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Abstract In actuality, the dead zones and failures
often occur in actuators, but the existing algorithms
have difficulty simultaneously tolerating dead zones
and actuator failures in multi-agent systems. In this
paper, the directed topology, uncertain dynamics,
unknown dead zones and actuator failures are simulta-
neously taken into account for the multi-agent systems.
By introducing distributed backstepping technique, the
radial basis function neural networks and a bound esti-
mation approach, the distributed fault-tolerant tracking
controllers and relative adaptive laws for each follower
are proposed, which guarantee all followers reach the
synchronization and obtain the ideal tracking perfor-
mance. Comparing with the existing results, it is a new
attempt for strict-feedback multi-agent system to take
unknown dead zones and unknown actuator failures
into consideration. Moreover, the basis function vec-
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tors in RBF NNs are no longer required for controllers
to decrease computational burden significantly. In the
end, the efficiency of our proposed algorithm is verified
by comparison simulation results.
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Unknown failures ·Unknown dead zones ·Multi-agent
systems

1 Introduction

With the rapid development of computer technology,
communication technology, sensors and actuators in
the past two decades, it has been easier for multiple
agents shown in [26,41,42] to work together to accom-
plish a group task in civil and military missions, such
as formation cruise, transportation, logistics and geo-
graphic information acquisition. Compared with tradi-
tional work done by single agent, the cooperation of
multiple agents can improve operational efficiency and
reduce consumption significantly. Thus, the study of
coordination control for multi-agent has grown rapidly.
In the meanwhile, a lot of studies about coordinated
control have been published. The objectives of these
studies are to enable all agents to reach an agreement,
including consensus [52], flocking [24], synchroniza-
tion [9] and so on. In this paper, consensus is an sig-
nificant performance index and research objective. As
is well known, the strict-feedback form is a general
form which can be used to describe many physical sys-
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tems, including spring–mass–damper systems [25] and
robotic systems [39]. By designing appropriate control
strategies, agents can achieve synchronization of states.
Therefore, many researchers have studied a lot of con-
trol strategies and tried to integrate neural networks
(NNs) or fuzzy logic systems (FLS) and backstepping
technique shown in [7,21,22,33,35,36,38,46] so as to
employ them in multi-agent systems (MASs) [32,43].
However, in [2,3,8], the authors did not study high-
order MASs and solve the calculations explosion prob-
lem noted in [18]. In addition, many results of consen-
sus protocols require eigenvalue information of Lapla-
cian matrix. It is challenging and momentous to take
the directed graphs into consideration and design more
general algorithms for high-order MASs.

There aremany researches for strict-feedbackMASs.
At first, a definition of coordinated semi-global uniform
ultimate bounded (CSUUB) was proposed in [47,48].
In order to achieve formation control, based on back-
stepping technique, a distributed adaptive control pro-
tocol was proposed in [39]. Then, in [34], by intro-
ducing the RBF NNs, the distributed adaptive neural
controllers were designed for each follower in non-
linear MASs under leader-following mode in order to
track the output of leader. Further, the high-order lead-
ers were taken into consideration in [18], whose states
were estimated by distributed leader observers. How-
ever, in the above results, the unknown functions in
design were approximated by the NNs or FLS, which
cost a lot of time. In addition, many physical systems
generally exist nonsmooth dead zones [10,44], such
as servo systems, medical systems, electric systems.
It is well known that the presence of the dead zone
phenomenon can result in systems instability. In order
to guarantee system performance by completely elim-
inating or compensating for the effect of dead zones,
many researchers had a deep research on systems with
dead zones and put forward many adaptive control
strategies shown in [4,11,13,15,16,19,27,28,37,49].
In these results, there are few control strategies that can
be employed in the MASs with dead zones [11,34]. It
can be observed that these systems studied in the above
studies do not suffer unknown actuator failures. Nev-
ertheless, actuator failures may degrade system perfor-
mance and even cause safety problems, which is non-
ignorable.

With the development of industrial technology, it is
significant for any MASs to ensure the reliability and
robustness. In particular, systemmay lose control when

actuators suffer stuck failures, resulting in huge indus-
trial losses. An effective fault-tolerant control (FTC)
algorithm can guarantee system reliability and improve
efficiency. In order to protect system from the effect
of actuator failures, some FTC algorithms have been
proposed in [1,50]. It can be observed that these algo-
rithms either had a restriction on the number of failures
or assumed failures happened after a finite time instant.
Many researchers tried all kinds of methods to make a
breakthrough. As for time-varying actuator failures, a
FTC robust control protocolwas proposed in [51]. So as
to remove the restriction on the number of actuator fail-
ures, the FTC adaptive tracking control strategies were
proposed in [20,31,40]. Moreover, by introducing a
bound estimationmethod, the FTCalgorithms for inter-
connected nonlinear systems were proposed in [29,30]
to completely compensate for the effect of unknown
actuator failures. In [45], a distributed adaptive FTC
algorithm forMASswas proposed. However, the above
FTC results generally ignore the dead zone nonlinear-
ities or actuator stuck failures. It is more meaningful
and challenging to design appropriate controllers for
MASs with unknown actuator failures and dead zones.

Motivated by the aforementioned observations, the
first attempt is made to design distributed adaptive neu-
ral controllers for strict-feedbackMASs with unknown
actuator failures and unknown dead zones. The exis-
tence of actuator stuck failures can lead to a loss in
single-input (SI) system; therefore, multiple actuators
are employed in each follower to improve the robust-
ness of systems. It is nonnegligible that the challenge
of our control objective is the coexistence of unknown
function, unknown actuator failures and unknown dead
zones. To address it, the distributed backstepping tech-
nique, the RBF NNs and a bound estimation approach
are introduced to design the distributed controllers. In
final, the efficiency of our proposed algorithm can be
verified by simulation results such that all signals in
the result system are bounded, and the tracking errors
for each follower are said to be CSUUB. In the mean-
while, for comparison, a simulation for the classical
distributed algorithm is done. The main contributions
are listed as follows.

1. As the authors acknowledge, so far, the existing
studies about MASs do not simultaneously take
the unknown actuator failures and unknown dead
zones into consideration. They cannot guarantee
the ideal tracking performance can be obtained
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as the presence of unknown actuator failures and
unknown dead zones. It is the first time to propose
the novel distributed neural control approach for
a class of MASs with unknown actuator failures
and unknown dead zones. Each follower is mod-
eled by strict-feedback system with unknown actu-
ator failures and unknown dead zones input as well
as unknown nonlinear dynamics.

2. By introducing a bound estimationmethod, the esti-
mates for the effects of unknown failures, unknown
dead zones and unknown control gain are devel-
oped with only locally available information. Com-
pared with the results on MASs by classical con-
trol, the failures and dead zones in the systems can
be completely unknown. And the assumption that
a known positive scalar exists and satisfies some
restrictions for the slopes of dead zone, failure or
control gain function is removed.

The remainder of this paper is organized as follows:
The characteristics of the systemand relatedknowledge
are described in Sect. 1. Section 3 describes the design
of distributed consensus protocol and stability analysis.
The simulation results of spring–mass–damper control
system are provided in Sect. 4. Section 5 describes the
conclusion of this paper. In Table 1, the main notation
used throughout this paper is stated.

Table 1 Notation

R The set of real number

Rm The space of
m-dimensional real space

AT The transpose of matrix A

× The Cartesian product

‖ · ‖ 2-norm

| · | The absolute value

D (·) The output of dead zones

lim the limit value

sgn (·) The signum function

max{·} The maximum function

min{·} The minimum function

sup{·} The supremum function

inf{·} The infimum function

diag (d1, . . . , dr ) A block diagonal matric in
which di are its diagonal

Blocks and the off-diagonal
matrices are zero

2 System formulation and preliminaries

2.1 Graph theory

It is supposed that there is a directed graphG = (V,E)

in this paper, where V = {1, . . . , N } and E ⊆ V × V

denote the set of N nodes and the set of relative edges
between N nodes, respectively. The edge is marked
( j, i) ∈ E, representing the node j sends information to
node i and then the node i obtains this information, but
not vice versa. Moreover, Ni = { j |( j, i) ∈ E} denotes
a set of neighbors j of node i . It isworthmentioning that
the directed path ( j, i) in directed graph is more than
one. For example, it can be composed of a sequence
of successive edges. In this paper, we consider leader-
following mode. Therefore, it is critical that there exist
at least one root node and some other nodes which
can get information from the root nodes. In addition,
the adjacent matrix A = [ai j ] ∈ RN×N describes the
topology of a weighted digraph G, where ai j > 0 if
( j, i) ∈ E, j �= i , and ai j = 0 otherwise. Finally, D =
diag[d1, . . . , dN ] is defined as the in-degree matrix of
directed graph,wheredi = ∑N

j=1, j �=i ai j is theweights

of node vi . L = D−A. Then, b = [b1, . . . , bN ]T , with
bi > 0 if the i th follower connects with the leader and
bi = 0 otherwise. B = diag[b1, . . . , bN ].

2.2 System formulation

In this paper, the MASs adopt leader-following mode,
including N (N > 2) followers marked 1 to N and
a leader marked 0. The dynamic of the i th follower is
described as strict-feedback formwith actuator failures
and dead zones:

ẋi,s = xi,s+1 + fi,s
(
x̄i,s
)
, s = 1, . . . , ni − 1,

ẋi,ni =
Mi∑

q=1

ωi,qui,q + fi,ni
(
x̄i,ni

)
,

yi = xi,1, (1)

where x̄i,s = [
xi,1, xi,2, . . . , xi,s

] ∈ Rs (s =
1, . . . , ni ) is the state vector. The function fi,s(x̄i,s) (s =
1, 2, . . . , ni ) is continuous and unknown. The output
yi ∈ R is from the i th follower. The input ui =
∑Mi

q=1 ωi,qui,q ∈ R is the sum of control input ui,q .
ωi,q is a bounded control gain of (i, q)th actuators and
unknown, while the sign of ωi,q is known. ui,q denotes
the output of the (i, q) th actuator. ni denotes the order
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of the i th follower’s system. Mi denotes the number of
actuators in the i th follower.

Remark 1 Many physical systems can be modeled by
Eq. (1), such as spring–mass–damper systems [25],
robotic systems [39], electromechanical system [13]
and helicopter system [5]. The actuator failures and
dead zones generally exist in the actuators. The actua-
tor failure denotes that the actuator used to execute the
control command in the control loop cannot execute
the control command correctly due to the gain change
or deviation. The dead zone of the actuator means that
the actuator does not operate when the input signal of
the actuator is small, and only when the input signal
of the actuator reaches a certain value, the actuator
acts. In addition, the combination of unknown failures
and unknown dead zones is widely applied in practice.
Therefore, system (1) takes the unknown function,mul-
tiple actuators, unknown dead zones and failures into
account. So far, there has not been any result on adap-
tive neural control to be reported for this system.

According to the failure models shown in [29,30]
and the existence of actuator stuck failures, the fol-
lowing mathematic model (2) is employed to describe
actuator failures in this paper:

ui,q(t) = ρi,q,hνi,q(t) + ν̄i,q,h(t), t ∈
[
t sti,q,h, t

en
i,q,h

]
,

ρi,q,h ν̄i,q,h(t) = 0, q = 1, 2, . . . , Mi , h = 1, 2, . . . ,
(2)

where ρi,q,h denotes actuator efficiency and ρi,q,h ∈
[0, 1]. h denotes the number of actuator failures.
ν̄i,q,h(t) is unknown but bounded. The time constants
t sti,q,h represent the time instant of actuator failure starts.
teni,q,h represents the time instant of its ends. For conve-

nience, in this paper, 0 ≤ t sti,q,1 ≤ teni,q,1 ≤ t sti,q,2 ≤
teni,q,2 ≤ · · · ≤ +∞ is defined. Moreover, vi,q(t)
denotes the output of dead zones for (i, q)th actua-
tor. According to model (2), there are three cases of
actuator failures:

(1)ρi,q,h �= 0 and ν̄i,q,h = 0
In this case, actuator loses partial performancewhile

operating. It is known as partial loss of effectiveness
(PLOE).

(2) ρi,q,h = 0 and ν̄i,q,h �= 0
In this case, actuator loses total performance while

operating. That is, ui,q = ν̄i,q,h , and ui,q cannot be

controlled by signal νi,q . Thus, this case is total loss of
effectiveness (TLOE).

(3) ρi,q,h = 0 and ν̄i,q,h(t) = 0

It is a special example of TLOE, ui,q = 0.
By defining:

ρi,q(t) =
⎧
⎨

⎩

ρi,q,h, if t ∈
[
t sti,q,h, t

en
i,q,h

]

1, if t ∈
[
teni,q,h, t

st
i,q,h+1

]

ν̄i,q(t) =
⎧
⎨

⎩

ν̄i,q,h(t), if t ∈
[
t sti,q,h, t

en
i,q,h

]

0, if t ∈
[
teni,q,h, t

st
i,q,h+1

]

model (2) is rewritten as

ui,q(t) = ρi,q(t)νi,q(t) + ν̄i,q(t), (3)

where |ν̄i,q(t)| ≤ ¯̄νi,q , and ¯̄νi,q is a positive constant.
In addition, model (3) satisfies: the multi-agent system
can still normally operate, even if the i th agent suffers
ni − 1 actuator stuck failures.

In this paper, the dead zones are considered to occur
in front of actuator failures. Therefore, the output of
dead zones is defined as νi,q = D

(
τi,q

)
:

D
(
τi,q

) =

⎧
⎪⎨

⎪⎩

mi,q,r
(
τi,q − ϑi,q,r

)
, τi,q ≥ ϑi,q,r ,

0, −ϑi,q,l < τi,q < ϑi,q,r ,

mi,q,l
(
τi,q + ϑi,q,l

)
, τi,q ≤ −ϑi,q,l ,

(4)
D
(
τi,q

) = ki,q (t)τi,q + hi,q (t) , (5)

where mi,q,r �= 0 is the right slope of dead zones in
the (i, q)th actuator.mi,q,l �= 0 is the left slope of dead
zones in the (i, q)th actuator. ϑi,q,r ≥ 0 and ϑi,q,l ≥ 0
denote the breakpoint of dead zones. τi,q ∈ R is the
(i, q)th control input to be designed.

ki,q(t) =
{
mi,q,r , τi,q > 0

mi,q,l , τi,q ≤ 0
, (6)

hi,q (t) =

⎧
⎪⎨

⎪⎩

−mi,q,rϑi,q,r , τi,q ≥ ϑi,q,r

−ki,q(t)τi,q , −ϑi,q,l < τi,q < ϑi,q,r

mi,q,lϑi,q,l , τi,q ≤ −ϑi,q,l

.

(7)

In practice, hi,q (t) is a bounded function.
Compared with the results in [1,50,51], the failures

here remove the restrictions on the number of failures
and allow the existence of stuck failures. According to
(1), (3), (5), the model of MASs (1) can be rewritten as

ẋi,s = xi,s+1 + fi,s
(
x̄i,s
)
, s = 1, 2, . . . , ni − 1,
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ẋi,ni = ui (t) + fi,ni
(
x̄i,ni

)
,

yi = xi,1. (8)

where the input of the i th agent is ui (t):

ui (t) =
Mi∑

q=1

ωi,q
(
ρi,q (t)

(
ki,q(t)τi,q(t)

+ hi,q (t)
)+ ν̄i,q (t)

)
. (9)

In this paper, the leader node is in the form:

ẋ0 = f0 (x0, t) ,

y0 = x0,
(10)

where f0 (x0, t) is continuous, satisfying: (a) | f0 (x0, t) |
≤ g (x0), (b) |x0 (t) | ≤ XM , (c) ‖ f0(x̆0, t) −
f0(x0, t)‖ ≤ L f ‖x̆0 − x0‖, ∀x̆0, x0 ∈ R, t ≥ t0. g(x0)
is a continuous function. XM is a positive constant. L f

is the Lipschitz constant and independent of x0 and t .
For the leader-following mode in this paper, the leader
should be the root of spanning trees in G.

Remark 2 As stated in [34], if the leader is not the root
of spanning trees, followers may not receive the sig-
nals from the leader such that they cannot track the
leader. To achieve effective tracking, it is reasonable to
require the leader which is the root of spanning tree.
As shown later, the g (x0), XM are used to design con-
trollers, but they do not have any effect on the final con-
trollers, which means their true values do not require
to be known.

Definition 1 [12] The distributed consensus tracking
errors for nonlinear followers (1) under the commu-
nication graph are said to be CSUUB, if the positive
constants c1, c2, β1, β2 and a time T ≥ 0 are indepen-
dent of t0 for each α1 ∈ (0, c1) and α2 ∈ (0, c2) such
that ‖yi (t0) − r(t0)‖ ≤ α1 ⇒ ‖yi (t) − r(t)‖ ≤ β1

and ‖yi (t0) − y j (t0)‖ ≤ α2 ⇒ ‖yi (t) − y j (t)‖ ≤ β2

∀t ≥ t0 + T , i, j = 1, . . . , N and i �= j .

The purpose of this paper is to design controllers for
each follower with actuator failures and dead zones.
The control protocol is to guarantee the followers can
synchronize and track the leader, and all the signals in
the closed-loop systems are bounded.

Lemma 1 [23] For ∀ε̄ > 0 and 
R, the following
inequality holds;

0 ≤ |
| − 
 tanh
(


ε̄

)
≤ �ε̄, (11)

where � = 0.2785.

2.3 RBF neural networks

As is well known, the advantage of neural networks is
its uniform approximation ability, which can approx-
imate any continuous unknown function in theory.
Therefore, the following lemma holds:

Lemma 2 [6] There exists a neural network such that

sup
z∈Ω

∣
∣
∣
∣ f (z) − ξTσ(z)

∣
∣
∣
∣ ≤ ε̄,∀ε̄ > 0, (12)

where f (z), z ∈ Rq is a continuous function defined
on a compact set Φ ⊂ Rq. σ(z) is the basis func-
tion vector, σ(z) = [σ̄1(z), . . . , σ̄l(z)]T ∈ Rl . ξ =
[ξ̄1, . . . , ξ̄l ]T ∈ Rl is the weight vector. l represents the
number of neurons.

According to Lemma 2, there exists an approxima-
tion error ε such that

f (z) = ξ∗T σ(z) + ε, |ε| ≤ ε̄, (13)

where ξ∗ ∈ Rl denotes the ideal weight vector: ξ∗T :=
argminξ Rl {supz∈Ω | f (z) − ξTσ(z)|}; the radial basis
function σ̄i (z) commonly adopts Gaussian function
(14):

σ̄i (z) = exp

[

− (z − κi )
T(z − κi )

η2i

]

, i = 1 . . . , l,

(14)

σT(z)σ (z) ≤ l, (15)

where ηi ∈ R is the width of the Gaussian function,
κi = [κi1, κi2, . . . , κiq ]T is the center of receptive field.
In [34], the efficiency of RBF neural networks has been
proven. Hence, the RBF NNs are employed in design-
ing this paper.

Remark 3 This paper focuses on semi-global adap-
tive RBF NNs coordination control for strict-feedback
MASs. Note that the FLS can also obtain the simi-
lar results. If Gaussian function is selected as fuzzy
membership function, inequality (15) holds for FLS,
where l represents the total number of fuzzy rules. As
shown later, the number of adaptive parameters for neu-
ral weights is independent of the neurons. Similarly,
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the number of adaptive parameters for fuzzy weights is
independent of the fuzzy rules. Consequently, the true
value of l does not affect the design of controllers, no
matter what.

3 Distributed NN controllers design and stability
analysis

The distributed adaptive consensus protocol for MASs
with dead zones and actuator failures is designed in
this section. In addition, the stability of the closed-loop
system is also analyzed in this section.

At first, the synchronization error of the i th follower
is defined as:

zi,1 =
N∑

j=1

ai j
(
yi − y j

)+ bi (yi − y0) . (16)

Then, the following change of coordinates is made:

zi,s =xi,s − αi,s−1, s = 2, . . . , ni , (17)

where the zi,s is the state error in the sth step for the i th
follower. αi,s−1 denotes a visual control signal in the
(s − 1)th step for the i th follower. The virtual control
signals are in the following form:

αi,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

di + bi

[

−ci,1zi,1 − zi,1
2

− 1

2a2i,1
zi,1θ̂i +

N∑

j=1
ai, j x j,2 + bi f0 (x0, t)

]

, s = 1

−ci,2zi,2 − zi,2
2

− (di + bi ) zi,1 − 1

2a2i,2
zi,2θ̂i , s = 2

−ci,s zi,s − zi,s
2

− zi,s−1 − 1

2a2i,s
zi,s θ̂i , s = 3, . . . , ni − 1

, (18)

where ci,s and ai,s (s = 1, . . . , ni − 1) are design pos-
itive constant, θ̂i is the estimation of the constants θi :

θi = max
{
li,s ||ξ∗

i,s ||2 , s = 1, . . . , ni
}

, (19)

β̂i and ˆ̄λi , respectively, represent the estimation of the
unknown constants βi and λ̄i , as shown in (41). The

estimation errors are θ̃i = θi − θ̂i , β̃i = βi − β̂i , ˜̄λi =
λ̄i − ˆ̄λi . Then, the adaptive laws are:

˙̂
βi = zi,ni αi,ni , (20)

˙̂
θi =

ni∑

m=1

ri
2a2i,m

z2i,m − ki,0θ̂i , (21)

˙̄̂
λi = zi,ni tanh

(
zi,ni
μi

)

, (22)

where ri and μi are design positive constants.
In addition, the actual controller τi,q is:

τi,q =sgn
(
ωi,q

)
τi,0, q = 1, . . . , Mi ,

τi,0 = − zi,ni β̂
2
i,ni

α2
i,ni√

z2i,ni β̂
2
i,ni

α2
i,ni

+ μi

, (23)

where

αi,ni = 1

2a2i,ni
zi,ni θ̂i + ci,ni zi,ni + ˆ̄λi tanh

(
zi,ni
μi

)

.

(24)

Remark 4 The main results are shown in (18–23).
Comparedwith the results in [34], it can be seen that the
basis function of RBF NNs is ignored. As well known,
the basis function of RBF NNs can be replaced with
1 by scaling. In the traditional adaptive neural con-
trol, the computational burden for estimation parameter
about NNs usually is

∑ni
s=1 ls , while the computational

burden decreases to ni in [17] or ls in [34]. By com-
bining the pioneering works in [17,34], the estimation
parameter θi is defined in (19). Based on this definition,

the computational burden reduces from
∑ni

s=1 ls to 1,
which is an improvement for the traditional adaptive
control.

In the following, the designing of the virtual con-
trol signals, the final input signals of actuators and the
adaptive laws will be described.

Step 1: Based on (19), consider the following Lya-
punov function candidate:

Vi,1 = 1

2
z2i,1 + 1

2ri
θ̃2i . (25)
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According to (16), we have the time derivative of
zi,1:

żi,1 = (di + bi )
(
αi,1 + zi,2 + fi,1

(
x̄i,1

))−
N∑

j=1

ai j x j,2

−
N∑

j=1

ai j f j,1
(
x̄ j,1

)− bi f0 (x0, t) . (26)

Therefore, the time derivative of Vi,1 is:

V̇i,1 =zi,1 żi,1 − 1

ri
θ̃i

˙̂
θi

=zi,1

⎡

⎣ (di + bi ) αi,1 + f̄i,1 − bi f0 (x0, t)

−
N∑

j=1

ai j x j,2

⎤

⎦

+ (di + bi ) zi,1zi,2 − 1

ri
θ̃i

˙̂
θi , (27)

where

f̄i,1 = (di + bi )

⎡

⎣ fi,1
(
x̄i,1

)

− 1

(di + bi )

N∑

j=1

ai j fi,1
(
x̄ j,1

)
⎤

⎦ .

According to (1), fi,1 is unknown. Thus, the vir-
tual control input αi,1 cannot be designed by f̄i,1. As
Lemma 2 shows, the RBF NNs can be utilized to
describe f̄i,1 such that

f̄i,1 = ξ∗T
i,1 σi,1 + εi,1, |εi,1| ≤ ε̄i,1. (28)

According to the fact σT
i,1σi,1 ≤ li,1 and Young’s

inequality, we get:

zi,1 f̄i,1 ≤ 1

2a2i,1
z2i,1θi + 1

2
a2i,1 + 1

2
z2i,1 + 1

2
ε̄2i,1. (29)

Substituting (29) into (27) , we have:

V̇i,1 ≤ 1

2
a2i,1 + 1

2
ε̄2i,1 + (di + bi ) zi,1zi,2

+ 1

ri
θ̃i

(
ri

2a2i,1
z2i,1 − ˙̂

θi

)

+ zi,1

⎡

⎣ (di + bi ) αi,1 + 1

2
zi,1 − bi f0 (x0, t)

−
N∑

j=1

ai j x j,2 + 1

2a2i,1
zi,1θ̂i

⎤

⎦ . (30)

Substituting (18) into (30) , we get:

V̇i,1 ≤ − ci,1z
2
i,1 − 1

ri
θ̃i

(
˙̂
θi − ri

2a2i,1
z2i,1

)

+ (di + bi ) zi,1zi,2 + ϕi,1, (31)

where ϕi,1 = 1

2
a2i,1 + 1

2
ε̄2i,1.

Step s (2 ≤ s ≤ ni − 1): Consider the following
Lyapunov function candidate:

Vi,s = Vi,s−1 + 1

2
z2i,s . (32)

According to (17), the time derivative of Vi,s is:

V̇i,s = V̇i,s−1 + zi,s
(
ẋi,s − α̇i,s−1

)

= V̇i,s−1 + zi,s

[

zi,s+1 + αi,s + fi,s
(
x̄i,s
)

−
s−1∑

m=1

∂αi,s−1

∂xi,m

(
xi,m+1 + fi,m

(
x̄i,m

))

− ∂αi,s−1

∂x0
f0 (x0, t)

−
s∑

m=1

∑

j∈Ni

∂αi,s−1

∂x j,m

(
x j,m+1 + f j,m

(
x̄ j,m

))

− ∂αi,s−1

∂θ̂i

˙̂
θi

]

. (33)

By using Lemma1, we have:

− zi,s
∂αi,s−1

∂x0
f0 (x0, t)

≤ g (x0) zi,s
∂αi,s−1

∂x0
tanh

⎛

⎜
⎜
⎝g (x0)

zi,s
∂αi,s−1

∂x0
ε̄i,s

⎞

⎟
⎟
⎠

+ �ε̄i,s . (34)
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Substituting (34) into (33) , we have

V̇i,s = V̇i,s−1 + zi,s
(
zi,s+1 + αi,s + f̄i,s

)+ �ε̄i,s

+ zi,s

(

ψi,s − ∂αi,s−1

∂θ̂i

˙̂
θi

)

, (35)

where

f̄i,s = fi,s
(
x̄i,s
)

+ g (x0)
∂αi,s−1

∂x0
tanh

⎛

⎜
⎜
⎝g (x0)

zi,s
∂αi,s−1

∂x0
ε̄i,s

⎞

⎟
⎟
⎠

− ψi,s

−
s−1∑

m=1

∂αi,s−1

∂xi,m

(
xi,m+1 + fi,m

(
x̄i,m

))

−
s∑

m=1

∑

j∈Ni

∂αi,s−1

∂x j,m

(
x j,m+1 + f j,m

(
x̄ j,m

))
,

ψi,s = −ki,0θ̂i
∂αi,s−1

∂θ̂i

−
s∑

m=2

zi,s
ri

2a2i,s

∣
∣
∣
∣zi,m

∂αi,m−1

∂θ̂i

∣
∣
∣
∣

+
s−1∑

m=1

∂αi,s−1

∂θ̂i

ri
2a2i,m

z2i,m .

Similar to step 1, fi,s is unknown. Thus, the virtual
control input αi,s cannot be defined by f̄i,s . As Lemma
2 shows, the RBF NNs can be utilized to describe f̄i,s
such that

f̄i,s = ξ∗T
i,s σi,s + εi,s, |εi,s | ≤ ε̄i,s . (36)

According to the fact σT
i,sσi,s ≤ li,s and Young’s

inequality, we get:

zi,s f̄i,s ≤ 1

2a2i,s
z2i,sθi + 1

2
a2i,s + 1

2
z2i,s + 1

2
ε̄2i,s . (37)

Substituting (37) into (35) , we get:

V̇i,s ≤V̇i,s−1 + zi,s

(

zi,s+1 + αi,s

+ 1

2a2i,s
zi,sθi + 1

2
zi,s

)

+ 1

2
a2i,s + 1

2
ε̄2i,s + �ε̄i,s

+ zi,s

(

ψi,s − ∂αi,s−1

∂θ̂i

˙̂
θi

)

. (38)

Substituting (18) into (38) , we get:

V̇i,s ≤ −
s∑

m=1

ci,mz
2
i,m − 1

ri
θ̃

(
˙̂
θ −

s∑

m=1

ri
2a2i,m

z2i,m

)

+
s∑

m=2

zi,m

(

ψi,s − ∂αi,m−1

∂θ̂i

˙̂
θi

)

+ zi,s zi,s+1 + ϕi,s, (39)

where

ϕi,s = ϕi,s−1 + 1

2
a2i,s + 1

2
ε̄2i,s + �ε̄i,s .

Step ni : According to (9) and (17), the time deriva-
tive of zi,ni is:

żi,ni =
Mi∑

q=1

ωi,qρi,q (t) ki,q(t)τi,q(t) + λi + fi,ni
(
x̄i,ni

)

−
ni−1∑

m=1

∂αi,ni−1

∂xi,1

(
xi,m+1 + fi,m

(
x̄i,m

))

− ∂αi,ni−1

∂x0
f0 (x0, t)

−
ni∑

m=1

∑

j∈Ni

∂αi,ni−1

∂x j,m

(
x j,m+1 + f j,m

(
x̄ j,m

))

− ∂αi,ni−1

∂θ̂i

˙̂
θi , (40)

where λi = ∑Mi
q=1 ωi,q

(
ρi,q(t)hi,q(t) + ν̄i,q(t)

)
.

As the fact
∑Mi

q=1

∣
∣ωi,q

∣
∣ ρi,q ≥ max

{∣
∣ωi,1

∣
∣ ρi,1, . . . ,∣

∣ωi,Mi

∣
∣ ρi,Mi

}
> 0, we have:

inf
t≥0

Mi∑

q=1

∣
∣ωi,q

∣
∣ ρi,q(t) > 0.

Define:

ηi = inf
t≥0

Mi∑

q=1

∣
∣ωi,q

∣
∣ ρi,q(t)ki,q(t)
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βi = 1

ηi
, λ̄i = sup

t≥0
|λi | . (41)

Remark 5 By introducing a bound estimation method,
the estimates for the effects of unknown failures and
unknown dead zones are developed with only locally
available information. Compared with the results on
MASs by classical control, the failures and dead zones
in the systems can be completely unknown.

Remark 6 The unknown virtual control gain function
ωi,q is considered in (41); therefore, the effects of
unknown control gain are also estimated. If ρi,q(t) =
ki,q(t) = 1 and hi,q(t) = ν̄i,q(t) = 0, the input
ui is only affected by control gain ωi,q , i.e., ui (t) =
∑Mi

q=1 ωi,qτi,q(t). It is worth noting that the inequal-

ity 0 <
∑Mi

q=1

∣
∣ωi,q

∣
∣ < ∞ is required to ensure the

boundedness of ηi and λ̄i such that 0 < ηi < ∞,
0 ≤ λ̄i < ∞.

Consider the following Lyapunov function candi-
date:

Vi,ni = Vi,ni−1 + 1

2
z2i,ni + 1

2
˜̄λ2i + ηi

2
β̃2
i . (42)

Based on (40), the time derivative of Vi,ni is:

V̇i,ni ≤V̇i,ni−1 + zi,ni

⎡

⎣
Mi∑

q=1

ωi,qρi,q (t) ki,q(t)τi,q(t)

+ λi + fi,ni
(
x̄i,ni

)

−
ni−1∑

m=1

∂αi,ni−1

∂xi,1

(
xi,m+1 + fi,m

(
x̄i,m

))

− ∂αi,ni−1

∂x0
f0 (x0, t)

−
ni∑

m=1

∑

j∈Ni

∂αi,ni−1

∂x j,m

(
x j,m+1 + f j,m

(
x̄ j,m

))

−∂αi,ni−1

∂θ̂i

˙̂
θi

⎤

⎦− ˜̄λi ˙̄̂λi − ηi β̃i
˙̂
βi . (43)

By using Lemma1, we have

− zi,ni
∂αi,ni−1

∂x0
f0 (x0, t)

≤ g (x0) zi,ni
∂αi,ni−1

∂x0
tanh

⎛

⎜
⎜
⎝g (x0)

zi,ni
∂αi,ni−1

∂x0
ε̄i,ni

⎞

⎟
⎟
⎠

+ �ε̄i,ni . (44)

Therefore,

V̇i,ni ≤ V̇i,ni−1 + zi,ni

⎛

⎝
Mi∑

q=1

ωi,qρi,q (t)ki,q (t)τi,q (t) + f̄i,ni

⎞

⎠

+ ∣
∣zi,ni

∣
∣ λ̄i − 1

2
z2i,ni + �ε̄i,ni + zi,ni

×
(

ψi,ni − ∂αi,ni−1

∂θ̂i

˙̂
θi

)

− zi,ni−1zi,ni − ˜̄λi ˙̄̂λi − ηi β̃i
˙̂
βi , (45)

where

f̄i,ni = fi,ni
(
x̄i,ni

)

+ g (x0)
∂αi,ni−1

∂x0
tanh

⎛

⎜
⎜
⎝g (x0)

zi,ni
∂αi,ni−1

∂x0
ε̄i,ni

⎞

⎟
⎟
⎠

+ 1

2
zi,ni + zi,ni−1

−
ni−1∑

m=1

∂αi,ni−1

∂xi,1

(
xi,m+1

+ fi,m
(
x̄i,m

))

−
ni∑

m=1

∑

j∈Ni

∂αi,ni−1

∂x j,m

(
x j,m+1 + f j,m

(
x̄ j,m

))− ψi,ni ,

ψi,ni = −ki,0θ̂i
∂αi,ni−1

∂θ̂i
−

ni∑

m=2

zi,ni
ri

2a2i,ni

∣
∣
∣
∣zi,m

∂αi,m−1

∂θ̂i

∣
∣
∣
∣

+
ni−1∑

m=1

∂αi,ni−1

∂θ̂i

ri
2a2i,m

z2i,m .

Similar to step 1, fi,ni is unknown. Thus, the vir-
tual control input αi,ni cannot be defined by f̄i,ni .
As Lemma 2 shows, the RBF NNs can be utilized to
describe f̄i,ni such that

f̄i,ni = ξTi,ni σi,ni + εi,ni , |εi,ni | ≤ ε̄i,ni . (46)

According to the fact σT
i,ni

σi,ni ≤ li,ni and Young’s
inequality, we get:

zi,ni f̄i,ni ≤ 1

2a2i,ni
z2i,ni θi + 1

2
a2i,ni + 1

2
z2i,ni + 1

2
ε̄2i,ni .

(47)
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Thus,

V̇i,ni ≤V̇i,ni−1

+ zi,ni

Mi∑

q=1

ωi,qρi,q(t)ki,q(t)τi,q(t) + zi,ni αi,ni

+ 1

2a2i,ni
z2i,ni θi

+ 1

2
a2i,ni + 1

2
ε̄2i,ni + ∣

∣zi,ni
∣
∣ λ̄i + �ε̄i,ni

+ zi,ni

(

ψi,ni − ∂αi,ni−1

∂θ̂i

˙̂
θi

)

− zi,ni−1zi,ni − ˜̄λi ˙̄̂λi
− ηi β̃i

˙̂
βi − zi,ni αi,ni . (48)

Based on (24), we have:

−zi,ni αi,ni = − 1

2a2i,ni
z2i,ni θ̂i − ci,ni z

2
i,ni

− ˆ̄λi zi,ni tanh
(
zi,ni
μi

)

. (49)

By introducing (23), we have:

zi,ni

Mi∑

q=1

ωi,qρi,q (t) ki,q(t)τi,q(t)

= −
Mi∑

q=1

|ωi,q |ρi,q (t) ki,q(t)
z2i,ni β̂

2
i,ni

α2
i,ni√

z2i,ni β̂
2
i,ni

α2
i,ni

+ μi

≤ − ηi z2i,ni β̂
2
i,ni

α2
i,ni√

z2i,ni β̂
2
i,ni

α2
i,ni

+ μi

≤ ηiμi − zi,ni ηi β̂i,ni αi,ni . (50)

− zi,ni ηi β̂i,ni αi,ni + zi,ni αi,ni = −zi,ni ηi β̂i,ni αi,ni

+ zi,ni ηiβi,ni αi,ni

= zi,ni ηi β̃i,ni αi,ni . (51)

Substituting (20), (21), (22), (39), (49), (50), (51)
into (48), we have:

V̇i,ni ≤ −
ni∑

m=1

ci,mz
2
i,m + ηiμi − λ̄i tanh

(
zi,ni
μi

)

+ ∣
∣zi,ni

∣
∣ λ̄i +

ni∑

m=2

zi,m

(

ψi,m − ∂αi,m−1

∂θ̂i

˙̂
θi

)

+ ki,0
ri

θ̃i θ̂i + ϕi,ni , (52)

where ϕi,ni = ϕi,ni−1 + 1
2a

2
i,ni

+ 1
2 ε̄

2
i,ni

+ �ε̄i,ni . From
the work in [14], we have,

ni∑

m=2

zi,m

(

ψi,m − ∂αi,m−1

∂θ̂i

˙̂
θi

)

≤ 0. (53)

Based on the Young’s inequality, we have:

θ̃i θ̂i = θ̃i (θi − θ̃i ) ≤ −1

2
θ̃2i + 1

2
θ2i (54)

According to Lemma1, we have:

−λ̄i tanh

(
zi,ni
μi

)

+ |zi,ni |λ̄i ≤ λ̄i�μi . (55)

Finally, substituting (53), (54) and (55) into (52) , we
have

V̇i,ni ≤ −
ni∑

m=1

ci,mz
2
i,m + ki,0

2ri
θ2i

+ λ̄i�μi + ηiμi + ϕi,ni . (56)

Through the above design procedure, the following the-
orem comes out:

Theorem 1 For the MASs (1) with unknown actuator
failures (2) and unknown dead zones (4), adopting the
adaptive laws (20), (21), (22) and controllers (23), the
followers will synchronize and track the leader. The
tracking errors ‖y − y0‖ in the total closed-loop sys-
tem are CSUUB. By tuning the design parameters, the
following inequality holds:

lim
t→+∞ ‖y − y0‖ ≤ ε̄, ∀ε̄ > 0, (57)

where y = [y1, y2, . . . , yN ]T, y0 = [y0, y0, . . . , y0]T.
Proof See Appendix. ��
Remark 7 As shown in (63), the smaller tracking error
can be obtained by increasing the parameters ki,0,
μi and reducing the parameters ai,m , ci,m , ri (i =
1, . . . , N , m = 1, . . . , ni ). As a trade-off, such an
operation may cause a relatively large amplitude of
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Fig. 1 Directed graph of leader and followers

Table 2 Physical parameters of followers

i th agent mi (kg) k (Nm/s) c (Nm/s)

1 0.5 8 2

2 0.8 8 2

3 1.0 8 2

4 1.25 8 2

5 2.0 8 2

control signal. Note that it is difficult for the desired
tracking errors to be designed only by tuning a design
parameter. Thus, all these design parameters should be
tuned properly according to the control constraint and
requirement.

4 Simulation example

A practical example shown in [25] is given to verify
the effectiveness of the proposed algorithm. As shown
in Fig. 1, a six-node digraph G represents five follow-
ers marked i (i = 1, 2, 3, 4, 5) and a leader marked
0. Moreover, each follower adopts different spring–
mass–damper control system, which is controlled by
two torques ui,1. The followers are modeled as:

ẋi,1 = xi,2,

ẋi,2 = 1

mi

2∑

q=1

ui,q − k

mi
xi,1 − c

mi
xi,2,

yi = xi,1. (58)

where mi denotes mass of the i th follower. k denotes
the stiffness of the spring. c denotes the damping coeffi-
cient.Moreover, xi,1, xi,2 and yi represent speed, accel-
eration and position, respectively. The parameters are
chosen as Table 2.

As shown in Fig. 1, the edge weights ai j and the
pinning gains bi are set to 1. Therefore, the adjacency
matrix of followers is:

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

. (59)

In addition, the adjacency matrix of leader is B =
diag{1, 1, 0, 0, 0}.

The parameters of dead zones (2) are: m1,1,r =
1,m1,1,l = 1.3, ϑ1,1,r = 0.3, ϑ1,1,l = 0.52,m1,2,r =
0.7,m1,2,l = 1.3, ϑ1,2,r = 0.7, ϑ1,2,l = 4,mi,q,r =
0.8,mi,q,l = 1.2, ϑi,q,r = 4.8 and ϑi,q,l = 1.8,
i = 2, 3, 4, 5, q = 1, 2.

The following failure models are considered:

ν1,1 =
{

τ1,1, if t ∈ [t1, t2)
0.5τ1,1, if t ∈ [t2, t3)

,

ν1,2 =
{
0.3τ1,2, if t ∈ [t1, t2)
0.1 cos(t), if t ∈ [t2, t3)

,

ν2,1 =
{

τ2,1, if t ∈ [t1, t2)
0.6τ2,1, if t ∈ [t2, t3)

,

ν2,2 =
{

τ2,2, if t ∈ [t1, t2)
0.3, if t ∈ [t2, t3)

,

ν3,1 =
{

τ3,1, if t ∈ [t1, t2)
0.5τ3,1, if t ∈ [t2, t3)

,

ν3,2 =
{
0.1τ3,2, if t ∈ [t1, t2)
0.2 − 0.1 cos(t), if t ∈ [t2, t3)

,

ν4,1 =
{

τ4,1, if t ∈ [t1, t2)
0.6τ4,1, if t ∈ [t2, t3)

,

ν4,2 =
{
0.3τ4,2, if t ∈ [t1, t2)
0, if t ∈ [t2, t3)

,

ν5,1 =
{

τ5,1, if t ∈ [t1, t2)
0.5τ5,1, if t ∈ [t2, t3)

,

ν5,2 =
{
0.3τ5,2, if t ∈ [t1, t2)
0.1 sin(t), if t ∈ [t2, t3)

,

where t1 = 2k, t2 = 2k +1, t3 = 2k +2, k = 0, 1, . . ..
According to (10), the dynamics of the leader is

designed as

ẋ0 = 0.1 sin (t) ,

y0 = x0.
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Fig. 2 Tracking performance for systems without dead zones
and failures

Fig. 3 Tracking performance for systems with dead zones and
failures

Fig. 4 Tracking errors ei,1 for systems without dead zones and
failures

Scenario 1—In this scenario, the design param-
eters are set to be c1,1 = c2,1 = 4.85, c3,1 =
c4,1 = c5,1 = 15, ci,2 = 1, ri = 30, ai,1 =
20, ai,2 = 0.5, ki,0 = 0.001, and μi = 0.001, i =
1, 2, 3, 4, 5. Then, the initial states of followers are set
to be x1 (0) = [0.9, 0]T, x2 (0) = [0.8, 0]T, x3 (0) =
[0.7, 0]T, x4 (0) = [0.6, 0]T, x5 (0) = [0.5, 0]T. The
initial states of adaptive parameters are: β̂i (0) =
0, λ̂i (0) = 0 and θ̂i (0) = 0, i = 1, 2, 3, 4, 5.

The simulation results are shown in Figs. 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13 and 14. The tracking performances
for systems without dead zones and failures are shown
in Fig. 2, while the tracking performances for systems

Fig. 5 Tracking errors ei,1 for systems with dead zones and
failures

Fig. 6 Trajectories of states xi,2 for systems without dead zones
and failures

Fig. 7 Trajectories of states xi,2 for systems with dead zones
and failures

Fig. 8 Adaptation parameters θ̂i for systems without dead zones
and failures
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Fig. 9 Adaptation parameters θ̂i for systems with dead zones
and failures

Fig. 10 Adaptation parameters β̂i for systems without dead
zones and failures

Fig. 11 Adaptation parameters β̂i for systems with dead zones
and failures

Fig. 12 Adaptation parameters λ̂i for systems without dead
zones and failures

Fig. 13 Adaptation parameters λ̂i for systems with dead zones
and failures

with dead zones and failures are shown in Fig. 3.Mean-
while, the corresponding tracking errors ei,1 = |yi (t)−
y0(t)| are shown in Figs. 4 and 5, respectively. Figures 6
and 7 show the difference about the trajectories of state
xi,2 between the systems without dead zones and fail-
ures and systemswith dead zones and failures. Accord-
ing to Figs. 2, 3, 4, 5, 6 and 7, it can be observed that
actuator failures and dead zones have obvious effects
on the system, but the effects are eliminated fleetly by
the proposed controllers. The adaptive parameters are
depicted in Figs. 8, 9, 10, 11, 12 and 13. Figure 14
demonstrates the boundedness of inputτi, j and dead
zone output νi, j , i = 1, . . . , 5, j = 1, 2. It can be
seen from Fig. 14 that the failures cause some jumps in
the control inputs, but they are controllable. From all
the above simulation results, we can know that all the
followers reach the synchronization and obtain ideal
tracking performance. Moreover, all the signals in the
closed-loop system are bounded. Therefore, the effec-
tiveness of the proposed algorithm has been validated.

Scenario 2—For comparison purposes, we have
compared the proposed control method in this paper
through simulation. Specifically, the following three
control methods are considered.

Method I : the proposed distributed fault-tolerant
control method (DFTCM);

Method II: the adaptive fuzzy control method;
Method III: the direct robust control method;
For clarity, the comparative simulation results about

one of the followers are presented in Figs. 15 and
16. It can be seen from the simulation result that, in
terms of the tracking control performance, the pro-
posed DFTCM is the best among the three tested con-
trol methods. This is mainly because the objective of
Method II and Method III is to cope with the internal
or external disturbances such that the insensitivity of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 14 Trajectories of control for systems with dead zones and
failures: a inputτ1,1 and dead zone output ν1,1; b inputτ1,2 and
dead zone output ν1,2 ; c inputτ2,1 and dead zone output ν2,1 ; d
inputτ2,2 and dead zone output ν2,2 ; e inputτ3,1 and dead zone

output ν3,1 ; f inputτ3,2 and dead zone output ν3,2 ; g inputτ4,1
and dead zone output ν4,1 ; h inputτ4,2 and dead zone output ν4,2
; i inputτ5,1 and dead zone output ν5,1 ; j inputτ5,2 and dead zone
output ν5,2
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Fig. 15 Tracking performance for comparison with our pro-
posed method

Fig. 16 Tracking errors for comparison with our proposed
method

result system is achieved. During control operation, the
effect caused by the dead zones and actuator failures is
regarded as the disturbance-like effect and not treated
by any special treatment. Therefore, the obtained result
is relatively conservative in the sense that the tracking
performance is not very ideal. Different from Method
II andMethod III, the proposedDFTCMcan be utilized
to estimate the effect caused by unknown dead zones
and unknown actuator failures by adaptive laws and
compensate for it. As reflected in Figs. 15 and 16, the
desired trajectory can be obtained for theMASs regard-
less of the existence of unknown actuator failures and
unknown dead zones by our proposed Method I .

5 Conclusion

This paper mainly focuses on theMASs with unknown
dead zones and unknown actuator failures. By intro-
ducing distributed backstepping technique, RBF NNs
and a bound estimation approach, the proposed control
protocol has been proposed to ensure that all followers
reach an agreement and obtain the ideal tracking perfor-
mance. It is the first time to design distributed adaptive
neural control protocol for strict-feedback MASs with

unknown actuator failures and unknown dead zones. In
this paper, the effect of stuck failures and the restric-
tion on the number of actuator failures have been taken
into account. Note that the basis function of RBF NNs
has been ignored by considering the definition of esti-
mation parameter θi to reduce computational burden
efficiently. In the end, the effectiveness of Theorem 1
has been illustrated by simulation results.

In this study, we have investigated the coordination
control problem for MASs with unknown dead zones
and unknown actuator failures. However, it is often
required in practice that the consensus can be reached
in finite time as such a feature offers numerous benefits
including faster convergence rate, better disturbance
rejection and robustness against uncertainties. Thus,
our future work will focus on this topic.
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6 Appendix: Proof of Theorem 1

The following overall Lyapunov function candidate
function V is employed to analyze the stability in the
total closed-loop system:

V =
N∑

i=1

Vi,ni . (60)

Then, (56) is rewritten as

V̇ ≤ −
N∑

i=1

ni∑

m=1

ci,mz
2
i,m

+
N∑

i=1

ϕi,ni +
N∑

i=1

(
ηi + λ̄i�

)
μi

+
N∑

i=1

ki,0
2ri

θ2i . (61)

If the following compact set holds, V̇ < 0,

Ω =
{

N∑

i=1

ni∑

m=1

ci,mz
2
i,m
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>

N∑

i=1

ϕi,ni +
N∑

i=1

(
ηi + λ̄i�

)
μi

+
N∑

i=1

ki,0
2ri

θ2i

}

, (62)

which implies that

lim
t→+∞

N∑

i=1

ci,1z
2
i,1 ≤

N∑

i=1

ϕi,ni

+
N∑

i=1

(
ηi + λ̄i�

)
μi

+
N∑

i=1

ki,0
2ri

θ2i . (63)

According to the similar results in [14], all the sig-
nals in the closed-loop system are bounded. Based
on the work in [34], we have ‖y − y0‖ ≤ ‖z.1‖/

(
σ

(L + B)), where σ(L + B) is the minimum singular
value of L + B, z.1 = [z1,1, z2,1, . . . , zN ,1]T. It can be
shown that, for ∀ε̄ > 0,

‖y − y0‖ ≤ ε̄, i f z2.1 ≤ ε̄2
(
σ(L + B)

)
(64)

It is worth mentioning that the desired tracking
error ‖y − y0‖ can be controlled in a small neigh-
borhood by tuning the parameters ki,0, ri , ai,m , ci,m
(i = 1, . . . , N , m = 1, . . . , ni ). In order to obtain the
desired tracking error, the parameters ki,0, ri , ai,m , ci,1,
μi , ε̄i,m would be tuned in a appropriate set. According
to Definition 1, the distributed consensus tracking error
‖y − y0‖ in the closed-loop system is CSUUB.

The proof is completed.
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