations will be
used for onboard spacecraft operations and orbit main-
tenance analyses of the MMX mission. Indeed, avoid-
ing numerical integrations is crucial because of the
limited computational resources of satellites’ proces-
sors. New guidance algorithms based on mean relative
orbit elements will be studied to deal with knowledge
and dynamical errors in complex deep-space environ-
ments. Unfortunately, questions remain whether simi-
lar derivations can be carried out for low-altitudeQSOs,
which iswhy future researchwill be focused on extend-
ing the applicability of the averaged approach near the
surface of the target bodies.
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