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Abstract This study focuses on the radiation noise
of ceramic angular contact ball bearings for motorised
spindles. The differential equations of the vibrations
for each bearing component are established, and the
characteristics of various sound sources are analysed.
Then, a multi-sound source method for calculating the
radiation noise of a ceramic angular contact ball bear-
ing is developed. The accuracy and validity of the pro-
posed method are verified through numerical calcula-
tions and a corresponding experiment. Subsequently,
the frequency spectrum characteristics of the radia-
tion noise of the bearing components are discussed
in detail according to the multi-sound source method.
The radiation noise of each bearing component varies
nonlinearly with the rotation speed, and the varia-
tion is consistent with the total radiation noise of the
bearing. The eigenfrequency noise of each component
appears clearly in the noise frequency spectrum. The
results show that the proposed method can well pre-
dict the radiation noise of a ceramic angular contact
ball bearing and provide a theoretical reference for the
study of silent ceramic angular contact ball bearings
for motorised spindles.
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1 Introduction

Ceramic motorised spindles have high precision and
reliability and have been widely used in high-speed
machining. As a key component of ceramic motorised
spindles, the ceramic angular contact ball bearing
directly affects the operating accuracy of the spindle
and thus influences the overall performance. Therefore,
much research has been conducted on bearings regard-
ing different aspects, e.g. analyses of the dynamic per-
formance of bearings [1–5], discussions on their sliding
behaviour [6–8], predictions of their lifetime [9,10],
and studies on the characteristics of bearings with
localised defects [11–15]. All parts of a bearing affect
its dynamic performance, e.g. lubricants, lubrication
mode, and oil film pressure [16–18], bearing stiffness
[19,20], bearing friction torque [21,22], bearing con-
tact angle [23],material, deformation, and pocket shape
of the cage [24]. Further, the thermal performance of
a bearing cannot be ignored during operation [25–27].
When pre-tightening forces applied to the bearing are
varied, as well as the bearing clearance, pressure dis-
tribution, and bearing configuration, the bearing will
exhibit a different dynamic behaviour [28–31]. The
influences of the surface roughness and waviness in
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the raceway, surface waviness of balls, and ball number
on precision bearings are critical [32–35]. A deforma-
tion of the outer ring of the bearing will alter the fit
clearance between the outer ring and housing, thereby
affecting the load distribution of the bearing [36]. Li et
al. measured the vibrations at the bearing nodes with
a double-section interpolation iteration method [37].
Tomovic discussed the influences of the radial internal
clearance value and number of rolling elements on the
rigid-rotor vibrations in unloaded rolling-element bear-
ings [38].Wu, Půst, andHu analysed the vibration char-
acteristics of bearings in different applications [39–41].
These studies contribute to improving the bearing per-
formance. However, research on ceramic bearings is
still rare.

The bearing noise is an important index to evaluate
the bearing performance. Factors such as the bearing
structure, dimensional accuracy of all components, and
lubrication condition will affect the working state of
the bearing, resulting in different noise characteristics
of the bearing. According to the literature on bearing
research, few reports on the acoustic performance of
rolling bearings exist. Rho and Bouaziz investigated
the acoustic properties of a hydrodynamic journal bear-
ing using the sound pressure level (SPL) of the oil film
including the rotor imbalance and the elastic deforma-
tion of the bearing liner [42,43], respectively. However,
the mechanism of bearing noise, distribution character-
istics of noise, and noise characteristics of each com-
ponent have not been thoroughly analysed.

Rolling-element bearings are commonly composed
of four components, each of which produces differ-
ent nonlinear noises according to different working
parameters. Therefore, the nonlinear dynamic differ-
ential equations for the vibration of each component of
a rolling-element bearing are established in the study,
and the radiation noise of the bearing is investigated
using the multi-sound source method. In this study, a
ceramic angular contact ball bearing in a high-speed
motorised spindle [26] is used as the research object.
First, the nonlinear dynamic model is proposed in a
speed range of 10,000–40,000 rmin−1. Then, the radi-
ation noise of each bearing component is calculated
using different sound source models, and the total radi-
ation noise of the bearing is obtained using the principle
of sound field superposition. The numerical simulation
results are verified through the corresponding experi-
ments. Finally, the frequency spectrum characteristics

of the radiation noise regarding each component are
analysed.

2 Vibration equations of components

Generally, in actual operations, the outer ring of the
bearing is assembled into the bearingpedestal, but it can
still vibrate. The inner ring rotates at a constant speed.
It is assumed that the centre of mass and geometrical
centre of each component are the same. The movement
of the cage is guided by the inner ring. To better analyse
the vibration and noise characteristics of the high-speed
ceramic angular contact ball bearing, the coordinate
systems of the bearing are set up as shown in Fig. 1.

As shown in Fig. 1, the inertial coordinate system
{O; X,Y, Z} is fixed, and coordinate origin O is fixed
to the initial centre of the bearings. The X -axis rep-
resents the bearing rotation axis, which is parallel to
the ground. The Y - and Z -axes represent the horizon-
tal radial and vertical radial directions, respectively.
The following notation is used to describe the com-
ponents: ball (b), inner ring (i), outer ring (o), cage
(c), cage pocket (p), and ordinal number ( j) for balls
or cage pockets. In the coordinate system of the j th
ball {Ob j ; Xb j ,Yb j , Zb j}, the origin Ob j represents
the centre of mass of the ball, the Xb j axis is the
axial direction of the bearing, the Yb j axis is the cir-
cumferential direction of the bearing, and the Zb j axis
is the radial direction of the bearing. The coordinate
system {Ob j ; Xb j ,Yb j , Zb j} moves with the revolu-
tion of the ball but does not spin with origin Ob j .
Each ball has an independent coordinate system. In
the coordinate system of the cage, {Oc; Xc,Yc, Zc},
origin Oc coincides with the centre of mass of the
cage; the Xc axis is the axial direction of the cage;
and the Yc and Zc axes show the radial direction of
the cage and are parallel to the Y - and Z -axes of the
initial condition, respectively. The coordinate system
{Oc; Xc,Yc, Zc} moves and spins with the centre of
mass of the cage. The same properties apply to the
coordinate system of the inner ring, {Oi; X i,Yi, Z i},
and that of the outer ring, {Oo; Xo,Yo, Zo}. The coor-
dinate system {Op j ; Xp j ,Yp j , Zp j } belongs to the j th
cage pocket inwhich originOp j coincideswith the geo-
metric centre of the pocket. The Xp j axis is parallel to
the axial direction of the cage; theYp j axis stands for the
circumferential direction of the cage; the Zp j axis rep-
resents the radial direction of the cage. The coordinate
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Acoustic model of ceramic angular contact ball bearing 1157

Fig. 1 Schematic diagram
of coordinate systems for
ball bearing

system {Op j ; Xp j ,Yp j , Zp j} moves and rotates with
the cage. In addition, the j th cage pocket corresponds
to the j th ball, and each cage pocket has its own coor-
dinate system. The directions of the coordinate axes in
all coordinate systems conform to the right-hand rule
of the Cartesian coordinate system.

The bearing noise mainly comes from the vibration,
which can be classified as inherit noise caused by inher-
ent vibrations of the structure, noise caused by vibra-
tions of the profile error, as well as the friction and
impact noise caused during the operation. The radia-
tion noise of the bearing is caused by the superposition
of noises of all components, i.e. balls, inner ring, cage,
and outer ring. The vibration characteristics of each
component are analysed below.

2.1 Differential equations of vibrations for rolling
element

As an important component of angular contact ball
bearings, the balls contact all components, i.e. the cage,
inner ring, and outer ring. It is supposed that all balls
are equal in mass and size, and the sizes of the cage

pockets, which are distributed uniformly along the cir-
cumference, are the same. Figure 2 illustrates the forces
acting on a ball when the ceramic ball bearing operates
at a high speed.

In Fig. 2, αi j and αo j are the contact angles between
the j th ball and inner and outer raceways; Qi j and Qo j

are the normal contact forces between the j th ball and
inner and outer raceways, respectively; Tηi j , Tηo j , Tξ i j ,
and Tξo j are the traction forces of the contact surface
between the j th ball and raceways; Qcx j , Qcy j , and
Qcz j are the decomposition components of the colli-
sion force between the j th ball and cage; Gby j and
Gbz j are the decomposition components of the grav-
ity of the j th ball; Pη j and Pξ j are the friction forces
acting on the surface of the j th ball, including rolling
and sliding friction forces; Fbx j , Fby j , and Fbz j are
the components of the hydrodynamic force acting on
the centre of the j th ball; Fηi j , Fηo j , Fξ i j , and Fξo j

are the hydrodynamic friction forces at the lubricant
inlet of the contact zone of ball and raceways, includ-
ing rolling and sliding friction forces; Jx , Jy , and Jz
are the components of the moment of inertia for a ball
rotated around its own centre; ωx j , ωy j , and ωz j are the
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Fig. 2 Schematic diagram of forces acting on ceramic ball

components of the spin angular velocity of the j th ball
in its own coordinate system; and ω̇x j , ω̇y j , and ω̇z j are
the components of the spin angular acceleration of the
j th ball in its own coordinate system.
The normal contact forces can be obtained through

Hertz contact theory [6], and the traction forces can
be calculated [7] by ηV Sc/hc, where η is the lubricant
viscosity; V is the relative velocity of the ball and race-
ways; Sc is the contact area; and hc is the film thickness.
For the detailed calculation of the other forces, please
refer to ref. [44].

The differential equation [24] for the vibration of
the j th ceramic ball can be described as

Fbx j + Fηo j cosαo j − Fηi j cosαi j

+ Tηi jcosαi j − Tηo j cosαo j

+ Qi j sin αi j − Qo j sin αo j

+ Qcx j − Pη j = mb ẍb j

Fby j + Fξ i j − Fξo j

+ Tξo j − Tξ i j + Gby j + Qcy j = mb ÿb j

Fbz j − Fηo j sin αo j + FRηi j sin αi j

− Tηi j sin αi j + Tηo j sin αo j

+ Qi j cosαi j − Qo j cosαo j − Gbz j

+ Qcz j − Pξ j = mb z̈b j

[(Tξ i j − Fξ i j ) cosαi j + (Tξo j − Fξo j ) cosαo j

+ Qczj − Pξ j ]DW

2
− Jx ω̇x j = Ibω̇bx j

(Tηi j − Fηi j + Tηo j − Fηo j )
DW

2
− Jyω̇y j = Ibω̇by j

+ Ibωbz j θ̇b j

[(Tξ i j − Fξ i j ) sin αi j + (Tξo j − Fξo j ) sin αo j

+ Qcx j − Pη j ]DW

2
− Jzω̇z j = Ibω̇bz j

+ Ibωby j θ̇b j (1)

where DW is the diameter of the ceramic ball; mb is
its mass; ẍb j , ÿb j , and z̈b j are the displacement accel-
erations of the barycentre of the j th ball along the
direction of each coordinate axis in the coordinate sys-
tem {O; X,Y, Z};ωbx j , ωby j , and ωbz j are the angu-
lar velocities of the j th ball in the coordinate sys-
tem {O; X,Y, Z}; ω̇bx j , ω̇by j , and ω̇bz j are the angu-
lar accelerations of the j th ball in the coordinate sys-
tem {O; X,Y, Z}; θ̇b j is the orbit speed of the j th ball
in the coordinate system {O; X,Y, Z}; and Ib are the
moments of inertia of the ball in the coordinate system
{O; X,Y, Z}.

2.2 Differential equations of vibrations on cage

During the operation of the bearing, the cage contacts
only the ball, and friction and impact are generated.
The forces of the j th ceramic ball on the cage of the
bearing are shown in Fig. 3.

In Fig. 3, ec is the eccentricity between origin Oc in
the cage coordinate system {Oc; Xc,Yc, Zc} and origin
O in the inertial coordinate system {O; X,Y, Z};φc is
the deflection angle of the coordinate system {Oc; Yc,
Zc} relative to {O; Y, Z};φp j is the position angle of
the j th pocket; φb j is the position angle of the j th
ceramic ball relative to the cage; φ′

b j is the cosine angle
ofφb j ; Fcy , and Fcz are the components of the hydrody-
namic force acting on the cage; and Mcx is the friction
moment acting on the cage.

The differential equation [24] for the vibration of
the cage can be described as
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Fig. 3 Schematic diagram
of forces acting on cage

Fig. 4 Schematic diagram
of forces acting on inner
ring

N∑

j=1

[(Pη j − Qcx j )] = mc ẍc

Fcy +
N∑

j=1

[(Pξ j − Qcz j ) cosφb j − Qcy j sin φb j ] = mc ÿc

Fcz +
N∑

j=1

[(Pξ j − Qcz j ) sin φb j + Qcy j cosφb j ] = mc z̈c

N∑

j=1

[
(Pξ j − Qcz j )

DW

2
− Qcy j

dm
2

]
+ Mcx

= Icx ω̇cx − (Icy − Icz)ωcyωcz

N∑

j=1

(Pη j − Qcx j )
dm
2

cosφp j = Icyω̇cy − (Icz − Icx )ωczωcx

N∑

j=1

(Pη j − Qcx j )
dm
2
sinφp j = Iczω̇cz − (Icx − Icy)ωcxωcy

(2)

where mc is the mass of the cage; dm is the pitch
diameter of the bearing; N is the number of the
ceramic ball; ẍc, ÿc, and z̈c are the displacement
accelerations of the barycentre of the cage along

the direction of each coordinate axis in the coordi-
nate system {O; X,Y, Z};ωcx , ωcy , and ωcz are the
angular velocities of the cage in the coordinate sys-
tem {O; X,Y, Z}; ω̇cx , ω̇cy , and ω̇cz are the angular
accelerations of the cage in the coordinate system
{O; X,Y, Z}; and Icx , Icy , and Icz are the moments of
inertia of the cage in the coordinate system {O; X,Y, Z}.

2.3 Differential equations of vibrations on inner ring

Vibrations of the inner ring are mainly caused by the
contact friction between ball and inner ring. The forces
of the j th ceramic ball on the inner ring of the bearing
are shown in Fig. 4.

In Fig. 4, ϕi j is the position angle of the j th ceramic
ball relative to the inner ring.

The differential equation [24] for the vibration of
the inner ring can be described as

Fix +
N∑

j=1

[(Fηi j − Tηi j ) cosαi j − Qi j sin αi j ] = mi ẍi
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Fig. 5 Schematic diagram
of forces acting on outer
ring

Fiy +
N∑

j=1

[(Tξ i j − Fξ i j ) cosϕi j

− (Tηi j − Fηi j ) sin αi j sin ϕi j

+Qi j cosαi j sin ϕi j ] = mi ÿi

Fiz +
N∑

j=1

[(Tξ i j − Fξ i j ) sin ϕi j

+ (Tηi j − Fηi j ) sin αi j cosϕi j

− Qi j cosαi j cosϕi j ] = mi z̈i

Mix +
N∑

j=1

(Fξ i j − Tξ i j )ri j = Iix ω̇ix − (Iiy − Iiz)ωiyωiz

Miy +
N∑

j=1

[Qi j sin αi j + (Tηi j − Fηi j ) cosαi j ]ri j cosϕi j

−
N∑

j=1

[
(Tξ i j − Fξ i j )

DW

2
ki sin αi j sin ϕi j

]

= Iiyω̇iy − (Iiz − Iix )ωizωix

Miz +
N∑

j=1

[Qi j sin αi j + (Tηi j − Fηi j ) cosαi j ]ri j sin ϕi j

+
N∑

j=1

[
(Tξ i j − Fξ i j )

DW

2
ki sin αi j cosϕi j

]

= Iizω̇iz − (Iix − Iiy)ωixωiy (3)

where mi is the mass of the inner ring; Fix , Fiy , and
Fiz are the external loads acting on the inner ring;
Mix , Miy , and Miz are the external torques acting on
the inner ring; ẍi, ÿi, and z̈i are the displacement accel-
erations of the barycentre of the inner ring along the
direction of each coordinate axis in the coordinate
system {O; X,Y, Z};ωix , ωiy, and ωiz are the angu-
lar velocities of the inner ring in the coordinate sys-
tem {O; X,Y, Z}; ω̇ix , ω̇iy , and ω̇iz are the angular

accelerations of the inner ring in the coordinate sys-
tem {O; X,Y, Z}; Iix , Iiy , and Iiz are the moments
of inertia of the inner ring in the coordinate system
{O; X,Y, Z}; ki is the inner ring raceway curvature
radius coefficient; and ri j is the raceway radius of the
inner ring and can be calculated by

ri j = dm
2

− DW

2
ki cosαi j (4)

2.4 Differential equations of vibrations on outer ring

Since the outer ring of the bearing is installed inside the
bearing pedestal and does not rotate with the rotating
inner ring, the outer ring is subject to the force of the
bearing pedestal. The forces acting on the outer ring
comprise the contact force and dynamic friction forces
caused by the interaction between outer ring and balls.
The forces of the j th ceramic ball on the outer ring of
the bearing are shown in Fig. 5.

In Fig. 5, φo j is the position angle of the j th ceramic
ball relative to the outer ring.

The differential equation for the vibration of the
outer ring can be described as

Fox +
N∑

j=1

[(Tηo j − Fηo j ) cosαo j + Qo j sin αo j ] = mo ẍo

Foy −
N∑

j=1

[
(Tξo j − Fξo j ) cosϕo j

− (Tηo j − Fηo j ) sin αo j sin ϕo j

+ Qo j cosαo j sin ϕo j
] = mo ÿo

Foz −
N∑

j=1

[(
Tξo j − Fξo j

)
sin ϕo j

+ (
Tηo j − Fηo j

)
sin αo j cosϕo j
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− Qo j cosαo j cosϕo j
] = mo z̈o

Mox +
N∑

j=1

(Tξo j − Fξo j )ro j = Iox ω̇ox − (
Ioy

− Ioz) ωoyωoz

Moy +
N∑

j=1

[
Qo j sin αo j + (

Tηo j

− Fηo j
)
cosαo j

]
ro j cosϕo j

+
N∑

j=1

[
(Tξo j − Fξo j )

DW

2
ko sin αo j sin ϕo j

]

= Ioyω̇oy − (Ioz − Iox )ωozωox

Moz +
N∑

j=1

[
Qo j sin αo j + (

Tηo j

− Fηo j
)
cosαo j

]
ro j sin ϕo j

−
N∑

j=1

[
(Tξo j − Fξo j )

DW

2
ko sin αo j cosϕo j

]

= Iozω̇oz − (Iox − Ioy)ωoxωoy (5)

where mo is the mass of the outer ring; Fox , Foy , and
Foz are the external loads acting on the outer ring; and
Mox , Moy , and Moz are the external torques acting on
the outer ring. Here, these external forces andmoments
acting on the outer ring come from the pedestal. They
are calculated by Fox = Kox xo, Foy = Koy yo, Foz =
Koz zo, Mox = Sox Roψox , Moy = Soy Roψoy , and
Moz = Soz Roψoz based on lumped spring–mass sys-
tem models [45], where Kox , Koy, Koz, Sox , Soy , and
Soz are the stiffness coefficients of the springs, Ro is
the radius of the outer ring, and ψox , ψoy , and ψoz are
the angular displacements of the outer ring in the coor-
dinate system {O; X,Y, Z}.ẍo, ÿo, and z̈0 are the dis-
placement accelerations of the barycentre of the outer
ring along the direction of each coordinate axis in the
coordinate system {O; X,Y, Z};ωox , ωoy , and ωoz are
the angular velocities of the outer ring in the coordinate
system {O; X,Y, Z}; ω̇ox , ω̇oy , and ω̇oz are the angu-
lar accelerations of the outer ring in the coordinate sys-
tem {O; X,Y, Z}; Iox , Ioy , and Ioz are the moments
of inertia of the outer ring in the coordinate system
{O; X,Y, Z}; ko is the outer ring raceway curvature
radius coefficient; and ro j is the raceway radius of the
outer ring and can be calculated by

ro j = dm
2

+ DW

2
ko cosαo j (6)

3 Equivalent noise model

The rolling-element bearing consists of four compo-
nents, i.e. inner ring, outer ring, rolling body, and cage.
During the operation, friction and shock vibrations will
be produced between the bearing components, leading
to friction and impact noise. To analyse the noise char-
acteristics of the ceramic angular contact ball bearing,
the noise produced by each component of the bearing
is investigated. That is, the noise characteristics of the
inner ring, outer ring, ball, and cage are determined in
order to locate the position of the noise source. The
radiation noise of the bearing is the superposition of
the noise of the four components.

The sound source models of four components of
bearings, including ball sound source, point sound
source, piston sound source, and cylindrical sound
source, are developed according to the structural char-
acteristics of a ceramic angular contact ball bearing
[46,47]. The acoustic conditions of the mathematical
model regarding the noise are assumed as follows:

(1) The propagation medium for the sound wave is a
perfect fluid, i.e. no energy loss occurs during the
movement of the medium.

(2) The medium is uniform, continuous, and well dis-
tributed. On a macroscopic level, it is a static state,
i.e. the initial velocity is zero when no sound dis-
turbance exists.

(3) The medium and its neighbourhood are in an adia-
batic condition, i.e. no heat exchange occurs during
the propagation of the sound wave.

Therefore, the wave equation [46] for the propagation
of a small-amplitude wave in a perfect fluid can be
described as

∇2 p − 1

c20
· ∂2 p

∂t2
= 0 (7)

where∇2 denotes theLaplace operator.Different forms
exist in different coordinate systems; p is the sound
pressure, c0 the sound velocity, and t the time.

3.1 Ball sound source

It is assumed that a sphere with radius r0 exists. Its sur-
face emits sound waves uniformly with the microscale
ξ = dr in the vicinity of r0. The wave equation with
spherical coordinates is
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∂2 p

∂r2
+ 2

r
· ∂p

∂r
= 1

c20
· ∂2 p

∂t2
(8)

where r is the distance between observation point and
ball centre.

The general solution [46] of Eq. (8) is

p(r, t) = A

r
· e j (ωt−kr) + B

r
· e j (ωt+kr) (9)

where A and B are plurals usually, ω is the angular
velocity, k = 2π/λ0 the wave number, λ0 the wave-
length, and j denotes an imaginary unit.

The first part of Eq. (9) represents an outwardly
propagating spherical wave of radiation (divergent),
and the second part represents a reflected spheri-
cal wave (convergent) going towards the ball sound
source. Here, the freely travelling wave of the radiation
towards unbounded space is discussed. No reflected
wave exists, i.e. B = 0. Hence,

p(r, t) = A

r
· e j (ωt−kr) (10)

where the modulus of A/r is the sound pressure ampli-
tude.

According to the kinetic equation, the particle veloc-
ity along the radial coordinate r can be obtained as

vr = − 1

jωρ0

∂p

∂r
= A

rρ0c0

(
1 + 1

jkr

)
e j (ωt−kr) (11)

where ρ0 is the static density of the medium.
Since the velocity of amediumparticle at the surface

of the sound source is equal to the vibration velocity
on the surface of the sound source [46,48,49], the fol-
lowing boundary condition exists:

vr |r=r0 = u (12)

where u is the vibration velocity on the surface of the
sound source and obtained by solving the differential
equations of eachbearing component as a sound source.

Therefore, A can be calculated using Eq. (13).

A = ρ0c0kr20u

1 + (kr0)2
(kr0 + j) (13)

Then, the radiation sound pressure equation of the pul-
sating spherical source is obtained as

p(r, t) = ρ0c0kr20u

r
√
1 + (kr0)2

e
j
(
ωt−kr+arctan 1

kr0

)

(14)

The pulsating spherical-source model describes a zero-
order spherical source. The model is therefore not fully
applicable to radiation noise caused by a ceramic ball.

Here, a first-order spherical source [50] is used to
describe the radiation sound pressure of the ceramic
ball, which can be written as

pb(r, θ, t)

= ρ0c0kr30u cos θ

2r2
√
1 + (kr)2e

j
(
ωt−kr−arctan 1

kr

)

(15)

where pb is the radiation sound pressure of a ball sound
source and θ is the azimuth angle of the observation
point.

To obtain the radiation sound pressure of the j th
ceramic ball, its vibration velocity in the ball sound
source is calculated by

ubbj =
√
ẋ2b j + ẏ2b j + ż2b j (16)

where ubbj is the vibration velocity of the j th ball in the
ball sound source. ẋb j , ẏb j , and żb j are the velocities of
the barycentre of the j th ball along the direction of each
coordinate axis in the coordinate system {O; X,Y, Z}.

By substituting Eq. (16) into Eq.(15), the radiation
soundpressure of a ceramic ball in the ball sound source
is obtained as

pbbj (r, θ, t) = ρ0c0kr30
√
1 + (kr)2 cos θ

2r2√
ẋ2b j + ẏ2b j + ż2b j e

j (ωt−kr−arctan 1
kr )

(17)

where pbbj represents the radiation sound pressure of
the j th ball in the ball sound source.

3.2 Point sound source

When the sound source radius of the pulsating sphere
is far smaller than the sound wave length, i.e. kr0 → 0,
the sound source is called a point sound source. When
the point sound source radiates energy into the half-
space, the intensity of the point source is denoted as
Q0 = 2π r20u. Hence, the sound pressure equation of
radiation for the sound source can be described as [46]

pd(r, t) = ρ0c0k

2πr
Q0e

j(ωt−kr+ π
2 )

= ρ0c0kr20u

r
e j(ωt−kr+ π

2 ) (18)

where pd represents the radiation sound pressure of a
point sound source.
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The combination of point sources can handle any
complex surface sound source. Here, the point source
is used to calculate the turnover vibration radiation
sound pressure of each bearing component. The vibra-
tion velocity of each bearing component in the point
sound source can be determined using

ubd j = Dw
4

√
ω2
bx j + ω2

by j + ω2
bz j

ucd = Rc
2

√
4ω2

cx + ω2
cy + ω2

cz

uid = Ri
2

√
4ω2

ix + ω2
iy + ω2

iz

uod = Ro
2

√
4ω2

ox + ω2
oy + ω2

oz

(19)

where ubd j , ucd , uid , and uod are the vibration veloci-
ties of the j th ball, cage, inner ring, and outer ring in
point sound source, respectively. Rc and Ri are the radii
of the cage and inner ring.

Therefore, the radiation sound pressure of each
bearing component in the point sound source can be
obtained as

pbd j (r, t) = ρ0c0kr20 Dw
4r

√
ω2
bx j + ω2

by j + ω2
bz j e

j(ωt−kr+ π
2 )

pcd (r, t) = ρ0c0kr20 Rc
2r

√
4ω2

cx + ω2
cy + ω2

cze
j(ωt−kr+ π

2 )

pid (r, t) = ρ0c0kr20 Ri
2r

√
4ω2

ix + ω2
iy + ω2

ize
j(ωt−kr+ π

2 )

pod (r, t) = ρ0c0kr20 Ro
2r

√
4ω2

ox + ω2
oy + ω2

oze
j(ωt−kr+ π

2 )

(20)

where pbd j , pcd , pid , and pod represent the radiation
sound pressures of the j th ball, cage, inner ring, and
outer ring in the point sound source, respectively.

3.3 Piston sound source

The piston sound source is obtained by combining
many point sound sources. The end-surface vibration
noise of a bearing ring is a piston sound source. It is
assumed that the end surface of the ring is divided into
many infinitely small surfaces, dS, and each is treated
as a point sound source. The intensity of the point sound
source is denoted as dQ0 = udS. Since the vibration of
only half a sphere contributes to the half-space sound
field, the sound pressure emitted from the end surface
of the ring can be expressed as [46]

p =
∫ ∫

S

j
ρ0c0k

2πh
ue j (ωt−kh)dS (21)

where S is the end surface area of the ring and h is the
distance from observation point to point sound source.

Fig. 6 Schematic diagram of coordinate systems for piston
sound source

As shown in Fig. 6, the sound field is rotational sym-
metric relative to the X -axis of the piston sound centre.
In the sound field, the point P is placed in the XOZ
plane, and analysed by geometry, the relational expres-
sions can be obtained as follows:

h =
√
r2 + l2 − 2rl cos(�r , �l) (22)

cos(�r , �l) = sin θ cosϕ (23)

where l is the distance between the surface, dS, and
coordinate origin, O , and ϕ is the azimuth angle of the
surface, dS. When the distance from the observation
point to the centre of the piston sound source is far
greater than the radius of the piston,

h ≈ r − l sin θ cosϕ (24)

By replacing Eq. (24) into (21), the sound pressure can
be expressed as

p = j
ρ0c0k

2πr
e j (ωt−kr)

∫ ∫
e jkl sin θ cosϕldldϕ (25)

According to the properties of the Bessel function, the
sound pressure can be obtained using

p(r, θ, t) = j
ρ0c0u0e j (ωt−kr)

r sin θ[
D

2
J1

(
k
D

2
sin θ

)
− d

2
J1

(
k
d

2
sin θ

)]

(26)

where D and d are the external and internal diameters
of the ring, respectively.

Based on the low frequency near the field charac-
teristic of the piston sound source, the sound pressure
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equation for the vibration radiation of the ring end sur-
face can be obtained as

pp(r, θ, t) = ρ0c0ku

8r
(D2 − d2)e j(ωt−kr+ π

2 ) (27)

where pp is the radiation sound pressure of a piston
sound source.

The end-surface vibration radiation pressure of the
cage is also calculated with a piston sound source.

In the piston sound source, the vibration velocities
of the cage, inner ring, and outer ring are calculated as

ucp = ẋc
uip = ẋi
uop = ẋo

(28)

where ucp, uip, and uop are the vibration velocities of
the cage, inner ring, and outer ring in the piston sound
source, respectively. ẋc, ẋi, and ẋo are, respectively, the
velocities of the barycentre of the cage, inner ring, and
outer ring along the X -direction in the coordinate sys-
tem {O; X,Y, Z}.

Therefore, the radiation sound pressures of the cage,
inner ring, and outer ring in the piston sound source can
be obtained as

pcp(r, θ, t) = ρ0c0kẋc
8r (D2 − d2)e j(ωt−kr+ π

2 )

pip(r, θ, t) = ρ0c0kẋi
8r (D2 − d2)e j(ωt−kr+ π

2 )

pop(r, θ, t) = ρ0c0kẋo
8r (D2 − d2)e j(ωt−kr+ π

2 )

(29)

where pcp, pip, and pop represent the radiation sound
pressures of the cage, inner ring, and outer ring in the
piston sound source, respectively.

3.4 Cylindrical sound source

A cylindrical sound source is used for the radial vibra-
tions of a bearing ring. By assuming an infinitemedium
and that the length of the cylindrical bearing ring sur-
face is infinite, the axis perpendicular to the ring oscil-
lates at a vibration velocity of u. Further, it is assumed
that the x-axis coincideswith the cylindrical axis. Thus,
the sound pressure p is independent of the X coordi-
nate. The sound wave equation can be simplified as

∂2 p

∂r2
+ 1

r

∂p

∂r
= 1

c2
∂2 p

∂t2
(30)

By only addressing the sound field radiation from the
sound source surface to the distant space, the sound
pressure [51] can be calculated with

p(r, θ, t) = A1 · H (2)
1 (kr) · cos θ · e j (ωt−kr) (31)

Here,

A1 = − jρ0c0u

J ′
1(ka) − j N ′

1(ka)
(32)

H (2)
1 (kr) = J1(kr) − j N1(kr) (33)

where J1, N1, and H (2)
1 are the first-order Bessel func-

tion, first-order Neumann function, and Hankel func-
tion of the second kind, respectively; J ′

1 and N ′
1 are

the derivatives of J1 and N1, respectively, and a is the
cylindrical radius.

By substituting Eqs. (32) and (33) into (31), the
sound pressure can be denoted as

p(r, θ, t)=− jρ0c0ue j (ωt−kr)

J ′
1(ka)− j N ′

1(ka)
[J1(kr)− j N1(kr)] cos θ

(34)

For a low-frequency emission, i.e.a << λ0 and ka <<

1, according to the expansion of the Bessel function,
z0 << 1,

J1(z0) ≈ z0
2 ,

N1(z0) ≈ − 2
π z0

J ′
1(z0) ≈ 1

2 ,

N ′
1(z0) ≈ 2

π z20

(35)

By substituting Eq. (35) into (34), the sound pressure
can be determined using

p(r, θ, t) = ρ0c0ue j (ωt−kr)

1
4 +

(
2

πk2a2

)2

[(
1

πkr
+ r

πka2

)

− j

(
kr

4
− 4

π2k3ra2

)]
cos θ (36)

The following terms are defined:

A0 = ρ0c0

1
4 +

(
2

πk2a2

)2 cos θ (37)

Br = 1

πkr
+ r

πka2
(38)

Bi = kr

4
− 4

π2k3ra2
(39)

Consequently, the sound pressure caused by the radial
vibration of the ring cylinder can be expressed as

pc(r, θ, t) = A0u
√
B2
r + B2

i e
j
(
ωt−kr−arctan

Bi
Br

)

(40)

where pc represents the radiation sound pressure of a
cylindrical sound source.
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The cylindrical sound sourcemodel can also be used
to calculate the radial vibration radiation pressure of the
cage.

In the cylindrical sound source, the vibration veloci-
ties of the cage, inner ring, and outer ring are calculated
as

ucc = √
ẏ2c + ż2c

uic =
√
ẏ2i + ż2i

uoc = √
ẏ2o + ż2o

(41)

where ucc, uic, and uoc are the vibration velocities
of the cage, inner ring, and outer ring in cylindrical
sound source, respectively. ẏc, ẏi, ẏo, żc, żi, and żo are,
respectively, the velocities of the barycentre of the cage,
inner ring, and outer ring along the Y - and Z -direction
in the coordinate system {O; X,Y, Z}.

Therefore, the radiation sound pressures of the cage,
inner ring, and outer ring in cylindrical sound source
can be obtained as

pcc(r, θ, t) = A0
√
B2
r + B2

i

√
ẏ2c + ż2ce

j
(
ωt−kr−arctan

Bi
Br

)

pic(r, θ, t) = A0
√
B2
r + B2

i

√
ẏ2i + ż2i e

j
(
ωt−kr−arctan

Bi
Br

)

poc(r, θ, t) = A0
√
B2
r + B2

i

√
ẏ2o + ż2oe

j
(
ωt−kr−arctan

Bi
Br

)

(42)

where pcc, pic, and poc represent the radiation sound
pressure of the ball, cage, inner ring, and outer ring in
cylindrical sound source, respectively.

3.5 Sound pressure level (SPL)

By solving the differential equations of the vibration
for each bearing component, the vibration velocity of
each bearing component is obtained, and the velocity
is substituted into the above sound source model to
obtain the sound pressure of the analysis field point.
By superposingmultiple sound sources, the total sound
pressure of each bearing component can be obtained as

pb j =
√
p2bbj + p2bd j

pc =
√
p2cp + p2cc + p2cd

pi =
√
p2ip + p2ic + p2id

po =
√
p2op + p2oc + p2od

(43)

where pb j , pc, pi, and po represent the total radiation
sound pressure of the ball, cage, inner ring, and outer
ring, respectively.

The sound pressure of a certain sound source ismea-
sured by assuming a continuous time interval at a cer-
tain fixed position. The effective sound pressure [42] is
obtained as

pe =
√

1

T

∫ T

0
p2dt (44)

where pe denotes the effective sound pressure value;
T , the sampling time; and p, the instantaneous sound
pressure.

Therefore, the effective SPL at the measurement
point can be calculated from

L p = 20 log10
pe
pref

(45)

where pref = 2 × 10−5 Pa is the referenced SPL.
According to the principle of sound field superposi-

tion [46], the overall SPL for the noise of the ceramic
angular contact ball bearing at a certainmeasuringpoint
can be calculated as

SPL = 10 log10

(
Z∑

i=1

10
L pi
10

)
(46)

where L pi is the SPLof the i th sound source at themea-
suring point and Z the total number of sound sources.

The dynamic behaviour of each component of the
ceramic angular contact ball bearing is analysed, and
the noise is calculated by combining various types of
sound sources to obtain the total noise of the bear-
ing. This method is the so-called multi-sound source
method. In the method, according to the vibration char-
acteristics of each component, a combination of mul-
tiple sound sources is applied to calculate the radia-
tion noise of each bearing component, e.g. the radiation
noise of the rings is obtained by superposing the noises
of the point sound source, piston sound source, and
cylindrical sound source. Furthermore, based on the
principle of sound field superposition, the total noise
of the bearing is obtained by superposing the radiation
noises of all bearing components. The flowchart for
whole solution process is shown in Fig. 7.
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Fig. 7 Flowchart for whole solution process

4 Numerical simulation and experimental
verification

4.1 Numerical simulation

In this study, high-speed ceramic angular contact ball
bearings are installed in a motorised spindle, and the
pre-tightening force of the bearing is set to 500 N. The
rings, balls, and cage are made of GCr15 steel, silicon
nitride ceramics, and bakelite, respectively. The spec-
ifications of the ceramic angular contact ball bearing
and spindle are listed in Table 1. It is assumed that the
bearing operates with a perfect lubrication and remains
in the steady state during operation. Here, the nonlinear
dynamic differential equations are solved by gear stiff
integration algorithm with variable steps [52]. Then,
the vibration velocities on the sound source surfaces are
obtained and substituted into the noise model for cal-
culating the radiation noise. The noise variations of the
high-speed ceramic angular contact ball bearing dur-
ing the unloaded operation in a speed range of 10,000–
40,000 rmin−1 are studied. The speed variation step
size is set to 1000 rmin−1.

Table 1 Specifications of the ceramic angular contact ball bear-
ing and spindle

Item Value

Bearing outside diameter (mm) 35

Inner ring bore diameter (mm) 17

Pitch diameter (mm) 26

Bearing width (mm) 10

Ball diameter (mm) 4.5

Ball number 12

Contact angle (◦) 15

Cage outside diameter (mm) 27.6

Cage bore diameter (mm) 23.4

Cage pocket diameter (mm) 4.6

Cage width (mm) 9.1

Maximum diameter of spindle (mm) 28

Minimum diameter of spindle (mm) 15

Fit dimension of spindle and rotor (mm) 23

Length of the spindle (mm) 179.5
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Fig. 8 SPL of bearing at analysis points

Four field points are analysed to discuss the change
law of the SPL for a ceramic angular contact ball bear-
ing with rotational speed. The analysis points 1, 2, and
3 are located along the radial direction and the analysis
point 4 along the axial direction. The analysis points 1,
2, and the bearing centre are positioned on a straight
line perpendicular to gravity. Further, points 1 and 2
are 105mm and 150mm away from the bearing axis,
respectively. The analysis point 3 is above the bearing
and 105mm away from the bearing axis. The analy-
sis point 4 is located on the bearing axis and 75.5mm
away from the end surface of the bearing. The SPL at
the analysis points can be obtained through Eq. (46).
The calculation results based on themulti-sound source
method are shown in Fig. 8.

Regarding the SPL trend at each point in Fig. 8,
first, the radiation noise of the ceramic angular contact
ball bearing gradually increases with increasing rota-
tion speed of the bearing. Then, it reaches a peak value
and begins to decrease. Themaximumpeak value of the
SPL occurs at a rotation speed of 28,000 rmin−1, which
is called the critical speed. The SPL varies steeply near
the critical speed. Although the overall trend of the
SPL at each point is similar, there are still differences
in SPL and its variations at different locations. The SPL
of point 2 is smaller than that of point 1 at any rotation
speed, and the SPL of point 4 is between points 1 and
2. It seems that the SPL at point 3 is not significantly
related to the SPL at other points. The SPL of point 3 is
larger than that of point 1 for a rotation speed range of
16,000–27,000 rmin−1, and lower than that of point 1
at other speeds. Above 32,000 rmin−1, the SPL at point
3 is smaller than that at the other three points.

4.2 Experimental verification

To obtain the sound pressure distribution of the radi-
ation noise for the ceramic angular contact ball bear-
ing, the measurement scheme of Fig. 9 is adopted in
this study. When observing from the front end of the
motorised spindle, the bearing rotates clockwise. To
ensure the consistency of the measuring points and the
calculation field points, the measuring points 1 and 2
are positioned on the left side of the motorised spin-
dle, point 3 is above the motorised spindle, and point
4 is in front of the motorised spindle. The positions
of points 1 and 2 are 55mm and 100mm away from
the outer surface of the motorised spindle (105 mm
and 150mm away from the bearing axis) regarding
the horizontal diameter, respectively. Measuring point
3 is located 55mm away from the outer surface of the
motorised spindle (105mmaway from the bearing axis)
regarding the vertical diameter. Point 4 is on the bear-
ing axis and 60mm away from the front surface of the
motorised spindle (75.5mm away from the end surface
of the bearing). The sound pressure sensors (INV9206-
I, China Orient Institute of Noise and Vibration) are
placed at themeasuring points. The sound pressure sig-
nal of each measuring point is collected by a data col-
lector (INV3018C, China Orient Institute of Noise and
Vibration) and transmitted to the computer to further
process the sound pressure data and analyse the radia-
tion sound field characteristics of the ceramic angular
contact ball bearing.

The environmental temperature in the laboratory
is 22◦C, and the background noise is lower than
45dB. The cooling system for the motorised spin-
dle is composed of a water cooling system, and the
motorised spindle is lubricated through an oil–gas
lubrication system. The flow rates of cooling water,
air, and oil are set to 0.3m3 h−1, 4.84m3 h−1, and
0.8cm3 h−1, respectively. The sound pressure distribu-
tion characteristics of the bearing radiation noise are
analysed by measuring the noise pressure for spin-
dle rotation speeds of 10,000 rmin−1, 15,000 rmin−1,
20,000 rmin−1, 25,000 rmin−1, 26,000 rmin−1, 27,000
rmin−1, 28,000 rmin−1, 29,000 rmin−1, 30,000
rmin−1, 35,000 rmin−1, and 40,000 rmin−1, respec-
tively. The measured SPLs and the calculated results
of the four measuring points are shown in Fig. 10.

As shown in Fig. 10, at the selected field points,
a consistent variation trend exists between calculated
values and experimental results: the radiation noise
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Fig. 9 Measurement
scheme of bearing noise

first increases with increasing rotation speed of the
spindle, and the SPL has a high peak value at a crit-
ical speed of 28,000 rmin−1. Then, the noise decreases
with increasing rotation speed. The experimental val-
ues at each rotation speed are smaller than the cal-
culated values except for 20,000 rmin−1. The aver-
age relative errors of the field points 1 to 4 at all
selected rotation speeds are 1.74%, 1.62%, 1.89%, and
1.75%, respectively. Further, the overall average rela-
tive error is 1.75%. The maximum difference between
calculated and experimental results is 2.36dB with a
relative error of 2.83% (point 3 with rotation speed
of 30,000 rmin−1). The minimum difference between
calculated and experimental results is 0.24dB with a
relative error of 0.28% (point 1 with rotation speed
of 26,000 rmin−1). The error is relatively large above
30,000 rmin−1. The results show that the bearing noise
is the main constituent of the motorised-spindle noise.
They simultaneously verify the effectiveness and accu-
racy of the proposedmulti-sound sourcemethod in pre-
dicting the radiation noise of a ceramic angular contact
ball bearing.

According to the theoretical directivity of the sound
field, even if the analysis point is at identical distances
from the sound source, the noise in different directions
varies. For example, the maximum values in Fig. 10a,
c are different. In the condition of the ideal sound prop-
agation and equivalent analysis, the calculated results

obviously show the sound field directivity. However,
in the actual measurements, the radiation noise of the
bearing will be disturbed by various factors such as
the attenuation of sound propagation, and absorption
of the bearing noise by the motorised spindle hous-
ing. The experimental results at the maximum value of
Fig. 10a, c present a similar value. They do not have
obvious directionality compared with the calculation
results. Therefore, the SPL in Fig. 10c has a better
approximationof themaximumvalue,whereasFig. 10a
presents a larger discrepancy.

To get detailed information of the bearing noise, the
radiation noise characteristics and contribution of each
component are further analysed.

5 Acoustic characteristics of the bearing

For a more detailed analysis of the acoustic charac-
teristics of the ceramic angular contact ball bearing,
the radiation noise of each component is analysed sep-
arately in the frequency domain. The eigenfrequency
for each component has a prominent contribution to
the radiation noise of the ceramic angular contact ball
bearing and can be calculated by applying Eq. (47):
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Fig. 10 Experimental and calculated results. a point 1, b point 2, c point 3, and d point 4

fb = dm
2DW

fr

(
1 − D2

W
d2m

cos2 α

)

fc = 1
2 fr

(
1 − DW

dm
cosα

)

fi = N
2 fr

(
1 + DW

dm
cosα

)

fo = N
2 fr

(
1 − DW

dm
cosα

)

(47)

where fr is the rotation frequency of the bearing;
fb, fc, fi, and fo represent the eigenfrequencies of the
ball, cage, inner-ring raceway, and outer-ring raceway,
respectively; and α is the contact angle of the bearing.

The eigenfrequencies can be obtained based on
the structural parameters of the ceramic angular con-
tact ball bearing in Table 1. Table 2 lists the rota-
tion frequency and the eigenfrequencies of all com-
ponents when the bearing operates at rotation speeds
of 20,000 rmin−1, 25,000 rmin−1, 28,000 rmin−1, and
30,000 rmin−1.

Considering Table 2, the eigenfrequency of the
inner-ring raceway is the largest and no more than
4000Hz. Therefore, the acoustic characteristics of each
component are investigated in the frequency range of
0–4000Hz with steps of 20Hz. Here, the analysis point
1 is taken as reference. The radiation noise character-
istics of each component and their contribution to the
total bearing noise can be obtained based on the multi-
sound source method.

5.1 Radiation noise of ceramic balls

Under ideal working conditions, the frequency spec-
trum for the radiation noise of the ceramic balls is
shown in Fig. 11.

According to the four subgraphs in Fig. 11, the
radiation noise of the ball presents distinct peaks in
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Fig. 11 Frequency spectrum for the calculated radiation noise of balls under different rotation speeds. a n = 20, 000 rmin−1, b
n = 25, 000 rmin−1, c n = 28, 000 rmin−1, and d n = 30, 000 rmin−1

Table 2 Bearing speed and characteristic frequency

Rotation speed
(r·min−1)

20,000 25,000 28,000 30,000

fr (Hz) 333.33 416.67 466.67 500

fb (Hz) 936.04 1170.07 1310.48 1404.07

fc (Hz) 138.80 173.51 194.33 208.21

fi (Hz) 2334.34 2917.97 3268.13 3501.54

fo (Hz) 1665.62 2082.07 2331.91 2498.46

medium- and low-frequency bands, and the ball noise
peaks contain the eigenfrequencies of all components.
The changes in SPLs at all eigenfrequencies along
with the rotation speed show a similar trend, which
changes nonlinearly with increasing rotation speed.
The SPL has its maximum at the ball eigenfrequency.
The noises for the eigenfrequencies of the inner and
outer ring exhibit only little differences, and the SPL

at the eigenfrequency of the outer ring is slightly larger
than at that of the inner ring. With increasing rota-
tion speed, the SPL at the rotation frequency becomes
obviously larger than that at the eigenfrequency of the
cage and at twice the rotation frequency. The SPL at
twice the rotation frequency gradually increases from
a value below the cage eigenfrequency noise to a
value above. The SPL of each eigenfrequency noise
at a speed of 28,000 rmin−1 is higher than that of
other rotation speeds, which is consistent with the total
noise.

5.2 Radiation noise of cage

The cage is subject to the impact and friction of the
balls. Moreover, the force of the lubrication fluid has
an impact. The frequency spectrum for the radiation
noise of the cage is shown in Fig. 12.
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Fig. 12 Frequency spectrum for the calculated radiation noise of cage under different rotation speeds. a n = 20, 000 rmin−1, b
n = 25, 000 rmin−1, c n = 28, 000 rmin−1, and d n = 30, 000 rmin−1

Figure 12 exhibits three remarkably high peaks in
the noise spectrum of the cage. They appear at the
eigenfrequencies of the cage, ball, and rotation fre-
quency, respectively. The eigenfrequency of the cage
contributes themost noise, followed by the rotation fre-
quency.Thepeakvalues inFig. 12c are larger than those
in other subgraphs; i.e. the noise at a rotation speed
of 28,000 rmin−1 is higher than that at other rotation
speeds. The SPLs of three peaks at a rotation speed of
25,000 rmin−1 are below those at 30,000 rmin−1 and
above those at 20,000 rmin−1. The noise varies nonlin-
early with increasing rotation speed, and the tendency
is consistent with the behaviour of the overall radiation
noise.

5.3 Radiation noise of inner ring

As a power-transmitting element for the bearing, the
inner ring is fastened to the shaft and its rotation speed

remains that of the shaft. Considering the characteris-
tics of the inner-ring sound source, the frequency spec-
trum of the radiation noise for the inner ring under dif-
ferent rotation speeds is calculated, as shown in Fig. 13.

According to Fig. 13, the SPL for radiation noise
of the inner ring consists of six main peaks, which
are at the eigenfrequency of each component, rotation
frequency, and double rotation frequency, respectively.
Further, the peak values shift to the right with increas-
ing rotation speed. The variation in the eigenfrequency
contribution in the radiation noise of the inner ring is
more complex. According to the six peaks, the SPL for
the inner-ring eigenfrequency noise is maximum and
the minimum SPL is at twice the rotation frequency.
The contribution of ball eigenfrequency to the radia-
tion noise for the inner ring decreases gradually, and
the contributions of rotation frequency and outer-ring
eigenfrequency to the radiation noise for the inner ring
increase gradually. The eigenfrequencyof the cage con-

123



1172 H. Yan et al.

Fig. 13 Frequency spectrum for the calculated radiation noise of inner ring under different rotation speeds. a n = 20, 000 rmin−1, b
n = 25, 000 rmin−1, c n = 28, 000 rmin−1, and d n = 30, 000 rmin−1

tributes less to the radiation noise for the inner ring at
low rotation speed, and the contribution increases with
increasing rotation speed. However, the change is not
obvious. The variation in the feature noise at the eigen-
frequency of each component with the rotation speed
is in accordance with that of the total noise.

5.4 Radiation noise of outer ring

Although the outer ring is assembled into the bearing
pedestal, it is still subject to the force of the balls and
pedestal, thereby resulting in a vibration and noise. The
frequency spectrum for the radiation noise of the outer
ring is shown in Fig. 14.

Figure 14 displays the variation in the frequency
spectrum, detected from the radiation noise of the outer
ring, with the rotation speed. There are six major peaks

in each frequency spectrum, which appear at the eigen-
frequency of each component, rotation frequency, and
double rotation frequency, respectively. The contribu-
tion of the rotation frequency increases with increasing
rotation speed. At a speed of 28,000 rmin−1, its SPL is
close to the SPL of the outer ring eigenfrequency and
has exceeded the SPL of the ball eigenfrequency. The
contribution of the outer ring eigenfrequency seems to
be decreasing. However, its SPL still has the largest
value. The SPL at the eigenfrequency of the inner ring
increases first and then decreases with increasing rota-
tion speed. The SPL at the eigenfrequency of the cage
has always been greater than that at the double rotation
frequency, and their contributions have little change.
The radiation noises at the eigenfrequency of each com-
ponent vary nonlinearly with increasing rotation speed,
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Fig. 14 Frequency spectrum for the calculated radiation noise of outer ring under different rotation speeds. a n = 20, 000 rmin−1, b
n = 25, 000 rmin−1, c n = 28, 000 rmin−1, and d n = 30, 000 rmin−1

and they all have a similar trend with the overall radi-
ation noise.

5.5 Comparison of radiation noise among bearing
components

Figure 15 compares the radiation noise of the bearing
components under different rotation speeds. The SPL
values from point 1 at each component under differ-
ent speeds will provide more insight into the radia-
tion noise source and effect of the speed. As shown
in Fig. 15, the radiation noise of each component
increases with increasing rotation speed. The maxi-
mum SPL of each component appears at a rotation
speed of 28,000 rmin−1, where the radiation noise of
the outer ring is larger than that of the inner ring. There-
fore, the outer ring can be considered the main noise

source, followed by the inner ring. The radiation noise
of the ball is between those of the cage and inner ring.

5.6 Spectrum characteristics of radiation noise for the
bearing

In order to reveal the difference between the calculated
and the experimental results more intuitively, Fig. 16
presents the spectrumdiagramof the radiation noise for
the ceramic angular contact ball bearing at the speed
of 28,000 rmin−1. According to Fig. 16, the calculated
results are close to the experimental results, and the
rotation frequency contributes most to the radiation
noise. The maximum difference between calculated
and experimental results is 3.4dB with a relative error
of 4.12% (at fb). The minimum difference between
calculated and experimental results is 1.15dB with a
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Fig. 15 Comparison of the calculated radiation noise for bearing
components under different rotation speeds

relative error of 1.34% (at f ). In the calculated results,
the contribution of each eigenfrequency to the radia-
tion noise is consistent with the experimental results.
When the frequency is less than fc, the fluctuation of
the experimental results is slightly larger than that of
the calculated results. On the whole, the radiation noise
of the calculated results is larger than that of the exper-
imental results in the range of the analysis frequency.
The deviation between the two results may be caused
by the simplification of the parameters in the calculated
model or the systematic error during experimental test-
ing. It can be seen from the comparison that the results
of the calculation can basically reflect the experimen-
tal results, which indicates that the multi-sound source
method can be applied to the prediction of the radiation
noise for the ceramic angular contact ball bearings.

6 Discussion

The overall radiation noise of the bearing increases
first and then decreases with increasing rotation speed.
However, owing to the increasingly intense motion of
the bearing with increasing rotation speed, the SPL
of the radiation noise cannot be reduced to values
below the SPL of the low rotation speed. Although
field points 1 and 2 are in the same radial direction
and maintain a fixed distance, the SPLs of the two
points are not strictly in a linear relation. At a rota-
tion speed of 20,000 rmin−1, the experimental results
are always larger than the calculated values because of
the magnetic-field resonances of the motorised spindle
in the experiment. In addition, the background noise is

Fig. 16 Spectrum characteristics of the radiation noise for the
bearing

lower than 45dB in the paper, which has a little effect
on the experimental results according to the principle
of sound field superposition.

The rotation frequency noise is found in the spec-
trum of the radiation noise for each component. This
indicates that the rotation frequency noise is a funda-
mental constituent of the radiation noise of the bear-
ing. In addition, the double rotation frequency has a
certain contribution to the radiation noise of the bear-
ing. In the noise spectrum of each bearing component,
the eigenfrequency of each component contributes the
most noise to its own acoustic spectrum. The high hard-
brittleness ceramic ball contacts with all components
and produces friction and impact noise, causing obvi-
ous eigenfrequency noise of the ball. The stiffness and
natural frequency of the cage are both low and the
impact between the cage and the balls is violent, result-
ing in obvious eigenfrequency noise of the cage. How-
ever, the cage has a strong absorptive capacity to noise,
so the cage noise is relatively smaller than the ceramic
ball.

The radiation noise characteristics of the bearing
components alter nonlinearly with increasing spindle
speed. This is consistent with the trend of the overall
radiation noise of the bearing. The radiation noise of
the outer ring is themain source contributing to the total
noise of the bearing. This might be because the outer
ring is subject to the greater force of the ball, which
causes the larger vibration noise of the outer ring. The
inner ring is mainly affected by the friction force of the
ball. However, the contribution of the inner ring to the
total radiation noise of the bearing is slightly below that
of the outer ring due to the influence of the centrifu-
gal force caused by high-speed motion. The radiation
noise from the ball is greater than that from the cage

123



Acoustic model of ceramic angular contact ball bearing 1175

but smaller than that from the inner ring. Since the cage
material has the ability to absorb impact energy, it has a
relatively small contribution to the total radiation noise
of the bearing. According to the analyses above, the
friction noise is the main component of the bearing
radiation noise. The stiffness and natural frequency of
the components have a great influence on the radiation
noise.

Furthermore, other types of bearings such as deep
groove ball bearing, which are equipped with similar
structures, have similar dynamic behaviours with the
angular contact ball bearing during operation, which
cause vibration and noise. Therefore, the multi-sound
source method can also be applied to calculate the radi-
ation noise of other bearings.

7 Conclusion

To address the differential equation for the vibration of
bearing components and the characteristics of differ-
ent sound sources, a multi-sound source method for the
noise calculation of high-speed ceramic angular con-
tact ball bearing is presented in this paper. The radi-
ation noise of the ceramic angular contact ball bear-
ing affecting a high-speed motorised spindle at dif-
ferent field points and varied rotation speeds are cal-
culated using numerical simulations. The accuracy of
the proposed method is verified with contrast exper-
iments. The results show that the calculated values
are in good agreement with the experimental results.
The maximum difference measures 2.36dB, and the
relative error is not more than 2.83%. The radiation
noise of the bearing has an obvious sound field direc-
tivity. On this basis, the characteristics of the radiation
noise of the bearing components are analysed in detail.
According to the analysis, the friction noise is the main
component of radiation noise of the bearing. The stiff-
ness and natural frequency of the components have a
great influence on the radiation noise. The noise of the
balls is lower than that of the inner ring but is above
that of the cage. Further, the noise of the outer ring is
slightly greater than that of the inner ring. The eigen-
frequency of each component is the main contributor
to the radiation noise in the own frequency spectrum of
each component. The rotation frequency noise appears
in the noise frequency spectrum of each component.
This paper provides a theoretical basis for improving
the acoustic performance of bearings and their applica-

tion in high-speed motorised spindles. In addition, this
method can be used to analyse the radiation noise of
other equipment with the bearing as the sound source.
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