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Abstract TheFokas–Lenells (FL) equation is an inte-
grable higher-order extension of nonlinear Schrödinger
equation. One approach to generating its breather solu-
tions is based on Darboux transformation (DT) and
iterations. However, the DT of FL equation contains
negative powers of the spectral parameter, which can
lead to very complicated expressions when N is large.
In this paper, we avoid the negative powers by adopting
a variable separation andTaylor expansion technique to
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solve the Lax pair of FL system. Furthermore, stability
of the proposed technique is demonstrated in detail.
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1 Introduction

Rogue waves are instantaneous large-amplitude local-
ized waves and have been extensively studied in many
fields, including oceanic motion, optics, plasmas and
super fluids (see for instance in [1–13]). The generation
of rogue waves is a complex process, involving many
factors such as dispersion enhancement of transient
wave groups, geometrical focusing,wave-current inter-
action and modulation instabilities. A much-studied
model is the integrable nonlinear Schrödinger (NLS)
equation [10] and its breather solutions, especially the
Peregrine breather [11]. There are several integrable
reductions of the higher-order NLS models, such as
the derivative NLS equation and Hirota and Sasa–
Satsuma equations [14–27]. Here, we consider the
Fokas–Lenells (FL) equation, which is closely linked
to the derivative NLS model,

iqxt − iqxx + 2qx − qxqq
∗ + iq = 0, (1)

where q is a complex wave amplitude. It is a higher-
order integrable extension of NLS equation [28–31]
and has been invoked in the context of optical fibers
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[29]. The soliton solutions of the FL equation (1) were
exhibited by [28,29] and some breather solutions by
[30,31].

The soliton solutions (often identified as rogue
waves) of NLS equation are usually obtained through
Darboux transformations (DTs). That is, the first-order
solitons are found from a pre-specified seed solution,
and the N th-order solitons are found through iterations
of DT. One key step is to expand the specific solution
in terms of the spectral parameter. However, DT of the
FL equation contains negative powers of the spectral
parameter, which can lead to very complicated expres-
sions when N is large [31]. Here, we adopt a different
approach by introducing a parameter matrix and then
directly find the N th-order breathers through a variable
separation technique and Taylor series expansion, see
[32–36] for use of similar methods for NLS equations.

The rest of the article is organized as follows. Sec-
tion 2 provides some preliminaries related to FL equa-
tion and introduces our variable separation technique.
In Sect. 3, we describe the expansion of the eigenfunc-
tion and obtain the formula for N th-order soliton solu-
tions in Sect. 4. In Sect. 5, we confirm the effectiveness
of our method and a range of dynamic behaviors of
roguewave solutions are displayed graphically. Section
6 summarizes the stability of the proposed technique
guarantees.

2 Variable separation for the eigenfunction Ψ

It is useful to recall that we can extend (1) into an FL
system, [30,31]

iqxt − iqxx + 2qx − qxqr + iq = 0, (2)

irxt − irxx − 2rx + rxrq + ir = 0. (3)

Clearly, when r = q∗, the FL system (2, 3) reduces to
the FL equation (1). The Lax pair of the FL system (2,
3) is

Ψx = UΨ, U = Jλ2 + Qλ, (4)

Ψt=VΨ, V=Jλ2 + Qλ + V0+V−1λ
−1 + 1

4
Jλ−2.

(5)

Ψ =
(

ϕ

φ

)
, J =

(−i 0
0 i

)
, Q =

(
0 qx
rx 0

)
,

V0=
(
i − 1

2 iqr 0

0 −i + 1
2 iqr

)
, V−1=

(
0 1

2 iq

− 1
2 ir 0

)
.

Here, λ is the complex spectral parameter. Ψ (x, t) =
(ϕ, φ)T is a two-dimensional vector, the eigenfunction
corresponding to λ. Applying the expression

Ut − Vx +UV − VU = 0

to Eqs. (4) and (5) yields the FL system (2, 3).
Now, we present a variable separation for the eigen-

function Ψ . First, note that the FL equation (1) has a
periodic seed solution

q = c exp

{
axi +

(
(a + 1)2

a
− c2

)
t i

}
. (6)

For any λ, we expand Ψ as

Ψ =
(

ϕ(x, t)
φ(x, t)

)
= AFGZ , (7)

F = exp(iΛx), G = exp(iΩt), (8)

A =
(
1 0
0 e±iζ .

)
. (9)

Here, we assume that in matrix A, ζ is linearly com-
posed of x and t , i.e., ζ = kx + c̃t , where k and c̃
are two constants. Similarly, Z is a two-dimensional
constant vector. Next, suppose that the matrices Λ,Ω

satisfy the commutator relationship,

[Λ,Ω] = ΛΩ − ΩΛ = 0. (10)

Plugging equation (7) into the Lax equations (4, 5)
yields

Ax + i AΛ −U A = 0, At + i AΩ − V A = 0.

Hence, we solve that

A=
(
1 0

0 e−i(ax+ (a+1)2
a t−c2t)

)
, Λ=

( −λ2 acλ
−acλ λ2 + a

)
,

Ω=
(
1+ 1

2a
λ−2

)
Λ+

(
1−1

4
λ−2+ 1

2a
− c2

2

)
.

(11)

In order to obtain F , we find the eigenvalues of the
matrix Λ

a1 = a + √
a2 − 4(−λ4 + (a2c2 − a)λ2)

2
, (12)

a2 = a − √
a2 − 4(−λ4 + (a2c2 − a)λ2)

2
, (13)

a1 + a2 = a, a1 · a2 = −λ4 − aλ2 + a2c2λ2,
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and the eigenvector matrix is

H =
(

1 1

λ2+a1
acλ

λ2+a2
acλ

)
, H−1 =

⎛
⎝ λ2+a2

a2−a1
−acλ
a2−a1

−λ2−a1
a2−a1

acλ
a2−a1

⎞
⎠ .

(14)

To note

F = exp (iΛx) = H

(
ea1i x 0
0 ea2i x

)
H−1.

Let η = a1−a2
2 ,

F = e
a
2 i x

(
cos (ηx) − si sin (ηx) acλ

η
i sin (ηx)

− acλ
η
i sin (ηx) cos (ηx) + si sin (ηx)

)
,

(15)

where s = λ2+ a
2

η
. Similarly, the combination of (11)

and G = exp (iΩt) derives

G = eKit

(
cos (ηεt) − si sin (ηεt) acλ

η
i sin (ηεt)

− acλ
η
i sin (ηεt) cos (ηεt) + si sin (ηεt)

)
,

(16)

with

ε = 1 + 1

2a
λ−2, K = (1 + 1

2a
− c2

2
+ a

2
).

3 Expansion of eigenfunction Ψ

In this section, we describe the expansion of eigen-
function Ψ . When a2 +4λ4 −4(a2c2 −a)λ2 → 0 and
η → 0, F and G become rational matrices. To take
advantage of this, we choose λ0 being one solution to
the equation a2+4y4−4(a2c2−a)y2 = 0 (concerning
y) and set λ = λ0(1 + δ). Through the Taylor series
expansions,

F |λ=λ0(1+δ) = e
a
2 i x

∞∑
n=0

Fnδ
n, (17)

where

Fn =
(
Fn11 Fn12
Fn21 Fn22

)
, (18)

Fn11 = γn − (λ20 + a

2
)iτn − 2λ20iτn−1 − λ20iτn−2,

Fn12 = acλ0i(τn + τn−1),

Fn21 = −Fn12,

Fn22 = γn + (λ20 + a

2
)iτn + 2λ20iτn−1 + λ20iτn−2,

and

γn =
� 3
4 n�∑
k=0

� k
3 �∑

l=0

� k−3l
2 �∑

m=0

Cl
n−kC

m
n−k−lC

k−3l−2m
n−k−l−m(−1)n−k

· 4mλ2n−2k+2l+2m
0 (6λ20 − 2a2c2 + a)k−3l−2m

· (4λ20 − 2a2c2 + 2a)n+2l+m−2k X2(n−k),

τn =
� 3
4 n�∑
k=0

� k
3 �∑

l=0

� k−3l
2 �∑

m=0

Cl
n−kC

m
n−k−lC

k−3l−2m
n−k−l−m(−1)n−k

· 4mλ2n−2k+2l+2m
0 (6λ20 − 2a2c2 + a)k−3l−2m

· (4λ20 − 2a2c2 + 2a)n+2l+m−2k X2(n−k)+1,

Xm = xm

m! .
Similarly, by expanding G,

G|λ=λ0(1+δ) = e(1+ 1
2a − c2

2 + a
2 )i t

∞∑
n=0

Gnδ
n . (19)

The calculation of Gn is a lengthy calculation, and we
only outline some key steps and definitions here. First,
note that

cos (ηεt)=
∞∑
k=0

(−1)kη2kε2kT2k, Tm = tm

m! .

If η =
√

a2+4λ4−4(a2c2−a)λ2

2 , λ = λ0(1 + δ), ε =
1 + 1

2aλ−2 , then

cos (ηεt) =
∞∑
n=0

(−1)nλ2n0 δnα
(2aλ20(1+δ)2+1)2n

(1+δ)4n4na2nλ4n0
T2k,

where

α=(λ20δ
3+4λ20δ

2+(6λ20−a2c2+a)δ+(4λ20−2a2c2+2a))n .

Next, let

∞∑
i=0

πi δ
i = (−1)kλ2k0 δk [λ2δ3+4λ20δ

2+4λ20 − 2a2c2

+ (6λ2 − a2c2 + a)δ + 2a]k ,
∞∑
j=0

κ ′
j δ

j = [2aλ20 + 1 + 4aλ20δ + 2aλ20δ
2]2k ,

∞∑
m=0

υ ′
mδm =

(
(δ + 1)2k4ka2kλ4k0

)−1
.

πi =
� i−k

3 �∑
l=0

� i−k−3l
2 �∑

m=0

(−1)kCl
kC

m
k−lC

i−k−3l−2m
k−l−m
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· λ2k+2l+2m
0 4m(4λ20 − 2a2c2 + 2a)2k+2l+m−i

· (6λ20−a2c2+a)i−k−3l−2m , (20)

κ ′
j =

� j
2 �∑

p=0

C p
2k+1C

j−2p
2k+1−p2

2 j−3pa j−pλ
2 j−2p
0

· (2aλ20 + 1)2k+p− j , (21)

υ ′
m = (−1)m

m! (4k)m
(
2aλ20

)−2k
, (22)

where (k)n = k(k+1) · · · (k+n−1), n > 0, (k)0 =
1. Here, when i < k and i > 4k, define πi = 0, and
when j > 4k + 2 define κ j = 0. Next, let

αn =
n∑

k=0

n∑
i=0

n−i∑
j=0

πiκ
′
jυ

′
n−i− j T2k . (23)

Finally, we obtain Gn ,

Gn =
(
Gn11 Gn12

Gn21 Gn22

)
, (24)

Gn11 = αn − (λ20 + a

2
)iβn − 2λ20iβn−1 − λ20iβn−2,

Gn12 = Gn21 = acλ0i(βn + βn−1),

Gn22 = αn + (λ20 + a

2
)iβn + 2λ20iβn−1 + λ20iβn−2,

where

βn =
n∑

k=0

n∑
i=0

n−i∑
j=0

πiκ jυn−i− j T2k+1, α0 = 1,

κ j =
� j
2 �∑

p=0

C p
2kC

j−2p
2k−p 2

2 j−3pa j−pλ
2 j−2p
0 (2aλ20+1)2k+1+p− j ,

υm = (−1)m

m! (4k + 2)m · 1

(2aλ20)
2k+1

.

Then, let

Z =
∞∑
q=0

Zqδ
q ,

where Z j is a complex vector. Thus, we expand Ψ as

Ψ |λ=λ0 = eKit+a/2i x A
∞∑
n=0

Ψnδ
n,

Ψn =
(

ϕn

φn

)
=

n∑
s=0

n∑
t=0

FsGt Zn−s−t . (25)

In this manner, we have expanded Ψ around the point
λ = λ0 with only algebraic manipulations. Since the
matrix Fn depends only on x and Gn depends only on
t , we call this a variable separation method.

It is useful to note that the binomial expansion

λ jϕ(δ) = (λ0)
j (1 + δ) jϕ(δ) =

∞∑
i=0

ϕ[ j, i]δi ,

λ jφ(δ) = (λ0)
j (1 + δ) jφ(δ) =

∞∑
i=0

φ[ j, i]δi ,
(26)

so that

ϕ[ j, n] =
n∑

s=0

(λ0)
jCn−s

j ϕs,

φ[ j, n] =
n∑

s=0

(λ0)
jCn−s

j φs, j > 0,

ϕ[ j, n] =
n∑

s=0

(−1)n−s(λ0)
j (− j)n−s

(n − s)! ϕs, j < 0,

φ[ j, n] =
n∑

s=0

(−1)n−s(λ0)
j (− j)n−s

(n − s)! φs, j < 0.

(27)

4 Nth order rogue waves

In this section, we examine the N th-order DT and
derive the formula for breather solutions.When r = q∗,
the FL system (2, 3) reduces to the FL equation (1). Per-
forming this reduction, r [N ] = q[N ]∗ and λ∗

k = λl ,
which lead to

ϕ∗
k = φl , φ∗

k = ϕl , k 	= l.

λl = λ∗
l+1, Ψl =

(
ϕl
φl

)
=

(
φ∗
l−1

ϕ∗
l−1

)
, l = 1, 2, . . . , n.

Combining (25) and the binomial expansion, we get

q[N ] = q

(
1 + |EN2|

|EN1|
)

, (28)
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where

EN2 =

⎡
⎢⎢⎢⎢⎢⎣
W

−ϕ[−N , 0]
−φ[−N , 0]∗

...

−ϕ[−N , N − 1]
−φ[−N , N − 1]∗

⎤
⎥⎥⎥⎥⎥⎦

,

EN1 =

⎡
⎢⎢⎢⎢⎢⎣
W

φ[−N + 1, 0]
ϕ[−N + 1, 0]∗

...

φ[−N + 1, N − 1]
ϕ[−N + 1, N − 1]∗

⎤
⎥⎥⎥⎥⎥⎦

.

And W is defined as

⎡
⎢⎢⎢⎢⎢⎣

ϕ[N , 0] φ[N − 1, 0] · · · ϕ[−N + 2, 0]
φ[N , 0]∗ ϕ[N − 1, 0]∗ · · · φ[−N + 2, 0]∗

.

.

.
.
.
.

.

.

.

ϕ[N , N − 1] φ[N − 1, N − 1] · · · ϕ[−N + 2, N − 1]
φ[N , N − 1]∗ ϕ[N − 1, N − 1]∗ · · · φ[−N + 2, N − 1]∗

⎤
⎥⎥⎥⎥⎥⎦

.

Thus, using the seed solution (6), q[N ] is an N th-order
breather solution, which has been obtained here using
only algebraic and matrix manipulations.

5 Applications with N = 1, 2, 3

To verify our method, we display the first, second and
third breather solutions both numerically and graphi-
cally. Fix a = c = 1 in the seed solution (6). With

F0=
(
1 − i−1

2 x i−1
2 x

1−i
2 x 1 + i−1

2 x

)
,G0=

(
1 − i t i t
−i t 1 + i t

)
.

And combine Eqs. (25, 27),

Ψ0 =
(

ϕ0

φ0

)
= F0G0Z0,

ϕ[0, 0] = ϕ0, φ[0, 0] = φ0,

ϕ[1, 0] = 1 + i

2
ϕ0, φ[1, 0] = 1 + i

2
φ0,

ϕ[−1, 0] = (1 − i)ϕ0, φ[−1, 0] = (1 − i)φ0.

According to (28), we can express q[1] as

q[1] = exp i(x + 3t) ·
(
1 + |E12|

|E11
|
)

,

where

|E12|=
∣∣∣∣ ϕ[1, 0] −ϕ[−1, 0]
φ[1, 0]∗ −φ[−1, 0]∗

∣∣∣∣ , |E11|=
∣∣∣∣ ϕ[1, 0] φ[0, 0]
φ[1, 0]∗ ϕ[0, 0]∗

∣∣∣∣ .

Fig. 1 The image of first-order rogue wave with specific param-
eters a = 1, c = 1, Z0 = (1, 0)T . The maximum amplitude
occurs at t = 0.5 and x = −1

With Z0 = (1, 0)T , we plot the solution in Fig. 1. In
the limit x → ∞, t → ∞, |q[1]| = 1. The maximum
amplitude of |q[1]| equals 3 and occurs at t = 0.5
and x = −1. Note that [30] Fig. 2 displays the plot of
|q[1]|2, with parameters a = 1 and c = −1. Hence, the
maximumamplitude in their computation is the same as
ours, and the performance of the waves is quite similar.
The small difference, like the position of the apex, is
due to the selection of Z0.

For the second- or third-order rouge waves, we can
similarly obtain explicit expressions given fixed param-
eters. Let N = 2 and (18, 24) yield,

F1 =
(

− i−1
12 x3 + x2

2 + x i−1
2 (x + x3

6 )

− i−1
2 (x + x3

6 ) i−1
12 x3 + x2

2 − x

)
,

G1 =
(

− t3
3 − i t2 + 2t t3

3 − t

− t3
3 + t t3

3 − i t2 − 2t

)
,
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and

Ψ1 =
(

ϕ1

φ1

)
= F1G0Z0 + F0G1Z0 + F0G0Z1,

ϕ[0, 1]=ϕ1, φ[0, 1]=φ1, ϕ[2, 0]= i

2
ϕ0, φ[2, 0] = i

2
φ0,

ϕ[1, 1] = i + 1

2
(ϕ0 + ϕ1), φ[1, 1] = i + 1

2
(φ0 + φ1),

ϕ[−1, 1] = (1 − i)(−ϕ0 + ϕ1),

φ[−1, 1] = (1 − i)(−φ0 + φ1),

ϕ[2, 1] = i

2
(2ϕ0 + ϕ1), φ[2, 1] = i

2
(2φ0 + φ1),

ϕ[−2, 0] = −2iϕ0, φ[−2, 0] = −2iφ0,

ϕ[−2, 1] = −2i(−2ϕ0 + ϕ1),

φ[−2, 1] = −2i(−2φ0 + φ1).

Hence, from (28),wehave the second-order roguewave
expression

q[2] = exp i(x + 3t) · (1 + E22

E21
),

where

E22 =

∣∣∣∣∣∣∣∣

ϕ[2, 0] φ[1, 0] ϕ[0, 0] −ϕ[−2, 0]
φ[2, 0]∗ ϕ[1, 0]∗ φ[0, 0]∗ −φ[−2, 0]∗
ϕ[2, 1] φ[1, 1] ϕ[0, 1] −ϕ[−2, 1]
φ[2, 1]∗ ϕ[1, 1]∗ φ[0, 1]∗ −φ[−2, 1]∗

∣∣∣∣∣∣∣∣
,

E21 =

∣∣∣∣∣∣∣∣

ϕ[2, 0] φ[1, 0] ϕ[0, 0] φ[−1, 0]
φ[2, 0]∗ ϕ[1, 0]∗ φ[0, 0]∗ ϕ[−1, 0]∗
ϕ[2, 1] φ[1, 1] ϕ[0, 1] φ[−1, 1]
φ[2, 1]∗ ϕ[1, 1]∗ φ[0, 1]∗ ϕ[−1, 1]∗

∣∣∣∣∣∣∣∣
.

A typical plot of a second-order solution is shown in
Fig. 2. Note that when Z0 = (1, 1)T , Z1 = (0, 0)T ,
this reduces to a first-order solution.

The third-order rogue wave (N = 3) can be found
in the same way. From Eq. (28), we have

q[3] = exp i(x + 3t) · (1 + E32

E31
).

And similarly from (18, 24), we have

F2 =
(
F2,11 F2,12
F2,21 F2,22

)
, G2 =

(
G2,11 G2,12

G2,21 G2,22

)
,

where

F2,11 = 1 − i

240
x5 + 1

24
x4 + 7 − 3i

24
x3 + 3

4
x2 + 1

2
x,

F2,12 =
(
i − 1

240

)
(x2 + 50)x3,

F2,21 = −
(
i − 1

240

)
(x2 + 50)x3,

Fig. 2 The image of second-order rogue wave with specific
parameters a = 1, c = 1, Z0 = (1, 40)T , Z1 = (8000, 1)T

F2,22 = −1 − i

240
x5 + 1

24
x4 − 7 − 3i

24
x3 + 3

4
x2 − 1

2
x,

G2,11 = 1

30
t (−30 + t4i − 5t3 + (−40i + 5)t2

+ (15i + 60)t),

G2,12 = − 1

30
t (t4i + (−30i + 5)t2 − 15i − 15),

G2,21 = 1

30
t (t4i + (−30i + 5)t2 − 15i − 15),

G2,22 = − 1

30
t (−30 + t4i − 5t3 + (−40i + 5)t2

+ (15i + 60)t).

A typical plot is shown in Fig. 3. We select Z0 =
(1, 2)T , Z1 = (50, 1)T , Z2 = (2000, 1)T and draw
the plot 3.
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High-order rogue waves and their dynamics 2073

Fig. 3 The image of second-order rogue wave with specific
parameters a = 1, c = 1, Z0 = (1, 2)T , Z1 = (50, 1)T ,
Z2 = (2000, 1)T

6 Stability of the proposed technique

In this section, we would like to show that our propose
techniquewould be stable.Wegive an error tolerance to
the seed solution parameter a and c, to limit the residual
between the after-perturbation solution and the original
one. To clarify, we would let || · || denote the modulus
of a complex number.

At first, we introduce two lemmas. For convenience,
in the following discussion, wewould focus on one root
of λ0 (12)

λ0 =
√
1

2
(a2c2 − a + ac

√
a2c2 − 2a). (29)

In the first lemma, we consider the case where if given
a tiny perturbation on a, and other parameters remain
unchanged, the computation of λ0 is stable.

Lemma 1 Assume that c is fixed and ‖λ0‖ > 0. For
any δ > 0, there exists an ε > 0, such that given∣∣∣ a−ã

a

∣∣∣ < ε,
∥∥∥λ0 − λ̃0

∥∥∥ < δ holds, where λ̃0 is the

derivation of ã according to (29).

Proof Fix c and set ã = a(1+εa).With the assumption
‖λ0‖ > 0, εa > 0 and εa → 0, we have

∥∥∥λ0 − λ̃0

∥∥∥ =
√
1

2

∥∥∥∥ N1

D1

∥∥∥∥ ,

where N1 equals

∥∥∥a2c2 − a + ac
√
a2c2 − 2a − ã2c2+ã − ãc

√
ã2c2 − 2ã

∥∥∥ ,

and D1 equals

∥∥∥∥
√
a2c2 − a+ac

√
a2c2 − 2a+

√
ã2c2 − ã+ãc

√
ã2c2 − 2ã

∥∥∥∥ .

For the numerator N1,

N1 ≤ c2a2
∥∥∥ε2a + 2εa

∥∥∥ + ‖a‖‖εa‖
+ ∥∥ac√a

∥∥ ∥∥∥√
ac2 − 2 −

√
ãc2 − 2(1 + εa)

3
2

∥∥∥ .

Here, we focus on the third term∥∥∥√
ac2 − 2 −

√
ãc2 − 2(1 + εa)

3
2

∥∥∥
and analyze it case by case.

If ac2 − 2 ≥ 0,∥∥∥√
ac2 − 2 −

√
ãc2 − 2(1 + εa)

√
1 + εa

∥∥∥
=

√
ac2 − 2+aεac2(1+εa)

3
2 −

√
ac2 − 2(1+εa)

3
2

+
√
ac2 − 2((1 + εa)

3
2 − 1),

≤ (1 + εa)
3
2 (

√
ac2 − 2 + aεac2 −

√
ac2 − 2)

+
√
ac2 − 2((1 + εa)

3
2 − 1).

If ac2 − 2 < 0, we can find εa small enough so that
ac2 − 2 + εac2 < 0.∥∥∥√

ac2 − 2 −
√
ãc2 − 2(1 + εa)

3
2

∥∥∥
=

∥∥∥√
2 − ac2i −

√
2 − ac2 − aεac2(1 + εa)

3
2 i

∥∥∥ ,

=
∥∥∥√

2 − ac2 −
√
2 − ac2 − aεac2(1 + εa)

3
2

∥∥∥ ,
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≤
∥∥∥√

2 − ac2 −
√
2 − ac2(1 + εa)

3
2

∥∥∥
+

∥∥∥√
2 − ac2 −

√
2 − ac2 − aεac2

∥∥∥ ∥∥∥(1 + εa)
3
2

∥∥∥ ,

=
∥∥∥√

2 − ac2
∥∥∥

∥∥∥(1 + εa)
3
2 − 1

∥∥∥
+

∥∥∥∥∥
εac2√

2 − ac2+√
2 − ac2 − εac2

∥∥∥∥∥ ,

∥∥∥(1+εa)
3
2

∥∥∥ .

When it comes to the denominator, we can choose the
perturbation εa wisely tomake sure ||D1|| is bigger than
some positive constant K0, which helps us to reach the
conclusion∥∥∥λ0 − λ̃0

∥∥∥ ≤ Ka

K0
εa = K1εa,

where K1 ∼ O(1). ��

This completes the proof.
In the second lemma, we discuss the cases where

perturbations on both a and c.

Lemma 2 Assume ‖λ0‖ > 0. For any δ > 0, there

exists an ε > 0, such that if given
∣∣∣ a−ã

a

∣∣∣ < ε and∣∣∣ c−c̃
c

∣∣∣ < ε, we will also have
∥∥∥λ0 − λ̃0

∥∥∥ < δ.

Proof Now we assume ã = (1 + ε0)a, c̃ = (1 + ε0)c,
ε0 > 0, ε0 → 0. Similarly,

∥∥∥λ0 − λ̃0

∥∥∥ =
√
1

2

∥∥∥∥ N2

D2

∥∥∥∥ ,

where N2 equals

∥∥∥a2c2 − a + ac
√
a2c2 − 2a − ã2c̃2 + ã − ãc̃

√
ã2c̃2 − 2ã

∥∥∥
and D2 equals

∥∥∥
√
a2c2 − a + ac

√
a2c2 − 2a

+
√
ã2c̃2 − ã + ãc̃

√
ã2c̃2 − 2ã

∥∥∥.

For the numerator N2,

N2

≤
∥∥∥a2c2 − a + ac

√
a2c2 − 2a − ã2c2 + ã

− ãc
√
ã2c2 − 2ã)

∥∥∥ +
∥∥∥ã2c2 − ã + ãc

√
ã2c2 − 2ã

− (ã2c̃2 − ã + ãc̃
√
ã2c̃2 − 2ã)

∥∥∥,

≤ Kaε0 + ã2c2‖ε20 + 2ε0‖,
+‖ãc‖

∥∥∥√
ã2c2 − 2ã − (1 + ε0)

√
ã2c2(1 + ε0)2 − 2ã

∥∥∥ .

(30)

Similarly, wewill focus on the last term. If a2c2−2a >

0, we can choose ε0 small enough to let ã2c2 −2ã > 0
and ã2c̃2 − 2ã > 0, which results in

∥∥∥√
ã2c2 − 2ã − (1 + ε0)

√
ã2c̃2 − 2ã

∥∥∥
≤

∥∥∥ε0

√
ã2c̃2 − 2ã

∥∥∥ +
∥∥∥√

ã2c̃2 − 2ã −
√
ã2c2 − 2ã

∥∥∥ ,

= ‖ε0‖
∥∥∥√

ã2c̃2 − 2ã
∥∥∥ +

∥∥∥∥∥
ã2(c̃2 − c2)√

ã2c̃2 − 2ã +
√
ã2c̃2 − 2a

∥∥∥∥∥ .

If ac2 − 2a < 0, search an ε0 so that ã2c̃2 − 2ã < 0
and ã2c2 − 2ã < 0.

∥∥∥√
ã2c2 − 2ã − (1 + ε0)

√
ã2c̃2 − 2ã

∥∥∥
=

∥∥∥√
2ã − ã2c2 − (1 + ε0)

√
2ã − ã2c̃2

∥∥∥ ,

≤
∥∥∥√

2ã − ã2c2 − (1 + ε0)
√
2ã − ã2c2

∥∥∥
+‖1 + ε0‖

∥∥∥√
2ã − ã2c2 −

√
2ã − ã2c2 − O(ε0)

∥∥∥ ,

= ‖ε0‖
∥∥∥√

2ã − ã2c
∥∥∥

+‖1 + ε0‖
∥∥∥O(ε0)(

√
2ã − ã2c +

√
2ã − ã2c2 − O(ε0))

−1
∥∥∥ .

Similar to what we have done in the last proof, we can
search for some small ε0 to control the denominator.
Therefore,

‖λ0 − λ̃0‖ ≤ K ε0, (31)

where K is a constant. ��
Using these two lemmas,we can thenprove the theorem
as follows:

Theorem 1 Assume ‖λ0‖ > 0 and |EN1| > 0. For any

δ > 0, there always exists an ε > 0, s.t. given
∣∣∣ a−ã

a

∣∣∣ <

ε and
∣∣∣ c−c̃

c

∣∣∣ < ε, we will have ‖q[N ] − q̃[N ]‖ < δ,

where q̃[N ] is the derivation of ã and c̃ according to
(28).

Proof Recall that in (18)

Fn =
(
Fn11 Fn12
Fn21 Fn22

)
.
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We now perform perturbations on a and c as discussed
above. In order to present λ̃ in a similar pattern like ã
and c̃, using the result of Lemma 1 and Lemma 2, we
can redefine λ from the expression (31) so that

λ̃0 = λ0(1 + ε),

From (19), we can derive that

γn = λ
n
2 (Cγ + O(λ)),

where Cγ is in O(1) order. Hence,

γ̃n = λ
n
2
0 (1 + ε)

n
2 (Cγ + O(λ)) = γn + O(ε).

Similarly,

τ̃n = τn + O(ε).

Thus, F̃n = Fn + ΔF , where all the elements of ΔF
are in O(ε) order.

From the expressions ofπi , κ ′
j , υ

′
m , βn , κ j , υm ((20)-

(25))

π̃i = λ̃2k0 O(1),

κ̃ ′
j =

j
2∑

p=0

λ̃
2 j−2p
0 ã� j

2 �O(1),

κ̃ j =
j
2∑

p=0

λ̃
2 j−2p
0 ã� j

2 �O(1),

υ̃ ′
m = (−1)m

m! (4k)m
1

22k ã2k λ̃4k0
,

υ̃m = (−1)m

m! (4k + 2)m
1

22k+1ã2k+1̃λ4k+2
0

.

Thus, from (23) and (25)

αn =
{

1
λ2k−1 O(1), j is odd

1
λ2k

O(1), j is even
, (32)

βn =
{

1
λ2k+1 O(1), j is odd
1

λ2k+2 O(1), j is even
, (33)

where ã is reduced from both the numerator and
denominator.

What we have done in the steps above is to extract
the factors which contain high-order λ0. From Gn’s

expression (24), we notice that the term λ or λ2 is mul-
tiplied by terms βn, βn−1 and βn−2. Since we have
proved that λ̃0 → λ0 and λ0 is not a singular point, we
can come to the conclusion G̃n ≈ Gn . Thus,

Ψ̃n =
∑ ∑

F̃sGt Zn−s−t

=
∑ ∑

(Fs + O(ε))Gt Zn−s−t = Ψn + O(ε),

which implies

(
ϕ̃n

φ̃n

)
=

(
ϕn + O(ε)

φn + O(ε)

)
.

From what is shown in (27), we can then derive that

ϕ̃[ j, n] = ϕ[ j, n] + O(ε),

φ̃[ j, n] = φ[ j, n] + O(ε).

Expression (28) shows q[N ] can be derived form EN1

and EN2, whose elements are all ϕ[ j, n] and φ[ j, n].
Leibniz formula shows that the determinant of a matrix
can be written as the linear combination of all its ele-
ments. Therefore, we can conclude that

ẼN1 = EN1 + O(ε),

ẼN2 = EN1 + O(ε).

Finally, we have the stability of our algorithm. ��

7 Conclusion

In this paper, we expand the Lax pair of Fokas–
Lenells equation with a variable separationmethod and
obtain N th rogue wave expression. Compared to the
more usual expansion methods [30,31], our method
has several advantages. In particular, it is relatively
easy to compute expressions and plot figures. More-
over, it is quite convenient for adjusting the param-
eters through selecting different Zn’s. The flexibil-
ity would hugely improve the efficiency in simula-
tion and computation when the initial seed solution is
given.

Similar to that in [30,31], we are inspired by the
efficiency and structure of Darboux transformation to
generate N th-order solutions. The novel features pre-
sented byDTand the FL systemare quite different from
those generated from standard integrable systems like
the AKNS and the KN systems. As shown in Figs. 1, 2
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and 3, we obtain similar plots as in [30,31]. The maxi-
mum amplitudes in the examples are about three times
to those when x → ∞ and t → ∞. We expect that our
work may spark some research interests in generation
of rogue waves and serve as a time saver applied to
many much-studied methods.
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