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Abstract Fluid mechanics has the applications in
a wide range of disciplines, such as oceanography,
astrophysics, meteorology, and biomedical engineer-
ing. Under investigation in this paper is the (2 +
1)-dimensional generalized Caudrey—Dodd—Gibbon—
Kotera—Sawada equation in fluid mechanics. Via the
Pfaffian technique and certain constraint on the real
constant o, the Nth-order Pfaffian solutions are derived.
One- and two-soliton solutions are obtained via the
Nth-order Pfaffian solutions. Based on the Hirota—
Riemann method, one- and two-periodic wave solu-
tions are constructed. With the help of the analytic and
graphic analysis, we notice that: (1) of the one soliton,
amplitude is irrelevant to y, a real constant coefficient
in the equation, velocity along the x direction is inde-
pendent of y, while velocity along the y direction is
proportional to y; (2) one soliton keeps its amplitude
and velocity invariant during the propagation and total
amplitude of the two solitons in the interaction region
is lower than that of any soliton; (3) one-periodic wave
can be viewed as a superposition of the overlapping
solitary waves, placed one period apart; (4) periodic
behaviors for the two-periodic wave exist along the x
and y directions, respectively; (5) under certain limiting
conditions, one-periodic wave solutions approach to

G.-F. Deng - Y.-T. Gao () - J.-J. Su - C.-C. Ding - T.-T. Jia
Ministry-of-Education Key Laboratory of Fluid Mechanics
and National Laboratory for Computational Fluid
Dynamics, Beijing University of Aeronautics and
Astronautics, Beijing 100191, China

e-mail: gaoyt163@163.com
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1 Introduction

Fluid mechanics deals with the underlying mecha-
nisms of liquids, gases or plasmas, and the forces on
them [1-8]. It has the applications in a wide range
of disciplines, such as oceanography, astrophysics,
meteorology, and biomedical engineering [9-17]. For
the insight into the fluid mechanics problems, peo-
ple have focused their attention on the analytic solu-
tions of the nonlinear evolution equations (NLEEs) to
describe the nonlinear waves [18-27]. For example,
soliton solutions have been derived for the (2 + 1)-
dimensional Korteweg—de Vries (KdV) equation [28,
29], lump solutions have been obtained for the extended
Kadomtsev—Petviashvili (KP) equation [32,33], rogue
wave solutions have been constructed for the B-type
KP equation [34-37], and periodic wave solutions have
been studied for the (2+ 1)-dimensional extended shal-
low water wave equation [38]. Methods for deriving the
analytic solutions of the NLEEs including the inverse
scattering transform, Pfaffian technique, Lie symmetry
method and Hirota—Riemann method have been pro-
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posed [39-46]. Among them, the Pfaffian technique
has been used to construct the soliton solutions and the
Hirota—Riemann method has been utilized to derive the
periodic wave solutions of the NLEEs [47-52].

Ref. [53] has considered the (2 + 1)-dimensional
generalized Caudrey—Dodd-Gibbon—Kotera—Sawada
(gCDGKS) equation,

36u; + (ttens + 15utey + 150°) = @ty
X

-y (uxxy + 3uuy + 3ux8x_luy> =0, @)

where u = u(x, y, t) is the differentiable function with
respect to the variables x, y and ¢, o and y are the real
constants, the subscripts represent the partial deriva-
tives, and 9, ! represents the integral with respect to
x. Soliton solutions for Eq. (1) have been constructed
via the Hirota bilinear method, and lump solutions for
Eq. (1) have been derived via the symbolic computa-
tion [53]. In fluid mechanics, special cases for Eq. (1)
are given as follows:

— When @« = y = 5, Eq. (1) has been reduced to
the (2 + 1)-dimensional fifth-order KdV equation
in fluid mechanics [54-56],

361t + (ttvner + 15wt + 1507) = 507wy,
X

-5 (uxxy+3uuy+3ux8x_luy> =0. )

Periodic solitary wave solutions for Eq. (2) have

been constructed via the Hirota bilinear method [54].

Quasi-periodic solutions for Eq. (2) have been
derived in terms of the Riemann theta func-
tions [55]. Lump-type and rogue wave solutions
for Eq. (2) have been obtained via the symbolic
computation [56].

—~ Whena =y = 5,7 = 367 and u, = 0, Eq. (1)
has been reduced to the Sawada—Kotera equation
for the long waves in shallow water under the grav-
ity [57-61],

Up + Uxxxxx + LSuyuyy + 15uttyyx

+45u?u, = 0. 3)
Eq. (3) has also been seen in lattice dynamics, quan-
tum mechanics and nonlinear optics [58]. Soliton
solutions for Eq. (3) have been constructed via the
Hirota bilinear method [59]. Periodic and ratio-
nal solutions for Eq. (3) have been constructed
via the (G//G)-expansion method [60]. Traveling
waves with different frequencies and velocities for
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Eq. (3) have been constructed via the three wave
method [61].

Through the dependent transformation [53],

u=2(0nf), 4

where f is a real function of x, y and ¢, Eq. (1) has
been written as the bilinear form [53],

(36D, + DS —aD} =y DID,) £ f =0, (5)

where the bilinear operators Dy, D, and D, are defined
by [62]

DiD;lD?G(-xv Vs t) . ﬂ(x/’ y” t,)

_(a a)’(a a)’"(a a)”
S \ox  ox' ay 3y ot at’
00,y 00 Y vy oy vy 6)

with 0(x, y, t) being a differentiable function of x, y
and ¢, z?(x/, y/, t/) being a differentiable function of
the independent variables x/, y/ and t/, and [, m and n
being the non-negative integers.

On the other hand, the Nth-order Pfaffian, i.e.,
(1,2,...,2N), has the following expansion [62]:

(1,2,...,2N)
2N

=Y (=D j) @2.3,....].....2N), (7

j=2

where f means that the element j is omitted, (2, 3, .. .,
J,...,2N)isthe (N — 1)th-order Pfaffian, (r, j) is the
antisymmetric element of the Pfaffian and defined as

(r. ) = orj +/ Dy, - bjdx. ®)

r, j and N are the positive integers, ¢,’s and ¢;’s are
the real functions of x, y and ¢, and ¢,; is a constant
satisfying the condition ¢,; = —c,. Pfaffian has been
said to possess the following properties [62]:

(1,2, ..., 02N, 1,2,...,2N)(1,2,...,2N)
2N

=Y D@ @, 1,2.....2N)
j=2

(2, 03,...,8j,...,00y,1,2,...,2N), 9
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where « ;s are the real numbers, and a j means that the _ 32¢’ j, % % dx
element o is omitted. axor dx Ot
1 . .

(do, d1, da, d3, ®)(e) — (do, d1, ®)(d2, d3, @) = Z[Z(dza d3,r, j) —2(d1, da, 1, j)
+ (do, d2, ®)(d1, d3, ®) — (do, d3, @)(d1, d2, @) =0, .

8n¢r +(d01d59r7 ]):I (12)
(dﬂvr): n’ (dmvdn):Ov . . . .

dx According to Egs. (12), the following differential con-
(m,n=0,12,....2N — 1), (10) ditions can be derived:

where (o) = (1,2,...,2N).

However, to our knowledge, soliton solutions via
the Pfaffian technique and periodic wave solutions via
the Hirota—Riemann method for Eq. (1) have not been
investigated. In Sect. 2, the N th-order Pfaffian solutions
for Eq. (1) will be constructed via the Pfaffian tech-
nique, and soliton solutions for Eq. (1) will be derived
via the Nth-order Pfaffian solutions. In Sect. 3, peri-
odic wave solutions for Eq. (1) will be obtained via the
Hirota—Riemann method, and asymptotic behaviors of
the periodic wave solutions will be given. In Sect. 4,
our conclusions will be presented.

2 Pfaffian solutions for Eq. (1)

In this section, we would like to construct the Pfaf-
fian solutions for Eq. (1) via the Pfaffian technique. To
derive the Nth-order Pfaffian (1, 2, ..., 2N) satisfying
Bilinear Form (5), we can set the differentiable func-
tions ¢,’s and ¢;’s in Eq. (8) satisfying the following
conditions:

0, _ 58°p ¢ _10°0. B¢ _ 53¢
dy oy ax3’ ar  49x57 3y oy ax3’
dp; 139, y?
9 _ 2 Ca=1, 11
o 490 YT s (D
then we have
ar, ) _ 8¢r¢. _ 09
0x ax 7 ax
- (dlvr)(d()vj)_(d07r)(d17j)
= (d()?dl’rvj)’
a(r, Jj) _/ 82¢r¢‘+a¢r%
dy - dxady / dx dy
320 : .
D0, 08,000\
dxady dx dy

5 . .
= ;[(do’ d3,r, ,]) _2(d11 d27r’ J)]v

o j) _ [ (b, | 3, 09
at _/(8x8t¢]+ ax ot

™ = (e),

TN,X = (d()v dlv .)7

rN,X)C - (d()v d29 .)’

TN,X)CX = (dlv dz’ .) + (d()’ d35 .)’

TN, xxxx = 2(dy, d3, ®) + (dp, da, e),

TN xxxxx = 2(d2, d3, @) + 3(dy, dy, ®) + (dp, ds, e),

TN, xxxxxx = 2(dp, dy, d>, d3, @) + 5(d2, dy, ®)

+4(d1, ds, @) + (do, de, ),

5

Ny = ;[(do, d3, ®) —2(di, d>, ®)], (13)
-25

TN,yy = 7[_(d07 d6’ .) - 2(d2’ d45 .)

+2(d1, ds, @) + 4(do, di, da, d3, @)],
5
—[

™Nxy = —[(do, ds, @) — (d1,d3, 0)],

5
TN, xxy = ;[(dO» ds, ®) — (do, d3, )],

5
TN xxxy = ;[(dl, ds, ®) + (do, dg, ®) — (d2, dy, @)
—(do, dy, dp, d3, @)],
1
Ny = Z[—2(d1, dy, @) +2(da, d3, ®) + (dp, ds, e)],

1
TN xt = Z[_(dl»d& e) + (do, de, ®)

+2(do, d1, d2, d3, @)]. (14)
Combining Egs. (9) and (10) with Egs. (13) and (14),
we obtain
(36Dth + DS — oth — yD;Dy) N - TN

2 2.2 2
= 5(7/ TN,y " Y INTN,yy — 15VTN,xyTN.xx

+ ISVTN,XTN,xxy + 57/7:N,y":N,xxx
—SYTNTN xxxy — SOI,%,)”X — 180ty TN x
+ 180T TN 3t + T5TN xx TN xxxx

- 3OTN,X TN, xxxxx T SthN,xxxxxx)

= 90[ (do. di 2. ds, #)(#) = (do. d, #)(d2 ds, #)
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+(do, d>, ®)(d1, d3, ®) — (dp, d3, )(dy, da, 0)]
=0. (15)

Thus, we find that f = 7y satisfies Bilinear Form (5)
and the Nth-order Pfaffian solutions for Eq. (1) can be
derived as

u=2(n1N)xx- (16)
To construct the soliton solutions for Eq. (1) via the

Nth-Order Pfaffian Solutions (16), we can set ¢,’s and
¢;’s in Conditions (11) as

5k kD
¢y = ek,x+7’y+7’z,
. 5/3 k?
ix+—Ly+4t
pj=c¢e"’ y ohan (17

where k,’s and k;’s are real constants. Motivated by
Ref. [62], wesetcio =¢34 = 1,c¢13 = c14 = 23 =
c24 = 0, and obtain

ke =k

(”’):C’«’+kr+kj

Or ;. (13)

Hereby, when N = 1 and 2 in the Nth-Order Pfaffian
Solutions (16), the one- and two-soliton solutions for
Eq. (1) can be expressed as

u = 2(In7q)xx, (19)
u = 2(In12)xx, (20)
with

11=(1,2)=1+ A7,
n=(1,2,3,4)
=(1,2)3,4) - (1,3)2,4) + (1,H(2,3)
— 1+ A5 A B384 g hitatiath
H, — H _ Hy—Hy
Hi+ H’ © H3+ Hy'
&o = Hox + Spy + Jot,
b= (Hy — Hy)(Hy — H3)
(Hi + Ha)(Hz + H3)
_ (Hi — H3)(Hy — Hy)
(H\ + H3)(Hy + Hy)’

5k; ky
Hy = ko, Sg=77 ‘IQ=Z! (e=12,3.4).

Al = 2

(Hy — Hy)(H3 — Hy)
(Hy + H»)(H3 + Hy)

ey

Equation (19) indicates that the amplitude of the
one soliton is irrelevant to y, the velocity along the x
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direction of the one soliton is independent of y, while
the velocity along the y direction is proportional to
y. Figure 1 shows the propagation of the one soliton,
and we notice that the one soliton keeps its amplitude
and velocity invariant. Figure 2 shows the interaction
between the two solitons, and we find that the total
amplitude of the interaction region is lower than that of
any soliton.

3 Periodic wave solutions for Eq. (1)

In this section, we will utilize the Hirota—Riemann
method [63] to construct the periodic wave solutions
for Eq. (1).

3.1 Hirota—Riemann method for the NLEEs

Ref. [63] has considered a generalized (N+1)-
dimensional NLEE:

T, up, gy Uy, Uy, ...) =0, (22)

where . is a polynomial function and x1, x2, ..., xy
are the space variables. Using the Hirota bilinear
method and the dependent variable transformation,

u=uo+ pdi, Ind (¢, 1), (23)

where 8,?,\, represents the g — th order partial deriva-
tives with respect to xy, ¥ (¢, A) is the Riemann theta
function, ¢ = (&1, &, ..., {N)T (the superscript T
signifies the vector transpose), iA = (idy,) is a pos-
itive definite and real-valued symmetric N x N matrix.
tu=0ux+Buy+ Ryt +¢€,, (n,t=1,2,...,N),
P, q, N are the positive integers, and Q’s, B’s, R’s, €’s
and ug are all the real constants; Ref. [63] obtains the
bilinear form for Eq. (22) as
F (D), Dxys ... Dy, D)9 (§,0) -9 (£, A) =0,
(24)
where ¢ is an integration constant and must not be
dropped in our present periodic case because the ellip-
tic functions generally do not satisfy the equations with
the zero integration constants. Then, the multi-periodic
wave solutions for Eq. (22) can be constructed via the
Riemann theta function,

D, A) = Z ik m+2mi{g.) (25)
neZ?
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(a) t=-300

(b) t=0

(¢) t=300

Fig. 1 One soliton via Solutions (19) with k; = 0.6, k, =0.4and y = 1.2

(a) t=-300

(b) t=0

(c) t=300

Fig. 2 Interaction between the two solitons via Solutions (20) with k1 = —0.52, k» = —0.5, k3 = —0.35, ky = —024 andy = 1.2

where i = +/—1, the integer value vector n =
mi,m....on)’ € ZV, ¢ = &G, )T €
CN, 7 denotes the integer number, where C denotes
the complex number. In this paper, taking the matrix
A to be pure imaginary matrix yields Riemann Theta
Function (25) real-valued. For two vectors f =

(ft, f2, .o fW)" and ¢ = (g1, 82,...,¢n)", their
inner product is defined by
(f.8)=higi+ frgo+ -+ fngn. (26)

3.2 One-periodic wave solutions for Eq. (1)

In order to construct the periodic wave solutions for
Eq. (1), we should consider a more generalized bilinear
form than Bilinear Form (5) for Eq. (1) by introducing
one more widely dependent transformation:

u=uo+2[In ﬁ(;v )\)]xx . (27)
Substituting Transformation (27) into Eq. (1), we
can derive a generalized bilinear form as:
o?(D)m Dya Dl‘)ﬂ(é" )") : ﬁ(é‘s )")
- (36Dx D, + D® + uoD®
—aD} = yDIDy +¢) 35 1) - (&, 1)
=0. (28)

From Riemann Theta Function (25), we derive the
one-Riemann theta function as

+00
H(C1, M) = Z enin2A1+2nin£1’ (29)

n=—00

where {1 = Q1x+B1y+Rit+¢€, A isapureimaginary
number and meets the condition Im(A{)>0, and € is a
real constant. Substituting Eq. (29) into (28), we have
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‘S’ﬂ(D)(v Dyv Dt)0(§l7 )\'1) : 19(417 )\'1)
+00

+00
= Y Y £D: Dy D)

w=—00N=—00

enin2kl+2nin{1 X eniw2k|+2m’w§1

00 +o00
= Z Z .z[zin(n—w)Q],Zin(n—ZU)Bl,

w=—00 N=—00
2im(n — w)Rl]eﬂi(w2+n2)M+2m’(w+n);1
’ +00 ,
TET Y Z@hemr e, (30)
o' =—00
with
j(w/)
+00
= Z 3[2iﬂ(272—W)Q1,2in(2n—w By,
n=—00
2im(2n — w/)Rl]eni[ﬂ2+('I*w/)2]M
o | “+o00
LY 2fainn - @ - 2101,

n'=—00
2in[2y — (@ —2)1B1,2in 2 — (@ — 2)]R1}
G20 =@ =2 2i@ D
- P — 2)627ri(w/71))x1
j(o)em‘w/)\l ,

_ o is even, ,
L™ @ DM ' s 0dd,

w,n/EZ,

€29

Equation (31) implies that % (w/) for o € Z
are completely dominated by Z2(0) and Z(1). If
Z(0) = Z(1) = 0, then Z(Dy, Dy, DO (L1, A1) -
(&1, 41) =0.

Based on Bilinear Form (28), the one-periodic wave
solutions can be derived by

1

+00

2O) = Y £ @nuiQy. dnniBy, dpmiRy) T
n=—00
+00
> ( — 576n*72 Q1 R| — 40967°7° Q¢
n=—00

—4096u0n°7® Q% + 16an*n* B}
—2561/7747T4Q?B1 +c)62inn2xl =0,

! One-periodic wave implies the wave propagating with the con-
stant period in the x, y and ¢ directions [63].
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+o0
2 = Z 3[2"”(2'7 —1)01,2in(2n — 1) By,
n=—00
2im(2n — 1)R1]eﬂi(2n2—2r;+1),x1

+00

3 [— 1442 — 1)*7% 01 Ry

n=—00
—642n — 7% 0% — 64uo(2n — 1H97° QY
+4a(2n — 1?72 B} — 16y 2n — D*7* 03B,

+C]eni(2n2—2n+l)kl -0 (32)
Through the notations
A=, (33)
+00 oo
ay] = — Z 576772712Q1A2n2, app = Z Aznz,
n=—00 n=—00
+00
wmi=— Y 14420 — 122 QA% -2
n=—00
+00
ay = Z A2 =204
nN=—00
+00
b=y (40967°7° 0 +4096uon’* Of
n=—00

160?72 B2 + 256yn4n4QfBl)A2"2,
+00
b= Y [64(2;7 — 16750 + 64up(2y — 1576 QS

n=—00
—4a(2n — 1*12B? + 16y (2n — 1)4n4Q§Bl]
A2n2—27}+1’ (34)

Equation (32) can be rewritten as a linear system about
Ry andc,i.e.,

ajpan '\ ( Ri by
= ) 35
(6121 azz) < ¢ ) <b2> &
Solving System (35), we can derive the one-periodic
wave solutions for Eq. (1) as

U= o +2[In 9 (E1, A1)y - (36)

Figure 3 shows that the one-periodic wave can be
viewed as a superposition of the overlapping solitary
waves, placed one period apart. In the following sec-
tion, the asymptotic behaviors of One-Periodic Wave
Solutions (36) will be studied. Equation (34) can be
expanded as
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(a) t=-10

(b) t=0

(¢) t=10

Fig. 3 One-periodic wave via Solutions (36) with A} =i, Q; =03, By=02anda =y =up =1

an = 1152720, <A2 L4822 +) ,
an = 14202+ A% 4o AP 4,
az) = —2887%Q1[A +94° +
+@n - 1A ),
an = 2(A+ A5 oo g AU ),
by = 2(4096n6Q? + 40961076 Q8 — 16a? B2
+256yn4Q?BI)A2
+ 2(2621447:6Q? + 2621441075 Q°
—64a’B? + 4096yn4Q?Bl)A8 .
+(4096n6n6Q? + 40961070 Q°
—16an’n*B}
+256yn4n4Q?Bl)A2"2 o
by =2 (6476 0§ + 64uon® 05
—4am? B} + 16yn* 01 B)) A
+2(46656n6Q? + 46656u07° Q8 — 367 B}
4 (6420 — 1)®70QF
—4a(2n — 1)’ n* B}

+ 1296yn4Q§Bl>A5 +
+ 64uo(2n — 197000
+16y 2y — D)*r* Q3B 1AM "2+ 4

(37)

and substituting Eq. (37) into System (35), we have
(““ a”) = Ao+ AA+ AA 4
azi ax

b
(b;>=(~)o+@1A+(~)2A2+~-~, (38)

where

01 0 0
Ao = (0 o)’ A= (—288;12Q1 2)’
—1152720, 2
( : Qlo),A3:A4=0,

0
As = (—2592712Q1 2
vy = 1287°0% + 128uo7® Q8 — 8an? B?

As

+32y7* Q3 By,

vy = 8192776 0% + 8192uo7 0% — 32a7% B?
+512y7* 07 By,

vs = 933127° 0% 4 93312uo7® Q8 — 72072 B}
+2592y74 Q3 By,

(0 Ay o 0
=(2) o= (7). = (2)

Then, R; and c in System (35) can be rewritten as

(39)

=N+ NA+ DAY+,

zol” o 201 —(@— A, 1)
288n | In= 288720
? ; it ;

(2[on+1 B0y AT (041~ 5] A Ty 1P )
,

288720,
[On+l E}LZAanfj][ !

(40)
where n is the positive integer, and el k =1,2)

denotes the x-th elements of the two-dimensional vec-
tor ®.
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From Eq. (40), we have

167* Q§+16ugr* 0§ —a B} +4y 7> 03 By
Iy = —3601 , I =0,
0

=324 08 —32ugn* Q8 +20 B} —8y x> 03 B
n= 6 62, 22 a03p |
—5127° 0% — 512u7® Q8 + 32am? B} — 128y 7* Q3 B,
(41)

Substituting Egs. (41) into (38) and setting A — 0,
we can obtain

c— 0,
R — 16714Q? + l6u0714Q? — ozBl2 + 4yn2Q?Bl
=360, )
(42)
If we assume
ki + ko 5k3 + 5k3
=0, Q=-——-, B=—1+—2
2im 2yim
—imA+1n ik 2
=T TkFR VO 43)
2im 5

where k1, k2, @ and y are determined by Eq. (19), we
have

2in1 =2in(Q1x + B1y + Rit +¢€)

5345k kY4 kS
= (ky + ko)x + — 2y + 14 2
ki1 —k
+In — A
ki + k2 !
P - (44)
= n — 7T .
1+& ki 1

Combining Eqs. (29) and (44), we further obtain

+00 5
V(C1, A1) = Z T M A2ming

n=—00
— 1+(627H'{] +€72”i§])A N
| g StetnR | —(arengs2) o

- ki — k
420y L2, (45)

ki + ko

From the above analysis, we find that One-Periodic
Wave Solutions (36) approach to One-Soliton Solu-
tions (19) under the limiting condition A — 0 [A is
defined in (33)].
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3.3 Two-periodic wave solutions for Eq. (1)

From Riemann Theta Function (25), we derive the two-
Riemann theta function as:

9 hp) = Y emithamma2mite) (46)
neZ?

where n = (n,m)T € 7%, ¢ = (¢1, ) € C2, C
denotes the complex number, ¢, = Q,x+ B,y+ Rt +
e,r=1,2,0,’s, B,’s, R,’s are all the constants, —i A
is a real-valued 2 x 2 matrix:

ho = (“‘ “2) LI > 0, Im(iz) > 0,
A2 A22
Al — Aihan > 0. 47)
Substituting Eq. (46) into (28), we can derive
Z(Dy, Dy, D)9 (L1, 82, A2) - 9 (81, 82, A2)
= Y Z(2inn—w, 0.2~ v, B),
w,neZ?

2im(n — w, R))ezm(§”7+w>+”i(<)\2ﬂ,n>+<k2mzzf))

w’::w+n Z { Z g(zin(zn ~w,0),

w'e7? neZ?
2in(2n—w , B),2in(2n—w R))

il - )+ }ezm<;,w’>

= Y Z(o) e, (48)
w'ez?
where 0 = (01.02)".B = (B1.B)".R =
(R, R)T and ' = (|, ,)T. From Eq. (48), and
setting n, =1n—0q,j,(j =1,2), we can obtain

Z(=')
-y z(zmzn — @, 0), 2102y —w B,
nez?
2im (2n — @ R))eﬂi[(M(niwl)’niwl)ﬂkmn)]
2
=Y zlain Y120, - (@, 28,105,

nez? o=l

2
2in Y 21, — (w, — 285))1Bs.
o=I

2
2im X:[Zr]:7 — (w(,7 — 2504,]')]Rn}

o=1
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) ’ ’ ro ;o
o Lot [0 00 ) 018+ =, =8 ) (7= =5 ) P
- , , L L .
g(w_l -2, wz)e2”’(w1‘m“””’wzm, j=1,
- - ) ’ L
“(Z(wl,’ w.z’ _ 2)62711(2272—1))»22-%—2711031)»12’ ji=2,

o, r]/ € 77, 49)

where &, ;’s represent the Kronecker’s delta [64].
Equation (49) implies that if £(0,0) = £(1,0) =
Z(0,1) = £(1,1) = 0, then Z(wm,, w,) = 0 for all
wl/, wzl € 77, Eq. (46) is the solution for Eq. (28).
Setting ¥, = W, wPHT r = 1,2,3,4, 9 =
.07, ¥ = 1,007, ¥ = 0. D", ¥y = (1, DT,
we have

2(0,0)

= Y 2(2in @ —v1. 0. 2im (20— ¥, B),
neZ?

2im(2n — ¥, R>)eni[<k(n—¢’1),n—¥’1)+(An,n>] =0,

2(1,0)

=Y 2(2ir - ¥, 0).2im (20 — W2, B),
neZ?

2im(2n — Wy, R))eﬂi[()L(nfll’z)»nfll’ﬂﬂknsn)] =0,
20, 1)

=Y 2(2im2n - w5, 0), 2w (20 — ¥, B),
neZ?

2im(2n — W, R>)eﬂiW»(nfll’z),n7¢’3)+(>ﬂ1»n>] —0,

21,1
= $<2in<2n — Wy, Q),2in (20 — ¥, B),
neZ?
2in(2n — Wy, R>)em’[<A(nfl1'4),nfl1’4)+(>»n,n>] —0.
(50)
Combining Egs. (28) and (50), we derive
> [ - 1waren - v, 0)2n - v R)
neZ?
—647°(2n — ¥, 0)° — 64ugm®(2n — ¥, Q)°
+4an’(2n — ¥,, B)?
— 16y7* (20 — ¥y, 0) 2y — ¥y, B) + ]
T HA=% ), =)+ 0n.m)] _ (. (51)

Accordingly, Eq. (51) can be rewritten as a linear
system,

g11 812 813 &14 Ry q1
821 822 823 §24 Ry _| % (52)
831 832 833 834 ug |’
841 842 843 844 c q4
with
/1 — eﬂikn’ fz — em’?»zz7 /3 — 6,2711')»12’
G = (gr))axas 4 = (q1,92, g3, 98", (53)
elndt?)] | Pl
JZ{r(n) = /] j2
{nmz+(m—Wr[”>(nz—‘lf,~[2])}
3 ,
g =—1447> Y (2 — ¥, Q)

neZ?
(2n1 - ‘l’rm) (1),

g =—1447> " (20— ¥, Q)
neZ?

(202~ w) .

g3 =—647° " (20— ¥, 0)°A (). g4
neZ?

=Y .

nez?
ar ="y (647°Cn - ;. 0)°
nez?
—dan?(2n — ¥,, B)?
+16y7*(2n — ¥, Q)°
@1 = ¥, BY) (). (54)

Solving System (52), we can derive the two-periodic
wave? solutions for Eq. (1) as

u=uo+2[Indr, 52, M)y (55)

Figure 4 shows that the periodic behaviors for the
two-periodic wave exist along the x and y directions,
respectively. Similarly, the asymptotic behaviors of
Two-Periodic Wave Solutions (55) will be studied.

2 Two-periodic wave indicates a periodic wave formed by the
superposition of two waves with the different periods in the x, y
and ¢ directions [63].
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(a) t=-1 (b) t=0 (c) t=1

Fig. 4 Two-periodic wave via Solutions (55) with A1; = 0.6, Ajp = 0.5, A =2i, Q1 =1, Q» = —-2.5, By =2, B, =2.2and
a=y=uy=1

Expansions for the matrices in System (52) can be writ- Ry R\ R(1 h R(ZI)
ten as Ry RO R(”) R(21)
w | = (200) + (11) S+ (21) 2
0001 c C(OO) C(11) c<21)
12 22
c_ 0000 R R
0000 R<12> , R(22> ,
0000 + (12) ST+ (22) S
o 0 0 0 ) o)
—2887201 0 —1287°0% 2
@ 3
) i A s
R R
o0 0 0 + | % | anr| " | Ans
0 0 0 0 U U
el e
Lo o o ol
0 —28872Q, —1287°05 2 | 72 ‘o i
, R (57)
0 - ;2 (st A4 A)
—115272Q; 0 —81927°Q% 2 0 8 o
o 0 0 0| . g=|" [+ S+ St
+ i 0 02 0
0 0 0 0 o 5 o
0 0 0 0
0 —115272Q, 81927608 2 ‘(’)4 8
0 0 0 ol , + I3+ PP
+ 7 0 0
0 0 0 0 0
0 0 0 Ps
00 00 8 _
00 00 + o ss+o( A s ),
+ 0 0 00 /1/2 /5)6 j// /1 /2 /3
B1 —P1 B2 2
r+j+1>3, 58
0000 J+lz (58)
0000 .
+ 00 00 NP3 with
2
P Ps s Bi = —2887%(Q1 — 02), B2 = —1287°(01 — 02)°,
(/1 wer /s crtj+iz3, B3 = —2887%(Q1 + Q2). u = —1287°(Q; + 02)°,

(56) =872 (16740 — B} + 4y QiB1),

=
|
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) = 872 (16714 05 —aB3 + 4yn2Q%Bz) , when (j1, /2) — 0, and assuming that
p3 = 3212 (25674 0% — B} + 16y7* Q3 B1), 0 0 ki + ko 0p= ks + ka
uO = b 1 - —’
ps = 327% (2567 0§ — B3 + 16y 03B,), 2w 2w
5k} + 5k3 5k3 + 5k3
ps = 872[1674(0) — 0)° ~ (B — By’ R
2yim 2yim
+4y72(0) — 02)3(B) — Bg)], o _TimhtinAr —imio +InA,
T4 ] , ' 2in 2in
po = 872167401 + 02)° — a(B1 + B) oA 2
12 )4
)"122.—’ o= —_—, (62)
2im 5

+4y2(Q1+ 02 (B1 + B |, (59)

where o ( BN j{ , 7 ) denotes the infinitely small
quantity.

Substituting Egs. (56), (58) and (57) into Sys-
tem (52) and comparing the same order of 71, 7>
and _#3, we can obtain

(00 _ (D) _ @) _ @ _ O _

—288n2Q1R§°°) _ 1287_[6Q6 0 _ 5,
— 28872 02 RV — 12870 QSu) o =,

12 — 11527220 R\ — 819270 Q%u"” = ps,
¢® 1152720, RYY — 8192n6Q§u§)"°> = pu,
AR — BIRYY + pou” = ps,

BaR™ + B3RS + Baug” = po,

28872 02 R\ + 12870 Q%" =0,

28872 Q RV + 12870 0%V = 0,

28872 Q1 R\ + 12870 Q%u| an =0,

28872 02 R\*Y + 12870 Q%u; (2“ =0.

(60)

Combining Eqgs. (57) and (60), and taking M(OO) 0,
we can notice that

uo—o(jl,/z)ao,cao,

167408 — aB} +4yn? Q3B

R = ,
N 16JT4Q? - otBl2 + 4y7r2Q?B1
—3601 ’
167408 — aB; +4yn* 03B,
R = 3
2 360, +o( 71, 7)
_ l6m*08 —aB; +4yﬂ2Q%Bz7 6
—3602

where ki, kp, k3, kg4, A1, A2, A12, @ and y are deter-
mined by Eq. (20). We can rewrite Eq. (46) as

V&1, 8,4 =1+ <e2m'§1 + e—2ni§1> e
+ (62711';“2 + 6—2711'{2) el
" [ezm({HrCz) 4 efzm'(;lﬂz)]
ein(111+2)~|2+)~22) R

=14 A58 4 Apehstés
+A12651+§2+$3+§4,

when (71, #2) — 0. (63)

Thus, we notice that Two-Periodic Wave Solu-
tions (55) approach to Two-Soliton Solutions (20)
under the limiting conditions (_#1, #2) — 0 [ 7
and _#> are defined in (53)].

4 Conclusions

Fluid mechanics has the applications in a wide range of
disciplines, such as oceanography, astrophysics, mete-
orology, and biomedical engineering. In this paper, we
have investigated the (2 4 1)-dimensional gCDGKS
equation, i.e., Eq. (1), in fluid mechanics. Based on
the Pfaffian technique and Constraint (11) on the real
constant o, the Nth-Order Pfaffian Solutions (16) have
been obtained. One- and two-soliton solutions, i.e.,
Solutions (19) and (20), have been derived via the Nth-
Order Pfaffian Solutions (16). One- and two-periodic-
wave solutions, i.e., Solutions (36) and (55), have been
constructed via the Hirota—Riemann method. Results
can be summarized as follows:

1. Amplitude of the one soliton is irrelevant to the
real constant y, the velocity along the x direction
of the one soliton is independent of y, while the
velocity along the y direction of the one soliton is
proportional to y;
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2. We show the propagation of the one soliton in
Fig. 1 and the interaction between the two solitons
in Fig. 2, and found that the one soliton keeps its
amplitude and velocity invariant during the propa-
gation and total amplitude of the two solitons in the
interaction region is lower than that of any soliton;

3. One-periodic wave has been viewed as a superpo-
sition of the overlapping solitary waves, placed one
period apart, as shown in Fig. 3;

4. Periodic behaviors for the two-periodic wave have
existed along the x and y directions, respectively,
as depicted in Fig. 4;

5. With the asymptotic behaviors of One-Periodic-
Wave Solutions (36) and Two-Periodic-Wave Solu-
tions (55), we have noticed that One-Periodic-
Wave Solutions (36) approach to One-Soliton Solu-
tions (19) under the limiting condition with respect
to A in (33), i.e., A — 0, that Two-Periodic-
Wave Solutions (55) approach to Two-Soliton Solu-
tions (20) under the limiting conditions with respect

to 71 and 7, in (53),ie., (71, 72) — 0.
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