
Nonlinear Dyn (2019) 98:2327–2338
https://doi.org/10.1007/s11071-019-05331-9

ORIGINAL PAPER

Nonlinear system identification using fractional
Hammerstein–Wiener models

Karima Hammar · Tounsia Djamah · Maamar Bettayeb

Received: 20 November 2018 / Accepted: 24 October 2019 / Published online: 9 November 2019
© Springer Nature B.V. 2019

Abstract The paper deals with identification of frac-
tional order nonlinear systems based on Hammerstein–
Wiener models. An output error approach is devel-
opedusing the robust Levenberg–Marquardt algorithm.
It presents the difficulty of the parametric sensitivity
functions calculation which requires a heavy compu-
tational load at each iteration. To overcome this draw-
back, the fractional nonlinear system is reformulated
under a regression form, and the gradient and the Hes-
sian can be obtained in a closed form without using
the parametric sensitivity functions. The method’s effi-
ciency is confirmed on numerical simulations, and its
feasibility is illustrated with its application to the mod-
eling of an experimental arm robot.
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1 Introduction

Major real processes shownonlinear dynamicbehavior,
and their modeling and identification remain an active
research topic considering the diversity and complex-
ity of nonlinear systems. Their adequate description
over the entire range of operation has required many
structures such as voltera series, Narmax models, neu-
ral networks, black box or block-oriented model, etc.,
. . . [1–4]. The block-structured class allows the sep-
aration of the linear dynamic part and the nonlinear
static part into different subsystems which can be inter-
connected in a different order (Hammerstein, Wiener,
Hammerstein–Wiener, etc.).

The more general model of this class is the
Hammerstein–Wiener (H-W) model which consists
of three subsystems, where a linear block is embed-
ded between two nonlinear subsystems. This more
elaborate system topology can improve the model’s
performance describing a real nonlinear system with
both an actuator nonlinearity and a sensor nonlinearity
[5]. Some work has also shown that the H-W system
can approximate relatively well almost any high-order
nonlinear system [6,7]. They have been successfully
applied to model numerous technological processes
such as fermentation bioreactor [8], skeletal muscle
system [9], chemical process [10], electrical discharge
machining [11], temperature variations in a silage bale
[12], etc.

On the other hand, many physical nonlinear pro-
cesses and materials exhibit a fractional behavior,
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characterized by a hereditary property and an infi-
nite dimensional structure; hence, the fractional order
models have gained an increasing interest among
researchers [13–16]. Their main advantage is the parsi-
monious models that can mimic the dynamic behavior
of real processes with better accuracy than their coun-
terpart classical systems, in addition to having a “mem-
ory” included in the model. Among the various appli-
cations, we can cite: quantum mechanics [17], chaotic
motions [18], diffusive phenomena [19], biochemical
reactor [20], etc., . . .

In this paper, the identification of fractional H-W
model is aimed, where the H-W structure has its linear
part of fractional order. The goal is to take advantage
of the capability of the H-W system and the parsimony
of the fractional order models.

Nonlinear system identification is a major research
topic; themost difficult task is to select themodel struc-
ture and to establish a suitable identification approach.
Thedrawback reported in the literature is that to achieve
an accurate identification, we have to deal with the
curse of dimensionality.

Many studies considered the identification of the
classical integer order class of systems; the simpler
structures ofHammerstein orWienermodels have been
focused on, while relatively less work has concerned
the H-W system identification [5,21–24].

In the area of fractional block-oriented system iden-
tification, Hammerstein models have been identified
using heuristic approaches such as particle swarm opti-
mization (PSO) [25], or genetic algorithm (GA) com-
bined with the recursive least squares (RLS) [26]. An
iterative linear optimization algorithm and a Lyapunov
method have been developed in [27]. As for the frac-
tional Wiener model, an output error method is used in
[28], while a modified PSO is extended in [29].

As a matter of fact, fractional Hammerstein–Wiener
models identification is more difficult than that of the
simpler Hammerstein and Wiener systems; the com-
plexity lies in the fact that they involve two unknown
internal signals not accessible tomeasurements.Conse-
quently, to the best of the authors knowledge, only one
study has considered the identification of a continuous
time fractional H-W models based on an instrumental
variable method in [30].

In this context, a novel approach for identifying frac-
tional H-W systems in the discrete case is presented.

It is based on an output error approach using a non-
linear optimization method, and the robust Levenberg–

Marquardt (L-M) algorithm is developed for the frac-
tional H-Wmodels. Its drawback is the parametric sen-
sitivity functions necessary for the gradient and hes-
sian computation of the update rule. Their complexity
depends on the chosenmodel and requires a heavy com-
putational load at each iteration for the H-W case. To
overcome this difficulty, the method reformulates the
fractional H-W model under a regression form, which
allows a better model parameterization. As a result, the
gradient and the Hessian can be obtained in a closed
form, avoiding the sensitivity functions computation,
and the update burden is drastically reduced. To test the
method performance, it is applied to a real arm robot
system identification.

The outline of this paper is organized as follows:
Section 2 introduces the required theoretical con-

cepts of fractional calculus. In Sect. 3, the fractional
H-W system is presented along with the problem for-
mulation, while the identification method is developed
in Sect. 4. Section 5 illustrates the method efficiency
with some simulation results and its application to the
modeling of an arm robot. Finally, conclusion and some
perspectives are provided in Sect. 6.

2 Mathematical background

2.1 Fractional derivative

Fractional calculus has attracted an increasing interest
among researchers these last decades with its applica-
tion in system modeling and control [19,31,32]

Different definitions of the differintegral operator
have been proposed in the literature, and the most used
for the discrete case is the Grünwald–Letnikov one (G-
L), expressed as follows [33,34]:

�αx(kh) = 1

hα

k∑

j=0

(−1) j
(

α

j

)
x((k − j)h) (1)

where �α denotes the fractional order difference oper-
ator of order α, with zero initial time, x(kh) is a func-
tion of t = kh, k is the number of samples, and h is the
sampling interval which is assumed to be equal to 1.(

α
j

)
is the binomial term defined by:

(
α

j

)
=

{
1 for j = 0
α(α−1)···(α− j+1)

j ! for j > 0
(2)
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Let us define the following recurrence relation:

{
β(0) = 1
β( j) = β( j − 1) ( j−1)(α−1)

j for j = 1, . . . , k
(3)

where

β( j) = (−1) j
(

α

j

)
(4)

Eq. (1) can be rewritten under the form:

�αx(k) =
k∑

j=0

β( j)x(k − j) (5)

The numerical simulation of the fractional system stud-
ied in this paper is performed using Eq. (5).

2.2 Fractional order models

Differentmodels can be defined in the fractional system
description. In this study, the transfer function and the
recurrence equation are considered.
The discrete transfer function representation is defined
by the following equation:

G(z) = Y (z)

U (z)
=

∑nb
i=1 bi z

−γi

∑na
i=1 ai z

−αi
(6)

where U (z),Y (z) are, respectively, the system input
and the system output, αi and γ j ∈ R

∗+ are the frac-
tional orders (i = 1, . . . , na , and j = 1, . . . , nb), and
z−1 is the backward shift operator with z−1y(k) =
y(k − 1).

The recurrence equation of the model Eq. (6) can be
deduced; it is expressed as follows:

na∑

i=1

ai z
−αi y(k) =

nb∑

i=1

bi z
−γi u(k) (7)

The fractional models of Eq. (6) and Eq. (7) are called
non-commensurate order systems when the fractional
orders are completely different; otherwise, when these
last are multiples of a same basis α̃ ∈ R

∗+ with (αi =
i α̃ and γ j = j α̃), the models are of commensurate
order. In this paper, the case of fractional commensurate

Linear

part

Nonlinear

part2

Nonlinear

part1

Input Output

Fig. 1 The Hammerstein–Wiener system

f(u(k)) B(z)

A(z) g(y(k))

u(k)

v(k)

y(k)

+ +

Fig. 2 The Hammerstein–Wiener model

order systems is considered, and the recurrence Eq. (7)
can be rewritten under the form:

na∑

i=1

ai z
−i α̃ y(k) =

nb∑

i=1

bi z
−i α̃u(k) (8)

Using the discrete fractional order operator � in the
time domain, Eq. (8) yields the following equation:

na∑

i=1

ai�
α̃ y(k − i) =

nb∑

i=1

bi�
α̃u(k − i) (9)

This model will be used to describe the linear part of
the fractional H-W model.

3 Problem description

The general structure of a H-W system is defined by the
cascade connection of two nonlinear subsystems with
a linear fractional dynamic block embedded between
them according to Fig. 1.

In thiswork, theHammerstein–Wienermodel defined
in [35] and represented by the block structure of Fig. 2
is adopted. Its input/output equation is expressed as
follows:

y(k) = A(z)g(y(k)) + B(z) f (u(k)) + v(k) (10)

where u(k) and y(k) are, respectively, the input and the
output of the overall system, and v(k) is the noise. The
nonlinear parts are described by the functions f and
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g, while the linear part of fractional order is described
by the polynomials A(z) and B(z) of the shift operator
z−1 given by the following equations:

A (z) = a1z
−α1 + a2z

−α2 · · ·

+ ana z
−αna =

na∑

i=1

ai z
−αi

B (z) = b1z
−γ1 + b2z

−γ2 · · ·

+ bnb z
−γnb =

nb∑

j=1

b j z
−γ j (11)

The nonlinear functions f and g are expressed as a
linear combination of a known basis, respectively:
f = ( f1, . . . , fn p ) with the coefficients (p1, . . . , pnp )
g = (g1, . . . , gnq ) with the coefficients (q1, . . . , qnq )
where

f (u(k)) = p1 f1(u(k)) + p2 f2(u(k)) · · ·
+pnp fn p (u(k))

=
n p∑

i=1

pi fi (u(k)) (12)

g(y(k)) = q1g1(y(k)) + q2g2(y(k)) · · ·
+qnq gnq (y(k))

=
nq∑

j=1

q j g j (y(k)) (13)

Replacing A(z) and B(z) in Eq. (10) gives:

y(k) =
na∑

i=1

ai z
−αi g(y(k)) +

nb∑

i=1

bi z
−γi f (u(k))

+v(k) (14)

Substituting Eq.(12) and Eq.(13) in Eq. (14) results
in the Hammerstein–Wiener system overall equation:

y(k) =
na∑

i=1

ai z
−αi

nq∑

j=1

q j g j (y(k))

+
nb∑

i=1

bi z
−γi

n p∑

j=1

p j f j (u(k)) + v(k) (15)

The commensurate order case being considered,
(αi = i α̃) and (γ j = j α̃), Eq. (15) can be written
in the time domain, using the difference operator �:

y(k) =
na∑

i=1

ai

nq∑

j=1

q j�
α̃g j (y(k − i))

+
nb∑

i=1

bi

n p∑

j=1

p j�
α̃ f j (u(k − i)) + v(k)

= q1

na∑

i=1

ai�
α̃g1(y(k − i)) · · ·

+qnq

na∑

i=1

ai�
α̃gnq (y(k − i))

+p1

nb∑

i=1

bi�
α̃ f1(u(k − i)) · · ·

+pnp

nb∑

i=1

bi�
α̃ fn p (u(k − i)) + v(k) (16)

The fractional H-W system is defined by the parameter
vectors of the linear and the nonlinear subsystems as
follows:

a = [
a1 a2 · · · ana

]T ∈ R
na ,

b = [
b1 b2 · · · bnb

]T ∈ R
nb

p = [
p1 p2 · · · pnp

]T ∈ R
n p ,

q = [
q1 q2 · · · qnq

]T ∈ R
nq (17)

Notice that to obtain a unique parameterization, it is
necessary to normalize themodel parameters [36]; thus,
the first coefficients of two blocks are fixed, here, p
and q are set equal to one, i.e., (p1 = 1 and q1 = 1)
and Eq. (16) can be rewritten as:

y(k) =
na∑

i=1

ai�
α̃g1(y(k − i))

+q2

na∑

i=1

ai�
α̃g2(y(k − i)) · · ·

+ qnq

na∑

i=1

ai�
α̃gnq (y(k − i))

+
nb∑

i=1

bi�
α̃ f1(u(k − i))
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+p2

nb∑

i=1

bi�
α̃ f2(u(k − i)) · · ·

+ pnp

nb∑

i=1

bi�
α̃ fn p (u(k − i)) + v(k) (18)

The main contribution of this work is to develop a
novel identification approach to estimate the unknown
parameters of the different subsystems and the frac-
tional order of the Hammerstein–Wiener model.

4 Identification method

The identification objective consists in estimating the
parameter vectors a, b, p, q and the order α̃ in
Eq. (18). This approach is based on an output error
method using the L-M algorithm. It is a robust nonlin-
ear optimization method which combines the Gauss–
Newton method and the steepest descent. However, it
suffers from the drawback of the complex computa-
tion of the parametric sensitivity functions necessary
for the gradient and hessian calculation. In this paper,
we extend the L-M algorithm for the identification of
the fractional H-W model, and a better model parame-
terization can be achieved by the reformulation of the
system output Eq. (18) under a regression form. This
allows for the representation of nonlinear input/output
relationship with a linear in the parameters structure.

y(k) = ϕT(k, α̃)θ̃ + v(k) (19)

where ϕ(k, α̃) denote the information vector defined as
follows:

ϕ(k,α) =
⎡

⎣
ψ(k, α̃)

φ(k, α̃)

⎤

⎦ (20)

where

ψ(k, α̃) = [
ψ1(k, α̃) · · · ψnq (k, α̃)

]T
(21)

ψ i (k, α̃) = [
�α̃gi (y(k − 1)) · · · �α̃gi (y(k − na))

]

for i = 1, . . . , nq

(22)

φ(k, α̃) = [
φ1(k, α̃)φ2(k, α̃) · · · φn p (k, α̃)

]T (23)

φ j (k, α̃) = [
�α̃ f j (u(k − 1)) · · · �α̃ f j (u(k − nb))

]

for j = 1, . . . , n p

(24)

The unknown parameter vector θ̃ is defined fromEq.
(18) and Eq. (19) as follows:

θ̃ = [
a q2a · · · qnq a b p2b · · · pnp b

]T (25)

TheHammerstein–Wiener system identification requires
the estimation of the parameter vector θ which contains
the parameters of the linear block and the nonlinear
blocks as well as the fractional order:

θ =
[
θ̃
T

α̃
]

∈ R
nθ nθ = nanq + nbn p + 1 (26)

The quality of the estimation procedure is measured in
terms of the following quadratic criterion:

J = 1

K

K∑

k=1

ε2(k) (27)

where K is the data length, ε(k) is the prediction error
to be minimized with:

ε(k) = y(k) − ŷ(k) = y(k) − ϕT(k, ˆ̃α)
ˆ̃
θ (28)

ŷ(k), ˆ̃
θ and ˆ̃α are, respectively, the estimates of y(k),

θ̃ and α̃. L-M algorithm uses the following recurrence
equation:

{
θ (i+1) = θ (i) −

{[
J

′′ + λI
]−1

J
′
}

θ̂=θ (i)
(29)

The update rule is based on the calculation of the gra-
dient and the Hessian J ′ and J ′′ with respect to each
parameter of θ , and λ is a tuning parameter for the con-
vergence. The reformulation of the H-W model output
equation under a regression form allows a better model
parameterization, and the gradient and the Hessian can
be obtained in a closed form without using the para-
metric sensitivity functions. Based on the regression
form of the prediction error Eq. (28), they are easily
computed by deriving the quadratic functional of Eq.
(27) with respect to θ̃ :

J ′
θ̃

= − 2

K
ϕT(k, α̃)

[
y(k) − ϕT(k, α̃)θ̃

]
(30)

J ′′
θ̃

= 2

K
ϕT(k, α̃)ϕ(k, α̃) (31)

The calculation of the gradient and the Hessian with
respect to the fractional order α̃ (J ′

α̃
and J ′′

α̃
) can be
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performed as follows:

J ′
α̃ = − 2

K

⎡

⎢⎣
∂

(
ϕT(k, ˆ̃α)

ˆ̃
θ
)

∂α̃

⎤

⎥⎦

T
[
y(k) − ϕT(k, α̃)θ̃

]

= − 2

K

[
∂ ŷ(k)

∂α̃

]T [
y(k) − ϕT(k, α̃)θ̃

]

= − 2

K
(σŷ(k)/α̃)T

[
y(k) − ϕT(k, α̃) ˜xzθ

]
(32)

where σŷ(k)/α̃ = ∂ ŷ(k)

∂α̃
is the output sensitivity func-

tion with respect to α̃; it is calculated numerically:

σŷ/α̃ ≈ ŷ(k, α̃ + δα̃) − ŷ(k, α̃)

δα̃
(33)

with δα̃ a small variation of α̃.
The Hessian J ′′

α̃
can be derived using:

J ′′
α̃ = 2

K

(
∂ ŷ(k)

∂α̃

)T (
∂ ŷ(k)

∂α̃

)

= 2

K
(σŷ(k)/α̃)T(σŷ(k)/α̃) (34)

Hence, the gradient J ′
θ and the Hessian J ′′

θ are
expressed by these equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J
′
θ =

⎡

⎢⎣
J

′
θ̃

J
′
α̃

⎤

⎥⎦ = − 2

K

⎡

⎣
ϕT(k, α̃)(y(k) − ϕT(k, α̃)θ̃)

(σŷ(k)/α̃)T(y(k) − ϕT(k, α̃)θ̃)

⎤

⎦

(35)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J ′′
θ =

⎡

⎢⎣
J ′′
θ̃

J ′′
α̃

⎤

⎥⎦ = 2

K

⎡

⎢⎣
ϕT(k, α̃)ϕ(k, α̃)

(
σŷ(k)/α̃

)T (
σŷ(k)/α̃

)

⎤

⎥⎦ (36)

The main steps of the developed approach can be
summarized as follows:

1. Collect the input–output data set [u(k), y(k)].
2. Let i = 1, and set the initial values θ̃

0
, α̃0 and δα̃.

3. Form ϕ(k, α̃) using Eq. (20 ).
4. Compute the output fractional order sensitivity

function σŷ(k)/α̃ using Eq. (33).

5. Compute J
′
using Eq. (35) and J

′′
using Eq. (36).

6. Update the parameter estimate θ (i) using Eq. (29).
7. Compute the quadratic function using Eq. (27).
8. If J (θ (i+1)) < J (θ (i)), increase λ, otherwise,

decrease λ and set θ̂ = θ (i) and J (θ̂) = J (θ i )

and go to step 3.

The H-W obtained parameter estimates â, b̂, p̂, q̂
and ˆ̃α can be read from the vector θ̂ as follows:

The estimates of the vector a elements are the first
na values of θ̂ , b̂ can be read from the (nanq + 1) to
(nanq +nbn p) elements of θ̂ and α̃ is the final element.
From Eq. (25), we notice that for each q j , we have na
estimates q̂ j ; hence, the mean value may be computed
as its estimate:

q̂ j = 1

na

na∑

i=1

θ̂ ( j−1)na+i

âi
j = 2, . . . , nq (37)

Similarly, the estimate of p is deduced

p̂ j = 1

nb

nb∑

i=1

θ̂nanq+( j−1)nb+i

b̂i
j = 2, . . . , n p (38)

The effectiveness of the developed method is tested in
the next section using numerical simulations.

5 Simulation examples

Two examples are presented in this section: the first
one is an academic example that illustrates the statis-
tical performance of the proposed algorithm for differ-
ent signal-to-noise ratios (SNR); the second example
is a real experiment of a flexible robot arm which is
intended to be modeled with a fractional H-W struc-
ture.

Without loss of generality, the nonlinear functions
f and g are assumed to be polynomials of orders n p

and nq , respectively.
The first step required to perform good system iden-

tification is the choice of the model structure; in the
present work, it consists in determining the values of
na, nb, n p and nq of the linear and nonlinear blocks. In
this aim, different values are tried out, along with the
estimation procedure, and the best structure with the
smallest criterion is selected.

5.1 Example 1: academic example

Let us consider the fractional Hammerstein–Wiener
system of commensurate order α̃ = 0.6, with na = 2,
nb = 2. The nonlinear parts f and g adopt the polyno-
mials form of orders n p = 2, and nq = 3, respectively.
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A (z) = a1z
−α̃ + a2z

−2α̃

B (z) = b1z
−α̃ + b2z

−2α̃

f (u(k)) =
2∑

j=1

p j f j (u(k))

g (y(k)) =
3∑

j=1

q j g j (y(k)) (39)

The overall output system equation is as follows:

y(k) =
3∑

j=1

q j

2∑

i=1

ai�
0.6g j (y(k − i))

+
2∑

j=1

p j

2∑

i=1

bi�
0.6 f j (u(k − i))

+v(k) (40)

with

f1(u(k − i)) = u(k − i)

f2(u(k − i)) = u2(k − i)

g1(y(k − i)) = y(k − i)

g2(y(k − i)) = y2(k − i)

g3(y(k − i)) = y3(k − i) (41)

y(k) = a1�
0.6y(k − 1) + a2�

0.6y(k − 2)

+q2a1�
0.6y2(k − 1) + q2a2�

0.6y2(k − 2)

+q3a1�
0.6y3(k − 1) + q3a2�

0.6y3(k − 2)

+b1�
0.6u(k − 1) + b2�

0.6u(k − 2)

+p2b1�
0.6u2(k − 1) + p2b2�

0.6u2(k − 2)

+v(k) (42)

where the parameter vectors to be estimated are:

a = [ a1 a2 ]T = [ 0.1 0.2 ]T
b = [ b1 b2 ]T = [ −0.4 − 0.2 ]T
p = [ p1 p2 ]T = [ 1 0.5 ]T
q = [ q1 q2 q3 ]T = [ 1 0.7 0.35 ]T (43)

The input u(k) is taken as a persistent excitation
sequence with zero mean and unit variance, and v(k)
is a white noise sequence with zero mean and constant
variance. The data set is of length K = 1000.

In the first phase, the right structure has to be deter-
mined and various combinations na , nb, n p, nq are
tested. The criteria evolution for the best structures ver-
sus the iteration number is represented in Fig. 3, and the
obtained values for J , for each structure are tabulated

5 10 15 20 25 30
Number of iterations

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

C
rit

er
ia

 J

[na nb np nq]=[2 2 2 3]

[na nb np nq]=[3 1 2 2]

[na nb np nq]=[3 3 3 2]

[na nb np nq]=[2 2 2 2]

Fig. 3 Evolution of the criteria versus the number of iterations

in Table 1; the exact structure is recovered with a cost
function J � 0.

In the second phase, and through the use of the best
structure, the algorithm is evaluated in the absence of
noise and with noisy data, for different signal-to-noise
ratios (SNR): 34 dB and 26 dB.

The characteristics of the fractional H-W system for
the noise-free case are shown graphically in Fig. 4. In
the first figure, the estimated output is compared to the
simulated one, while the second figure represents the
prediction error. The results obtained are satisfactory:
they show that the error is null and the output overlaps
with the data.

For noisy measurements, with SN R = 34 dB and
SN R = 26 dB, the comparison of the real output and
the estimated one alongwith their respective prediction
errors is depicted in Figs. 5 and 6 for each SN R.

From the obtained results, we can conclude that the
outputs correspond to the real data with a perfect ade-
quacy and the errors are relatively small.

To test the robustness of the algorithm, a Monte
Carlo simulation is performed for 50 sets of noise real-
ization, with SN R = 34 dB and SN R = 26 dB.

The mean values and the variance of the estimated
parameters, and the obtained criteria J are listed in
Table 2.

It can be noticed that the parameters of the linear
part, nonlinear part and the fractional order converge
to their exact values. The resulting criterion J is equal
to 3.2e − 4 for SN R = 34 dB, while for SN R = 25
dB, it is equal to 2.4e − 3. These results clearly verify
the effectiveness of the proposed method and confirm
its statistical performance.
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Table 1 Structure test results of Example 1

[na, n p, nb, nq ] [2, 3, 2, 2] [2, 2, 2, 2] [3, 3, 2, 3] [3, 5, 2, 2]
J 1e − 34 9e − 4 7e − 4 2e − 3
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Fig. 4 Identification results for the noise-free case

5.2 Application to a robot arm benchmark

To illustrate further the method, a benchmark data
set taken from the identification database DAISY
(Database for the Identification of Systems) [37] is
used.

The identification of an experimental flexible robot
arm shown in Fig. 7 is intended. The system consists
of an arm installed on an electrical motor, whose input
is the reaction torque of the structure on the ground,
and the output is the acceleration of the flexible arm.
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Fig. 5 Identification results for Example 1 for SN R = 34dB

The measured data set contains 1024 samples, which is
divided into two parts: the first part is selected for the
identification task, while the second part is used for the
validation procedure.

The input/output signals of the experimental robot
arm are represented in Fig. 8.
This nonlinear benchmark has been modeled in the lit-
erature using neural networks, and classical NARX and
NLARX structures [38,39], and in this study, the frac-
tional Hammerstein–Wiener model is tested.

In the first step, the best structure of the model is
investigated, different choices of the orders na, nb, n p

and nq are tested, and the best structure is determined
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Fig. 6 Identification results for Example 1 for SN R = 25dB

Fig. 7 Flexible robot arm

from the lowest value of the quadratic criterion J . The
analysis of the criteria evolution of different structures
is illustrated in Fig. 9, and Table 3 shows the obtained
values of the criterion J .

We can conclude that the best model structure is
obtained for the orders na = 3, nb = 5, n p = 2, and
nq = 1 with the mean square error J = 9e − 3.

Using this structure, the robot arm’s measured out-
put is compared with the estimated one in Fig. 10 along
with the prediction error.

Table 2 Monte Carlo Simulation Results

SN R = 34dB δ(%) exact values

a1 0.103 1e − 3 0.100

a2 0.206 4.1e − 3 0.200

b1 −0.390 1.5e − 3 −0.400

b2 −0.196 2e − 3 −0.200

p2 0.501 1e − 2 0.500

q2 0.696 1.9e − 3 0.700

q3 0.351 2e − 4 0.350

α̃ 0.581 0.035 0.600

J 3.2e − 4 − −
SN R = 25dB δ(%) exact values

a1 0.102 6e − 4 0.100

a2 0.206 3.8e − 3 0.200

b1 −0.385 2e − 4 −0.400

b2 −0.195 1.8e − 2 −0.200

p2 0.504 2.2e − 2 0.500

q2 0.698 2.1e − 3 0.700

q3 0.364 1.4e − 3 0.350

α̃ 0.579 0.043 0.600

J 2.4e − 3 − −

The estimated output corresponds to the real data with
a good adequacy, and the error is small. The validation
results are depicted in Fig. 11.

The estimated model of the robot arm’s benchmark
is a fractional H-Wmodel of order α̃ = 0.701, with the
parameters given by the vectors a, b, p, q as follows:

a = [0.407 − 0.278 − 0.024]T,

b = [−0.378 0.039 0.027 − 0.013 − 10.724]T,

p = [1 − 10.724]T , q = [1].

The fractional H-W model simulation results show a
good agreementwith the experimental robot arm’s data,
and the parameters are estimated with relatively less
errors than the ones reported in the literature. More-
over, a model complexity reduction is achieved since
the number of the model parameters is 11 versus 16 or
more in the literature and the identification procedure is
achieved for 40 iterations. This confirms the efficiency
of the proposed identification method.
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Table 3 Structure test of the arm robot system

[na, nb, n p, nq ] [2, 3, 3, 2] [3, 4, 3, 1] [3, 5, 2, 1]
J 7.5e − 2 2.2e − 2 9e − 3

0 200 400 600 800 1000

0 200 400 600 800 1000

Time (s)

-0.5

0

0.5

u(
k)

 (N
.m

)

Estimation Validation

(a) Input system

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
k)

 (r
ad

/s
2 )

Estimation Validation

(b) Output system

Fig. 8 System input and output
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Fig. 10 Arm robot identification results

6 Conclusion

In this paper, a novel approach for the fractional
order H-W system identification is developed. An out-
put error framework is adopted based on the robust
Levenberg–Marquardt algorithm. The difficulty of the
parametric sensitivity functions implementation is cir-
cumvent by reformulating theH-Wmodel output under
a regression form. The main advantage is that the gra-
dient and the Hessian equations can be derived easily
and the identification burden is drastically reduced.
The method’s efficiency has been confirmed in an
academic example where consistent estimates of the
subsystems parameters and the fractional order are
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Fig. 11 Validation results

obtained. The estimator statistical performance in pres-
ence of noise is verified usingMonteCarlo simulations.
The quality of a nonlinear model requires the balance
between the accuracy, the number of parameters and
the computational load of the identification. The appli-
cation of the fractional H-W model to the study of
a flexible robot arm validates the performance of the
developed system identification methodology, where a
satisfactory model fit is achieved with a reduced num-
ber of parameters.

Further workwill consider the extension of the iden-
tification approach to other fractional cascaded block-
oriented models.
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