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Abstract A simple model comprising five differen-
tial equations reflecting the attitude dynamics of small-
scale hovering helicopters is developed. From its force
analysis, this helicopter system has the dynamic struc-
ture of a Kolmogorov model producing chaos. The
stable-focus mode and chaotic mode are identified for
the helicopter. The hidden chaotic attraction basin is
identified, which demonstrates the multi-stability of
the helicopter and highly sensitivity with initial loca-
tion. Varying the configuration of themoment of inertia
leads to a change in dynamics for the helicopter sys-
tem. The analysis of its chaotic motion is significant
for designing of the controller as well as the config-
uration of parameters so as to avoid instabilities that
produce chaos through improper assembly or selec-
tion of materials. The Lyapunov exponent spectra and
the two-parameter bifurcation in terms of moment of
inertia exhibit rich dynamical modes: stable, periodic
orbit, pseudo-periodic orbit, and chaotic. A perturba-
tion feedback control method is applied to control the
system subjecting to chaos situation to reach the peri-
odic orbit or equilibrium point. This control just needs
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a single controller but does not need the control input
computation. The proposedmodel and the discovery of
chaos provide a benchmark for the design and research
of control algorithms for similar helicopter systems.
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helicopter · Chaos · Hidden chaotic attractor ·
Bifurcation · Control

1 Introduction

With the advancement in communications and flight
control technologies and composite materials, small-
scale unmanned helicopters have broad applications
such as in military surveillance, transmission line
inspection, and environmental monitoring. Because of
the highly nonlinear, open-loop instability and strong
coupling among the axes, rotors, andflapping, the study
of small-scale unmanned helicopter systems is very
challenging [1,2]. The helicopter is generally a rigid
body, so its dynamics complies with the Newton–Euler
equation. When the helicopter is hovering, the dynam-
ics obeys the generalized Euler equation. When the
parameters are not configured well, the system may
produce periodic oscillations, and even chaotic oscil-
lation. Helicopters are highly nonlinear systems with
significant dynamic coupling. This dynamic coupling
is attributed to the interaction of inertial forces, grav-
itational forces, flipping forces, damping, torque, and
moments generated by forces. There is also significant
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parameter and modeling uncertainties because of the
complicated aerodynamic nature of the thrust genera-
tion. Therefore, there is a major interest in the theoret-
ical perspectives of helicopter controller designs and
their flight dynamics.

The literature on flight control algorithms for heli-
copters is numerous, but may be divided into three
categories: linear control, nonlinear control, and arti-
ficial intelligence control [3]. However, studies on the
dynamics of small-scale unmanned helicopters based
on amodel are few, and the literature on chaotic dynam-
ics has not been reported as best aswe have ascertained.

To study the dynamics and chaos of such helicopters,
building a simple and suitable model reflecting their
dynamics is important. Current modeling divides the
field mainly into first-principle modeling or mecha-
nismmodeling and system identification modeling [1].
The mechanism modeling approach requires signifi-
cant knowledge about the helicopter flight dynamics
in terms of, for example, flight mechanics, aerody-
namics, rigid dynamics, and flipping angle dynamics
[1,2,4]. The system identification modeling technique
uses data obtained duringflight tests to extract a simula-
tionmodel. This approach is relatively simpler and does
not require a priori knowledge of the system dynam-
ics. The program, CIFER (Comprehensive Identifica-
tion from Frequency Response), is typically used [5].
Most researchers combine both methods, in which the
model structure and equations are developed using first
principles and the parameters are identified using the
identification approach [1,2,4,6,7].

Cai et al. [1] developed a model for the Raptor 90
including 6-DOF rigid body dynamics and main rotor
flapping dynamics; the parameter values were evalu-
ated using CIFER. However, the equations governing
the source of force and moment and flipping dynamics
are too complicated to analyze its dynamics. Bhandari
and Colgren [4] modeled a full-sized version of the
Raptor 50 using twelve differential equations includ-
ing 6-DOF rigid body dynamics, flipping angle dynam-
ics, and stabilizer dynamics. Koo and Sastry proposed
a model with eight differential equations containing
6-DOF rigid body dynamics and two flipping angle
dynamics. The model complexity is moderate and easy
for analysis of the dynamics [2], and the model is the
basis of many models of small-scale unmanned heli-
copters [6]. Pan et al. [7] developed a model using both
first-principle methods and the PEM (Proton Exchange
Membrane) identification method, which has quite a

sophisticated design controller as well as dynamics
analyzer.Mettler usedCIFER to establish a linear state-
space model of a hovering helicopter [8]. A neural net-
work method was also used to identify the nonlinear
model [9]. However, these complicated models are dif-
ficult to use and tobase control algorithms andadynam-
ical analysis on. To study the dynamics and chaos of the
small-scale helicopter, building a simple and suitable
model reflecting its dynamics is necessary.

Most scholars focus on the control strategies and
control performance using external forces to stabilize
the closed-loop system. However, few scholars have
studied the dynamics of open-loop systems before the
design of the controller, including stability, oscilla-
tions, and the generation of different dynamical modes:
sink, periodic orbit, pseudo-periodic orbit, chaos, and
source. We find that by adjusting the values of some
helicopter parameters or increasing the external distur-
bance, the angular momenta or velocities of the system
may operate in a chaotic behavior.

The presence of chaos in the helicopter dynamics
physically causes the system to oscillate and to cre-
ate acoustic noise and mechanical vibration, thereby
consuming electrical energy and reducing service life.
If we control it with force to stabilize the system, the
strong control forces will damage the actuators. The
best way is to design the helicopter to avoid parame-
ter configurations that generate chaos. In addition, to
design a suitable controller for a small helicopter, the
first task is to study its dynamics to know the possi-
ble behavior prior to or during the control operation.
Therefore, building a simulation model of a helicopter
and studying its chaotic dynamics are paramount in
both scientific research on chaos and practical applica-
tions. Analyzing physical systems from the perspective
of chaos applies not only in helicopter design to avoid
chaos, but also in the design of large passenger aircraft
in adapting to aerodynamic conditions, wind turbine
power generation, and small satellites.

Why is there a lack of chaos research of small-
scale helicopters? One reason is that, usually, the Euler
angles, spatial positions, and speed of a closed-loop
system are measured and evaluated, instead of angular
velocity or angular momentum, and the latter are often
present in chaotic modes for a rigid body according
to research [10–13]. The generalized Euler equation,
or often-called Kolmogorov model describing a forced
rigid body, has cross-quadratic terms, linear terms, dis-
sipative terms, and external force terms. From this point
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of view, an analogy between this dissipative chaotic
system and a forced rigid body is made [10–13]. In
addition, the angular momenta or angular velocities of
a rigid body are analogous to the states of a dissipative
chaotic system. Another reason for the scarcity is that
most scholars focus on the control performance using
external forces for the closed-loop system, whereas the
dynamics of an open-loop systemhave not been studied
as much.

Many mathematical chaotic systems have been con-
structed. These systems are basically based on other
existing chaotic systems, such as the Lorenz chaotic
system or the Chua chaotic circuit system, to obtain
a series of new chaotic systems, the hyperchaotic sys-
tems, or chaotic systems with memoristor, by tenta-
tively increasing the importance of linear or nonlin-
ear terms or the dimensions of the system. However,
these systems have been developed mathematically. A
few chaotic models or systems have been derived from
practical engineering scrutiny or observations of phys-
ical processes, such as the brushless DC motor chaotic
system [10,11,14], the plasma chaotic system [15–17],
a 4D rigid body conservative chaotic system [18], and
the nuclear spin generator system [19]. Those systems
derived from a physical process are called physical
chaotic systems to distinguish them from mathemat-
ical chaotic systems.

This paper develops a simple dynamical model for
the hovering with five differential equations reflect-
ing the attitude dynamics of the small-scale unmanned
helicopter. The stabilizer dynamics and fuselage force
are reasonably neglected. An analysis of the dynamics
is performed. The stable-focus mode, periodic orbits,
pseudo-periodic orbital mode, and chaotic mode are
identified and analyzed. The basic mechanism that pro-
duces chaos is studied using force analysis. The hidden
chaotic attractor is identified, which demonstrates the
multi-stability of the helicopter and highly sensitivity
with initial location. Bifurcations with respect to the
moments of inertia of the helicopter are provided. The
emergence of chaos that may cause damage and how
to prevent it in helicopter maneuverings is pointed out.
Finally, a single-channel controller for the MIMO sys-
tem is designed using themethod proposed byTereshko
in [20]. The paper is organized as follows:

Section 2 describes the dynamical model of small-
scale helicopter, which comprises five differential
equations. Section 3 analyzes the dynamics of equilib-
rium points and the hidden chaotic attractor. A bifurca-

tion analysis is performed in Sect. 4. Section 5 presents
conclusions. A perturbation control method is adopted
to effectively control the chaotic system. For brevity,
the term helicopter from here on shall refer specifically
to a small-scale unmanned helicopter unless otherwise
stated.

2 Dynamical model of the helicopter

To date, the modeling of a helicopter has seen some
progress particularly when the system identification
and mechanism modeling methods are combined. We
develop a nonlinear model along these lines by simpli-
fying thework in [1,2,6,21]. This paper only studies the
dynamics associated with hovering. Only two coordi-
nate frames need to be considered: the body coordinate
frame and the local north-east-down (NED) coordinate
frame. Actually, a body in flight needs the vehicle-
carried NED coordinate frame to describe the motion.
However, when the helicopter moves only within a
small region at low speed, especially when we study
the attitude dynamics of hovering, it is reasonable to
assume that the direction of the vehicle-carried and
local NED coordinate systems constantly coincides
with each other. The origin of the body coordinate
frame is located at the center of mass of the helicopter.
The x axis points to the front of the body, the y axis
points to the right side of the body, and the z axis points
downward complying with the right-hand rule of vec-
tor products. The local NED coordinate frame and the
body coordinate frame are demonstrated as Fig. 1. The
body frame rotates, and Local NED is fixed. The rela-
tionship between the two frames is described by the
rotational matrix in Eq. (4).

Fig. 1 Schemes of local NED coordinate frame and the body
coordinate frame
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Fig. 2 Helicopter dynamics
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Ahelicoptermodel can be divided into four parts: (1)
the power sources, (2) the force andmoment generation
process, (3) the rigid body dynamics, and (4) the kine-
matics (Fig. 2). The power sources include the main
rotor and tail rotor. Both thrusts are subjected to con-
trol inputs, fuselage, vertical fin, and horizontal fin. The
flapping angles are outputs of the main rotor flapping
dynamics and used in adjusting the tip path-flapping
blades, which directly determine the rigid body dynam-
ics. The generation of forces and moments accounts
for several of the algebraic equations. The model of
the rigid body dynamics includes the Newton–Euler
equation, which produce the body velocity and angular
velocity given the force and moment exerted on cen-
ter of the flight body, and the kinematics contain the
dynamical equation associated with the transformation
between the body coordinate and inertial frames.

Wepresent the rigid body dynamics, kinematics, and
the dynamics of the flapping angles of the main rotor
following the work in References [1,2,6,21].

2.1 Dynamics of a rigid body

If the helicopter is regarded as a rigid body, its dynamics
model involves two aspects: translational motion and,
in regard to attitude, rotational motion. In being sub-
jected to body force f ∈ R3 and torque τ ∈ R3 in the
body coordinate frame applied at the center of gravity
(CG), the dynamics of this rigid body is given by the
Newton–Euler equation for the translational motion,

mv̇ = mv × ω + f, (1)

and for the rotational motion,

Iω̇ = Iω × ω + τ , (2)

where v = [
vx , vy, vz

]T ∈ R3 is the body velocity,

ω = [
ωx , ωy, ωz

]T ∈ R3 the body angular veloc-

ity, m ∈ R1 the mass, and I = diag (I1, I2, I3) the
principle inertial matrix.

2.2 Kinematics

The kinematics of the helicopter system is concerned
with its translational and rotational motions and the
dynamical transformation between localNED,which is
assumed to be inertial, and the body coordinate frames.
For the translational motion, we have

ṗn = vn = R(�)v, (3)

where R(�) is the rotational matrix from the body
frame to the NED frame and is given by

R(�) =
⎡

⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sθsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎤

⎦

(4)

with s∗ = sin(∗) and c∗ = cos(∗), � = [
φ θ ψ

]T
.

R(�) is given by the ZYX Euler angles denoted φ,
θ , and ψ about the x, y and z axes, respectively. The
rotational motion is given by

�̇ = �(�)ω

=
⎡

⎣
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤

⎦ω
(5)

with t∗ = tan(∗).

2.3 Force and moment

As well as a horizontal stabilizer, a vertical stabilizer,
and fuselage, a helicopter system comprises a lumped
power source consisting of a main rotor producing
thrust Tm and a tail rotor producing thrust Tt . Assum-
ing the helicopter is operating at low speed, hence the
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drag from the stabilizers and fuselage can be ignored in
accounting for the power sources, as is adopted in [2,6].
Therefore, the external force exerting on the system is

f = fm + ft + fmg

=
⎡

⎣
xm
ym
zm

⎤

⎦ +
⎡

⎣
0
yt
0

⎤

⎦ + RT(�)

⎡

⎣
0
0
mg

⎤

⎦ , (6)

where fm and ft are the respective forces generated by
the thrusts of the main rotor and tail rotor, and fmg

is the gravitational force, RT(�) rotates the gravita-
tional force from theNED frame to the body coordinate
frame. In detail, the forces are written

xm = −Tmsa, ym = Tmsb, zm = −TMcacb,

yt = −Tt . (7)

where a and b are the flapping angles of the main rotor
blades. Note that the thrust of the tail rotor is regarded
as a source of lateral force yt satisfying yt = −Tt .

Similarly, the total torque is

τ = τm + τ t+mm + mt

=
⎡

⎣
Kβsb − Qmsacb
Kβsa + Qmsbca
−Qmcacb

⎤

⎦ +
⎡

⎣
0
−Qt

0

⎤

⎦

+
⎡

⎣
ymhm
−xmhm
0

⎤

⎦ +
⎡

⎣
yt ht
0
−yt lt

⎤

⎦ , (8)

where τm and τ t denote the torques generated by the
main rotor and tail rotor, respectively, and mm and mt

the moments generated by the forces fm and ft ; Kβ is
the spring constant of the main rotor, hm and ht are
the main hub locations of the main rotor and tail rotor
above theCGof the helicopter system; lt is the tail rotor
hub location behind the system’s CG; and Qm and Qt

are air resistance torques with [6,21]

Qm � CmT
1.5
m + Dm, Qt � CtT

1.5
t + Dt . (9)

The thrusts of main rotor and tail rotor are obtained
from

Tm = Kmum + Bm, Tt = Ktut + Bt , (10)

where um and ut represent control inputs of the main
rotor and tail rotor, and Km, Kt , Bm, Bt are obtained
by system identification using experimental data [1].

2.4 Main rotor flapping dynamics

Apart from the main thrust and tail thrust, the other
important source of forces and torques is determined by

the flapping angles a and b which are the longitudinal
and lateral tilts in the tip path plane of the main rotor
with respect to the shaft. The dynamics associated with
the main rotor flapping angles is represented by two
coupled first-order differential equations [2,21],

ȧ = −ωy − 1/τa + Abb + Alonulon,

ḃ = −ωx − 1/τb + Baa + Alatulat . (11)

where Ab and Ba represent the coupling strength
between longitudinal and lateral flapping motions,
respectively; Alon and Alat the coefficients of the cyclic
control inputs ulon and ulat .

2.5 General model of the helicopter’s altitude

Because we assume the helicopter is in hovering mode,
only the rotational motion is actively operating. There-
fore, the dynamic model of system combines Eqs. (2),
(7), (8), and (11), which are written as five differential
equations:

Ix ω̇x = (Iy − Iz)ωyωz + (Kβ + hmTm)sb

−Qmsacb − ht Tt ,

Iyω̇y = (Iz − Ix )ωxωz + (Kβ + hmTm)sa

+Qmsbca − Qt ,

Izω̇z = (Ix − Iy)ωxωy − Qmcacb + lt Tt ,

ȧ = −ωy − 1/τa + Abb,

ḃ = −ωx − 1/τb + Baa. (12)

Some values of the parameters follow those given in
[6,21], which were determined for MIT’s small-scale
rotorcraft X-Cell 60. All the parameter values are listed
in Table 1. To maintain the helicopter in a hovering
position, we take

Tm = mg, Tt = Qm/lt , ulon = ulat = 0., (13)

where the setting Tm = mg counteracts the gravita-
tional force. Note that terms Alonulon and Blatulat van-
ish in Eq. (12) because ulon = ulat = 0.

3 Dynamical analysis of a hovering helicopter

The whole dynamics of the helicopter’s attitude while
hovering is governed byEq. (12), fromwhichwe obtain
the angular velocities of the body, ωx , ωy, ωz and the
flapping angles a and b. From Eq. (5), we solve for the
Euler angles φ, θ , andψ by combining it with Eq. (12).
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Table 1 Parameter settings of the small-size unmanned heli-
copter

Parameter Value Parameter Value

m 8.2 kg Kβ 52 Nm/rad

g 9.78 m/s2 Blat 4.2

Ix 0.18 kgm2 Alon 4.2

Iy 0.34 kgm2 Ab 3.629 s-1

Iz 0.28 kgm2 Ba 3.993 s-1

hm −0.235 m τ 0.1 s-1

ht 0.08 m Km 80.44

lt 0.91 m Cm 0.004452 m/
√
N

Ct 0.005066 m/
√
N Dm 0.6304 Nm

Dt 0.008488 Nm Bm 88.48

Kt 18.46 Bt 4.22

3.1 Simple force analysis

System (12) is a highly nonlinear coupled system. The
vector form of the first three equations in Eq. (12) is
displayed in Eq. (2). The term Iω × ω is the inertial
part and produces nonlinear skew-symmetric quadratic
terms. The torque term, τ , decomposes into four terms

τ = τm + τ t + mm + mt

=
⎡

⎣
Kβsb − Qmsacb
Kβsa + Qmsbca
−Qmcacb

⎤

⎦ +
⎡

⎣
0
−Qt

0

⎤

⎦ +
⎡

⎣
ymhm
−xmhm
0

⎤

⎦

+
⎡

⎣
ytht
0
−yt lt

⎤

⎦ .

Therefore, the torque exerted on the hovering body is a
strongly coupled combination of torques generated by
the main rotor and tail rotor and associated moments.
In addition, there is a coupling of the rotational dynam-
ics and flipping dynamics through themain rotor torque
and the flipping angles that involve trigonometric func-
tions. Two types of torque are generally in play; one
is the applied torque or external torque, which acts to
move the hovering body, and the another a dampening
torque such as the terms involving Qm and Qt , which
are related to air resistance, and damping terms−1/τa
and−1/τb in the fourth and fifth equations in Eq. (12),
respectively. Both the applied and dissipative torques
are coupled, and therefore, the helicopter system is a
strong nonlinear system.

The system is dissipative, because

∇ · V=∂ω̇x

∂ωx
+ ∂ω̇y

∂ωy
+ ∂ω̇z

∂ωz
+ ∂ ȧ

∂a
+ ∂ ḃ

∂b
= − 2

τ
< 0.

(14)

Remark 1 The system model is a generalized Euler
equation or Kolmogorov model [12], containing
quadratic inertial torques, dissipative torques, and an
external torque.

Given a Kolmogorov model with the forces or
torques is coupled together, the trajectories of the sys-
tem are twisted. There arises the possibility that energy
exchange is irregular between the supplied energy pro-
vided by external torque and the absorbed energy lost
through dissipative torque. From an analysis of the
Qi chaotic system [13], the Qi four-wing chaotic sys-
tem [12], the Chen system [22], the brushless DC
motor chaotic system [11], and plasma chaotic system
[16,17], we conclude that the Kolmogorov model con-
tains a dynamical structure to produce chaos.

Remark 2 The helicopter system has a similar dynam-
ical structure to the Kolmogorov model from which
chaos emerges.

Ananalysis detailing the forces and energy exchanges
required to reveal the mechanism underlying chaos
generation is not studied in this paper. A study of this
rich topic is left as an open problem for readers. In the
following sections,we focus on the dynamical analysis.

3.2 Dynamics of equilibrium point when Ix =
0.18 kgm2, Iy = 0.34 kgm2, Iz=0.28 kgm2

All parameter settings will be those listed in Table 1.
We take Tt = 4N to keep the helicopter from rotating
around the z axis.

With the appearance of trigonometric functions,
there is an infinite number of equilibria, and it is quite
difficulty to solve for the equilibria.Weobtain twoequi-
librium points E1 and E2 for the given parameter set-
tings (Table 1),

E1 = [
ωx , ωy, ωz, a, b

]T
E1

= [− 0.9401, 1.1036,

− 29.5451,− 0.0892, 0.0584]T ,

E2 = [
ωx , ωy, ωz, a, b

]T
E2

= [− 54.23505,

− 0.73977, 4.12451, 2.3882, 6.37712]T ,
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With a sampling time of 0.001s in simulations, all val-
ues were initialized to zero, which is within the neigh-
borhood of E1. We make the following observations.
The angular velocities ωx and ωy of the hovering body
start from zero, and approach approximate steady states
with quite small values of ωx ≈ −0.9401(rad/s) and
ωy ≈ 1.1036 (rad/s) (Fig. 3a), which means that the
hovering body remains almost stationary in the x − y
plane during the whole process. However, the angular
velocityωz approaches a large value ofωz ≈ −29.5451
(rad/s) (Fig. 3a). The reason is that the body is sub-
jected to a tail rotor torque of Tt = 4N; specifically,
from a top view, it turns clockwise at constant speed.
Figure 3b gives the Euler angles during time interval
t ∈ [50, 60]s where the roll angle, φ, and pitch angle,
θ , periodically oscillate within quite small amplitudes,
while the yaw angle, ψ , increases constantly, match-
ing the spin of the body around the z axis. Clearly, the
body is hovering and operates normally under open-
loop control. Note that the constant velocities ωx and
ωy do not mean the Euler angles, and φ and θ increase
constantly; rather, they move periodically within small
amplitudes, because the Euler angles are not simply the
integrals of angular velocities, but included are kine-
matics described by Eq. (5).

The Jacobian matrix of any equilibrium of the hov-
ering system is

J =

⎡

⎢⎢⎢⎢
⎣

0 (Iy − Iz)/Ixωz (Iy − Iz)/Ixωy −Qmcacb/Ix
(
(Kβ + hmTm)cb + Qmsasb

)
/Ix

(Iz − Ix )/Iyωz 0 (Iz − Ix )/Iyωx
(
(Kβ + hmTm)ca − Qmsasb

)
/Iy −Qmcacb/Iy

(Ix − Iy)/Izωy (Ix − Iy)/Izωx 0 Qmsacb/Iz Qmcasb/Iz
0 −1 0 −1/τ Ab

−1 0 0 Ba −1/τ

⎤

⎥⎥⎥⎥
⎦

(15)

The eigenvalues for equilibrium E1 are

λ1,2 = −7.4085 ± j11.8610, λ3

= −2.5928, λ4,5 = −1.2951 ± j0.7055.

Therefore, the equilibrium point is a sink or a sta-
ble focus because all real parts of the eigenvalues are
negative. The maximum Lyapunov exponent (LE) is
L1 = −1.2304 for the given initial values at the ori-
gin, which matches observations (Fig. 3a). The trajec-
tories start from the origin within the neighborhood
of the equilibrium and converge to a fixed point. Note
that the sink represents the stability of Eq. (12) and
not of Eq. (5). In another words, the angular veloc-
ities ω = [

ωx , ωy, ωz
]Tconverge to steady states

(Fig. 3a), whereas the Euler angles � = [
φ θ ψ

]T

do not (Fig. 3b). The eigenvalues of E2 are

λ1,2 = 0.5462 ± j20.7413, λ3 = 12.0954,

λ4,5 = − 4.4984 ± j12.4373.

Therefore, the equilibriumpoint is a saddle-focus point.
Is it possible that the hovering body produces chaos
when we initialize the system in the neighborhood
of E2? From Remark 2, the torque of the hovering
body contains inertial, dissipative, and external torques,
making chaos possible. Here, we examine the possibil-
ity by initializing ωx0 = − 54, ωy0 = − 0.7, ωz0 =
4, a = 2, b = 6; the angular velocities oscil-
late considerably and irregularly within a large ampli-
tude (Fig. 3c). The flipping angles also evolve abnor-
mally (Fig. 3d). Figure 3e shows that a chaotic attrac-
tor exists in the 3D spatial view. The maximum LE
is L1 = 1.10866 for the given initialization (Fig. 3f)
and confirms that the hovering helicopter operates in
chaotic mode.

3.3 Hidden chaotic attractors

There are several types of hidden chaotic attractors. For
one type, the basin of chaotic attraction does not inter-
sect with small neighborhoods of the unstable fixed
point [23,24], i.e., the basins of attraction of these

attractors do not touch unstable fixed points and are
located far away from such points. In another type,
the attractor exists in the system without any equilib-
rium point or with the stable equilibrium point. In a
third type, the attractor exists in infinitely many unsta-
ble equilibria.

The hovering helicopter system has many hidden
chaotic attraction sets. For the settings given in Table 1,
around the stable equilibrium point, E1, the sinkmodes
produce a large attractive basin starting from which
the trajectories approach E1 (Fig. 4). To determine the
attractive basin in terms of variables ωx and ωy , we
fix the values of ωz, a, and b at equilibrium point E1.
The stable equilibrium point is marked with a white
star (Fig. 4a). The blue region is the sink attractive
basin and red region is the chaotic attractive basin in
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,x yω ω , and zω (b) ,φ θ , and ψ

,x yω ω and zω (d) a and b

(a) Time response of Time response of Euler angles

(c) Time response of Time response of flipping angles 

(e) 3D spatial view (f) Lypunov exponents

Fig. 3 Sink modes and chaotic modes with moment of inertia Ix = 0.18 kgm2, Iy = 0.34 kgm2, Iz=0.28 kgm2, where a, b initial
values being at the origin, and c–f at [−54, −0.7, 4, 2, 6]T.
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which the hidden chaotic attractors are produced. To
establish clearly the hidden attraction basin, we plot-
ted three trajectories, each starting from different loca-
tions (Fig. 4a). In Fig. 4b, the blue trajectory starts
at point [35, 35, −29.5451]T, which belongs to the
sink basin in Fig. 4a. The starting point is marked
with a blue solid point. The spiral trajectory oscillates
for a short while and then converges to the sink, E1,
marked by a black star. The black trajectory starts at
point [−20, 0, −29.5451]T, also belonging to the sink
basin, and spirals rapidly to E1. The third trajectory is
a chaotic curve starting at point [60, 0, −29.5451]T

belonging to the chaotic attraction basin. The chaotic
trajectory oscillates irregularly with large amplitudes
and runs around the periphery of the sink basin.

3.4 Dynamics of the equilibrium point when Ix =
0.29kgm2, Iy = 0.233kgm2, Iz = 0.236kgm2

Variations in configuration of the moment of inertia
leads to changes in dynamics of the hovering heli-
copter. For instance, we set Ix = 0.29kgm2, Iy =
0.233kgm2, Iz = 0.236kgm2, while all other param-
eters in Table 1 remain the same. We took initial values
at the origin as starting points (Fig. 4). However, the
helicopter leaves the stable-focus mode after a period
of time and enters into a chaotic mode (Fig. 5a). The
angular velocities ωx and ωy of the helicopter stay at
zeros for about 165 s and then suddenly enters a chaotic
mode, oscillating significantly and irregularly,whileωz

decreases constantly and then enters a chaotic mode as
well. The system produces a chaotic attractor (Fig. 5b)
with a maximum LE of L1 = 3.992.

We offer an explanation of why the chaos for the
helicopter system has not been reported previously.
Normally, scholars and engineers paymore attention on
control, so open-loop controlled hovering had not been
given much attention. Moreover, researchers focus on
the changes in Euler angles, positions, and translational
velocities rather than angular velocities. However, we
have taken the latter into account explicitly in Eq. (12).
When we only tested the Euler angles using Eq. (5),
we did not observe chaotic modes (Fig. 5c). The roll
angle remains steady around zero up to 165 s, but then
suddenly decreases thereafter when the angular veloc-
ities exhibit chaos. However, the roll angle exhibits no
chaos; the body instead spirals, i.e., rolls around the x
axis in a clockwise direction. The pitch angle oscillates

within a small range and does not exhibit chaos either.
The yaw angle decreases continuously from the begin-
ning, which means the helicopter rotates constantly
around the z axis because of the action of the torque of
the tail rotor, Tt = 4. To show clearly the pitch angle,
we have only plotted it in the time interval [195, 200],
otherwise its trajectory would be too dense to observe.

Remark 3 The dynamics of a helicopter system are
complicated featuringvariousmodes in different regions
of parameter space and different parametric configura-
tions.

Remark 4 The state of a helicopter system operating
in a chaotic mode is disastrous.

Chaotic oscillations in a helicopter are dangerous as
they lead to a loss of control and crashes. Furthermore,
oscillations damage equipment and auxiliary systems.
For instance, if a blade of a main rotor flips too fre-
quently or its amplitude is too large, it may undergo
cracking. In this instance, when chaos is produced, the
flipping angles frequently oscillate with large ampli-
tude within a ∈ [−14, 14] rad= [−802, 802]◦ and
b ∈ [−8, 2.4] rad = [458, 137]◦ (Fig. 5d), and
hence, flipping blades lose performance and control.

Remark 5 The research on the chaotic motion of
helicopter systems is important for designing con-
trollers and identifying parameter configurations that
avoid instabilities that produce chaos through improper
assembly or selection of materials.

4 Bifurcation of helicopter

To test further the adequacy of the helicoptermodel, we
provide a simple analysis of bifurcation obtained from
the LE spectra and the double-parameter bifurcation
diagram.

Themasses of the helicopter’s equipment and acces-
sories and their assembled structure will influence the
moment of inertia and further impact the hovering
dynamics. From the values of the moments of iner-
tia obtained by Tang et al. [25,26], Mahony and Hamel
[27], and Kim and Tilbury [28], Ix , Iy, Iz can be
taken in the respective ranges of Ix ∈ [0.01, 1], Iy ∈
[0.01, 1], Iz ∈ [0.01, 1]. We look at three different
configurations:
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(a) Basins of sink and chaos (b) Two stable-focus modes and a chaotic mode
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Fig. 4 Basin of sink attractor and hidden chaotic attractor for settings ωz = −29.5451, a = −0.0892, b=0.0584. (Color figure online)

(1) Fixing Ix = 0.29, Iy = 0.233, and varying Iz
We obtained the maximum LE spectrum with
respect to Iz (Fig. 6a). The chaotic mode exists
in a narrow range, Iz ∈ [0.231, 0.245]. If Iz ∈
[0.0014, 0.018], L1 = 0, indicating that the sys-
tem is in a pseudo-periodic or periodic orbital
mode. If Iz is within other intervals, L1 < 0, cor-
responding to a sink mode.

(2) Fixing Ix = 0.29, Iz = 0.236 and varying Iy
The chaotic mode exists in a narrow range, Iy ∈
[0.01, 0.22] with L1 > 0 (Fig. 6b); if Iy ∈
(0.22, 0.236], the system is in a pseudo-periodic
or periodic orbital mode; otherwise, the system is
in a stable state.

(3) Fixing Ix = 0.29 and varying Iy and Iz

The two-dimensionalLE spectrum features locations of
different dynamics over a large area and hence presents
a more general overview of the parameter configura-
tions. In Fig. 6c, colors indicate values of the maxi-
mum LE; see color bar index. The image is divided
into three regions: red indicating chaotic modes for
the helicopter system if Iy and Iz fall within this area,
and the yellow and green regions indicating pseudo-
periodic or periodic orbital modes. If Iy and Iz fall
within the blue area, the system operates in a stable
state, implying that the configuration of the moments
of inertia is reasonable for hovering. To explain clearly
the two-dimensional (2D) bifurcation, we illustrate the
idea with one point from each colored area. Point

[
Iy, Iz

]T = [0.239, 0.238]T is in the red area with
L1 = 0.19, L2 = 0, so the helicopter is in chaotic
mode (Fig. 6d1. Point

[
Iy, Iz

]T = [0.053, 0.1]T is
in the green area with L1 = 0, L2 = 0, so the
system is in pseudo-periodic orbital mode (Fig. 6d2).
Point

[
Iy, Iz

]T = [0.233, 0.254]T is in the yellow
area with L1 = 0, L2 = −0.18 indicating that
the system produces a periodic orbit (Fig. 6d3). Point[
Iy, Iz

]T = [0.55, 0.5]T is in the blue area with
L1 = −0.41, L2 = −0.59, indicating that the sys-
tem is in a stable mode (Fig. 6d4), which is the normal
operating state for a hovering helicopter.

5 Control of the unmanned helicopter

In hovering state, themain thrustwas kept for Tm = mg
to counteract the gravitational force, and therefore, the
main thrust is fixed. In addition, we took Tt = 4N to
keep the helicopter from rotating around the z axis.
When the chaos behavior appears, we have to con-
trol the helicopter, otherwise, it will crash. As shown
in Fig. 2, normally we have to add the control inputs
ulon and ulat to change longitudinal and lateral flap-
ping angle motions a and b and further stabilize the
angular velocity ωx and ωy . The controlled helicopter
in hovering state is written as follows:

Ix ω̇x = (Iy − Iz)ωyωz + (Kβ + hmTm)sb

−Qmsacb − ht Tt ,

Iyω̇y = (Iz − Ix )ωxωz + (Kβ + hmTm)sa
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(a) Time responses of ,x yω ω and zω (b) Phase portrait of -x yω ω

(d)(c)  Euler angles Flipping angles of main rotor

Fig. 5 Chaotic state with initial values starting at origin, and moment of inertia Ix = 0.29kgm2, Iy = 0.233kgm2, Iz = 0.236kgm2

+Qmsbca − Qt ,

Izω̇z = (Ix − Iy)ωxωy − Qmcacb + lt Tt ,

ȧ = −ωy − 1/τa + Abb + Alonulon,

ḃ = −ωx − 1/τb + Baa + Alatulat . (16)

where Tt is the third control input serving for the angu-
lar velocity ωz in the control channel of the third sub-
equation of Eq. (16). The system is under-actuated,
because it has three active inputs to actuate directly.
However, it is still a MIMO system. Using the third
sub-equation, based on the reference input ωzr , Tt can
be designed. Based on the references ωxr and ωyr ,
using the first and the second sub-equations, flapping
angle motions a and b will be the intermediate control
laws, which takes the roles of the reference input for

the fourth and fifth sub-equations to determine control
inputs ulon and ulat . Therefore, this scheme is quite
complicated.

When the helicopter angular velocity is in normal
situation, it is easy to control it using multiple PIDs,
sliding mode controllers, or other controllers. How-
ever, when system behavior enters into chaos orbit, the
normal control methods will fail even if many con-
trollers are employed, because the dynamics is highly
unstable and the change is so fast that the control input
cannot follow it. We applied Tereshko control method
[20], which only needs a single controller for multi-
dimensional system. The controller takes the role of
perturbation using as little as energy to counteract or
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(a) Maximum LE spectrum versus zI . (b) Maximum LE spectrum versus yI .

-parameter bifurcation diagram (d)(c) Double Four different dynamics

Fig. 6 Bifurcation diagrams. (Color figure online)

suppress the energy exchange between dissipation and
supplying. The nonlinear feedback control form is as
follows

u = −k tanh(β ẋ). (17)

This controller has been designed for a second-order
system with k > 0 [20]. It has the property that when
the velocity ẋ is positive, the control input u is nega-
tive which stabilizes (destabilizes) the behavior when
energy increases (decreases). The control method is
quite effective in controlling bothSISOandMIMOsys-
tems with just one controller added in control channel
[20,29]. However, the helicopter is a coupled MIMO
system with five sub-equations, and each of which is a

first-order equation, which does not fix the requirement
of the second-order plant. Hence, we replace ẋ with x ,
and the modified controller is as follows

u = −k tanh(βx). (18)

This controller takes a nonlinear negative feedback
role. Since only one controller is needed, many choices
can be taken. The control input can be either ulon or ulat
or Tt . If Tt is set as control input, the first and the sec-
ond sub-equations will be effected for Qt containing Tt
from Eq. (9). This choice still makes the control com-
plicated. Therefore, we may set either ulon or ulat as
control input. Let

ulon = −k tanh(βa). (19)
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lead to periodic orbit

(c)  periodic orbit after being controlled 

(b) Chaos trajectory being suddenly 

(d) chaotic behavior being stabilized to
 an equilibrium point

(a) starting at origin, and then entering 
 chaos and then being controlled into 
 periodic orbit

Fig. 7 Control effect, k = 7 for (a–c), k = 18 for (d)

For instance, taking k = 7 and β = 10, the con-
troller is able to lead the orbit out from the chaotic
behavior to periodic orbit. Prior to 200 s, the system
is subjected to no control besides fixing Tm = mg and
Tt = 4N, so when t = 166s, chaos emerges (Fig. 7a).
When t = 200s, the control input (19) takes effect,
and then, suddenly the chaotic behavior is suppressed,
and periodic orbit appears (Fig. 7a). The times series
of periodic trajectory are shown within the time inter-
val t ∈ [200, 220], which clearly demonstrates the
effectiveness after control. 3D space observation fur-
ther confirms the periodic orbit (Fig. 7c).

Taking k = 18 and β = 10, the chaotic behavior is
finally convergent to the equilibrium point (Fig. 7d) at

E3 = [
ωx , ωy, ωz, a, b

]T
E1

= [−62.8409, −0.0513,

−0.3039, −0.0308, 6.2964]T ,

for system (16). This can be verified by substituting
E3 to the left sub-equations of Eq. (16) resulting in
zeros. Therefore, this control is effective in driving the
angular velocity of the helicopter to the periodic orbit
or stabilizing it to equilibrium point.

This perturbation control method has the merits: (1)
needing a single controller; (2) no needing the control
input computation.
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6 Conclusion

Thedynamical attitudemodel of a small-scale unmanned
helicopter was built. The dynamics of the system has
been analyzed using the parameter values of MIT’s
small-scale rotorcraft X-Cell 60.

Chaotic behaviors in terms of angular velocity have
been identified when initials are selected around a sad-
dle equilibrium point. This confirms that this chaos is
self-excited by the saddle point. The chaotic behav-
ior, even little oscillation, is not desired for helicopter,
and therefore, it should be investigated. The hidden
chaos in a large region, in another word the non-self-
excited chaos, also has been observed, which warns
that a normal (stable) flight under a perturbation may
enter into hidden chaotic region and cause disaster.
Through bifurcation analysis, we found that when the
distribution of moment of inertia is changed, chaotic
behavior also appears. This points out that unsuitable
configuration of inertia or shape of the helicopter also
are the source of abnormal motion. When the small-
scale unmanned helicopter system undergoing exces-
sive oscillations causes unnecessary energy loss and
even damage to the motor, its dynamical analysis in
terms of the parameter configuration for this open-loop
system prior to designing the controller helps in realiz-
ing an efficient closed-loop system control and strong
decision-making aswell as goodmission planning. The
proposed model and the uncovering of chaotic modes
provide a benchmark in the design and control algo-
rithm research of similar helicopters.

Bifurcation analyses with respect to other physical
parameters, such as mass, spring constants, tail rotor
hub location, air resistance, and damping ratio, have not
been conducted. When the given references are Euler
angles, how to control the system to the desired ori-
entation subjecting to chaos situation shall be studied.
Each impacts the dynamics of a small-sized hovering
helicopter. Much work remains and is left as an open
research topic.
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