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Abstract This paper put forward an improved syn-
chronization problem for neural networks withMarkov
jump parameters. The traditional Markov jump neu-
ral network (MJNN) only considers the basic external
time-varying delays, ignoring both the distributed and
leakage delays in the internal transmission of the neu-
ral network and the small time-varying errors in the
mode switching of Markov probability transition rates.
In this paper, we focus on the synchronization ofMJNN
with mixed time-varying delay. And an improved
Lyapunov–Krasovskii functional is constructed. The
convergence of inequalities is solved by using affine
Bessel–Legendre inequalities and Wirtinger double
integral inequalities. At the same time, a new method
is used to optimize the mathematical geometric area
of the time-varying delay and reduce the conservative-
ness of the system. Finally, a sample point controller is
constructed to synchronize the driving system and the
corresponding system.
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1 Introduction

The enlightenment stage of the neural network (NN) is
in the middle and late 1980s. After decades of develop-
ment, it gradually develops to a mature stage and has
been extended to all areas of real life. This special non-
linear network which imitates the structure of human
brain and the method of processing information have
made amazing achievements in many aspects and can
solve many problems that are difficult to solve by dig-
ital computers. In the past few decades, different kinds
of NN have attracted attention. However, the simula-
tion of human brain structure by artificial NN is still
a low degree of research. Scholars have been looking
for more accurate theories to imitate brain intelligence.
Through continuous practice and theoretical research,
people have found that chaos and time delay have been
found in the nervous system, whether micro-neurons
or macro-brain waves. Therefore, researchers focus
on chaotic NN with time-varying delay [1,10,12,33].
Chaotic NN is to apply the advantages of NN system
to chaotic system, make up for each other’s shortcom-
ings, and there is also a very large possibility of intel-
ligent information processing. However, in traditional
NN, only external time-varying delay is considered,
and the distributed delay and leakage delay of informa-
tion transmission within neurons are neglected. There-
fore, the first problem that this paper focuses on is the
chaotic perturbation of NN with mixed time-varying
delay.
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In recent years, the stability of NN with Markov
jumphas becomea researchhot spot. Thismodel allows
NN to havemultiplemodes, and different modes can be
switched under the drive of aMarkov chain. Therefore,
the study of the stability of Markov jump model has
more potential application value [13,14,18,23,25,26,
29,30]. In [25,29], by constructing suitable LKF and
using linear matrix inequality (LMI), the mean-square
global exponential stability of a class of reaction-
diffusion Hopfield MJNN and the global robust expo-
nential stability of a class of time-varying delayMJNN
are studied, respectively. However, the traditional prob-
abilistic transfer matrix of Markov jump parameters
often neglects the small time-varying errors in proba-
bility transition rates, which may make the switching
process unstable and cause the system to collapse in
severe cases. Therefore, the second problem that this
paper focuses on is the time-varying probabilistic trans-
fer parameters in MJNN.

Synchronization, as a nonlinear phenomenon, has
appeared in many practical problems, such as physics,
ecology and physiology. Therefore, the application of
synchronization theory has been widely studied in dif-
ferent scientific fields. In particular since 1990s, Pec-
ora and Carroll have paid attention to the importance of
control and synchronization of chaotic systems. They
put forward the concept of drive-response to achieve
synchronization of chaotic systems. This method con-
trols the response system by driving the external input
of the system to achieve synchronization. So the the-
ory of chaos synchronization and chaos control has
been widely studied. In order to achieve synchroniza-
tion, many control systems have been proposed, such
as: synchronization method of driving-response [19];
active–passive synchronization method [20]; synchro-
nization method based on mutual coupling [36]; adap-
tive synchronization method [9]; feedback control syn-
chronization method [15]; projection synchronization
control [11]; and impulse control [7]. Therefore, the
third problem that this paper focuses on is how to con-
struct a suitable sample point controller to synchronize
MJNN drive system (MJNN-DS) and MJNN response
system (MJNN-RS).

On the other hand, the synchronous analysis of
MJNN usually constructs a suitable LKF and then
converges the inequality. In recent years, scholars
have proposed many useful inequality methods, such
as: Jensen inequality [37], Wirtinger integral inequal-
ity [22], free matrix inequality [32], interactive con-

vex inequality [34] and Bessel–Legendre inequali-
ties [21]. These methods have effectively improved
the convergence accuracy, but there is still room
for improvement. Wirtinger double integral inequali-
ties and affine Bessel–Legendre inequalities improve
Wirtinger integral inequality and Bessel–Legendre
inequality, respectively. Therefore, the fourth problem
that this paper focuses on is how to use Wirtinger dou-
ble integral inequalities and affine Bessel–Legendre
inequalities to improve the convergence accuracy.

In addition, when discussing the interval range of
time-varying delays, the defaults are h1 ≤ h ≤ h2
and d1 ≤ ḣ ≤ d2, which are conservative and can
be optimized in two-dimensional space. Therefore, the
fifth problem that this paper focuses on is to discuss the
optimization of time-varying delay intervals based on
two-dimensional level.

In summary, the contributions of this paper and the
difficulties to be solved are as follows: Firstly, how to
unify the mixed time-varying delay and time-varying
probability transfer under oneMJNN. Secondly, how to
apply Wirtinger double integral inequalities and affine
Bessel–Legendre inequalities to Lyapunov functional
processing. Thirdly, how to synchronize MJNN-DS
andMJNN-RS through the control of sample point con-
troller. Fourthly, how to optimize the two-dimensional
geometric area of time delay. In addition, these meth-
ods have the following advantages: the affine Bessel–
Legendre inequalities improves the traditional Bessel–
Legendre inequality, and with the increase in N , the
optimization effect will be better. Compared with the
traditional state feedback controller, the sample point
controller can better transmit the effective information
of the system and achieve better control effect. The tra-
ditional two-dimensional geometric area of time delay
is a rectangle. We reduce the conservativeness of the
system by reducing the area to a parallelogram.

Next, this paper will be based on the following
four parts. The first part introduces MJNN-DS and
MJNN-RS, sample point controller, and relevant use-
ful lemmas. In the second part, the synchronous anal-
ysis of MJNN mixed-time-varying-delayed error sys-
tem is carried out, and the convergence accuracy of
LKF is improved by using Wirtinger double integral
inequalities and affine Bessel–Legendre inequalities.
In the third part, the range of time-varying delay in
two-dimensional space is discussed, and the conserva-
tiveness of the system is reduced by reducing the two-
dimensional geometric area. In the fourth part, a numer-
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ical example is constructed. The parameters of the sam-
ple point controller, the chaotic curve ofMJNN system,
Markov jump response curve, synchronization analy-
sis response curve and error analysis response curve
are obtained through actual simulation.

In this paper, “0” represents zero matrix of suitable
dimension.Rn andRn×m represent n-dimensional and
n×m-dimensional Euclidean spaces, respectively. “T”
represents the matrix transposition. {Ω, �,P} repre-
sents the probability space.

2 Preliminaries

Consider the following MJNN-DS with mixed time-
varying delay:

ẋ(t) = −C(r(t))x(t − σ) + A(r(t)) f (x(t))

+B(r(t)) f (x(t − d1(t)))

+D(r(t))
∫ t

t−d2(t)
f (x(s))ds + J (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the
neuron state vector. A(·), B(·),C(·) and D(·) arematri-
ces of suitable dimensionswith uncertainties,which are
expressed as follows:

A(·) = Ā(·) + ΔA B(·) = B̄(·) + ΔB

C(·) = C̄(·) + ΔC D(·) = D̄(·) + ΔD

where ΔA, ΔB, ΔC and ΔD are uncertain parameter
terms, such as:

[ΔA,ΔB,ΔC,ΔD] = GF(t)[E1, E2, E3, E4]
where G and Ei (i = 1, 2, 3) are real matrices of suit-
able dimensions, F(t) satisfies: FT(t)F(t) ≤ I .

f (·) is the neuron excitation function. J denotes
external disturbances. r(t) represents a Markov jump
subset on a finite state space S = {1, · · ·, M}. Markov
chain is defined in space {Ω, �,P}. The transfer rate
matrix Π(t) = (μi j )N×N is defined as follows:

P{r(t + Δ) = j |r(t) = i}
=

{
μi jΔ + o(Δ); i f j �= i,
1 + μi iΔ + o(Δ); i f j = i

where μi j ≥ 0, if j �= i , μi i = −∑N
j=1, j �=i μi j . σ ,

d1(t) and d2(t) represent the leakage delay, the external
time-varying delay and the distributed delay, respec-
tively, and the time-varying delay ranges are as follows:
0 ≤ d1(t) ≤ d1, h1 ≤ ḋ1(t) ≤ h2, 0 ≤ d2(t) ≤ d2.

Remark 1 The first item on the right side of the equa-
tion is the stable negative feedback of the system,which
is often referred to as the “leakage” item. Since the self-
attenuation process of neurons is not instantaneous,
when the neurons are cut off from the neural network
and external inputs, it takes time to reset to the isolated
static state. In order to describe this phenomenon, it is
necessary to introduce a “leakage” delay. In this paper,
σ is called leakage delay.

Consider the followingMJNN-RSwith mixed time-
varying delay:

ẏ(t) = −C(r(t))y(t − σ) + A(r(t)) f (x(t))

+B(r(t)) f (y(t − d1(t)))

+D(r(t))
∫ t

t−d2(t)
f (y(s))ds + u(t) + J (2)

where y(t) = (y1(t), y2(t), · · · , yn(t))T ∈ Rn is the
neuron state vector. The meanings of other symbols are
equivalent toMJNN driving system (1). u(t) represents
the sample point controller, which is defined as follows:

u(t) = K (r(tk))e(tk), tk ≤ t < tk+1

where K (·) is the feedback gain matrix of the sample
point controller, e(tk) represents the discrete control
function, and tk is the sample point and satisfies:

0 = t0 < t1 < · · · < tk < · · · < lim
k→+∞ tk = +∞

Assuming that the period of sample points is
bounded, for any k ≥ 0, there exists a normal quan-
tity d3 satisfying tk+1 − tk ≤ d3.

Remark 2 Obviously, due to the introduction of the dis-
crete term e(tk), the synchronization analysis of the
system becomes more difficult. In this paper, the input
delay method is used to deal with the discrete term.
Define a smooth function:

d3(t) = t − tk, tk ≤ t ≤ tk+1

Easy to get: 0 ≤ d3(t) ≤ d3. In summary, the sample
point controller is converted as follows:

u(t)=K (r(tk))e(tk) �⇒ u(t)=K (r(tk))e(t − d3(t))

Let e(t) = y(t)−x(t), g(e(·)) = f (y(·))− f (x(·)).
TheMJNNerror systemwithmixed time-varying delay
is defined as follows:
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ė(t) = −C(r(t))e(t − σ) + A(r(t))g(e(t))

+ B(r(t))g(e(t − d1(t)))

+ D(r(t))
∫ t

t−d2(t)
g(e(s))ds + u(t) (3)

Some lemmas are given below,which play a key role
in the calculation of this paper.

Lemma 1 (Affine Bessel–Legendre inequalities)[8] If
the function x(·) satisfies x(·) : [a, b] → Rn and N ∈
N, given any positive definite matrix R = RT, there
exists a matrix X such that the following relation holds

−
∫ b

a
ẋT(s)Rẋ(s)ds ≤ −ϑT

N (t)Ω(X)ϑN (t)

where
Ω(X) = XLN + LT

N XT − (b − a)X R̄XT

LN = [Γ T
N (0) Γ T

N (1) . . . Γ T
N (N )]T

R̄ = diag

(
R−1,

1

3
R−1, . . . ,

1

2N + 1
R−1

)

ϑN =
⎧⎨
⎩

[
xT(b) xT(a)

]T
i f N = 0[

xT(b) xT(a) 1
b−a ΦT

0 . . . 1
b−a ΦT

N−1

]T
i f N > 0

ΓN (k) =
{

[I − I ]T i f N = 0[
I (−1)k+1 I γ 0

Nk I . . . γ N−1
Nk I

]T
i f N > 0

Φk =
∫ b

a
Lk(s)x(s)ds

γ i
Nk =

{ −(2i + 1)(1 − (−1)k+i ) i f i ≤ k
0 i f i ≥ k + 1

Lk(u) = (−1)k
k∑

l=0

[
(−1)l

(
k
l

)(
k + l
l

)] ( u−a
b−a

)l

Remark 3 Unlike the traditional Bessel–Legendre
inequalities [21], the right side of the inequality of
Lemma 1 is the affine of the length of the integral
interval, so it can be easily dealt with by convexity.
In addition, Lemma 1 can be transformed into existing
inequalities in literature under special conditions, such
as affine Jensen inequality [2] and affineWirtinger inte-
gral inequality [6], which shows that the inequality of
Lemma 1 is more general.

Remark 4 Lemma 1 has an additional decision vari-
able of (N + 1)(N + 2)n2 because of the addition of
additional matrix X to the traditional Bessel–Legendre
inequalities [21].

Lemma 2 (Wirtinger Double Integral inequalities)[17]
If constants m and n satisfy m < n, for any positive def-
inite matrix H, and x ∈ [m, n] → Rn, the following
inequalities hold

(n − m)2
∫ n

m

∫ n

θ

xT(u)Hx(u)dudθ

� 2ΘT
d1HΘd1 + 4ΘT

d2HΘd2

where⎧⎨
⎩

Θd1 = ∫ n
m

∫ n
θ
x(u)dudθ

Θd2 = − ∫ n
m

∫ n
θ
x(u)duds

+ 3
s−r

∫ n
m

∫ n
θ

∫ n
u x(u)dvduds

Remark 5 Lemma 2 adds a multiple integral on the
basis of Wirtinger integral inequality [22]. At the same
time, Θd1 and Θd2 on the right side of the inequal-
ity contain more sub-terms. Therefore, Lemma 2 can
express the internal information of the system more
completely in the derivative deformation of Lyapunov
functional, so it has lower conservativeness.

Lemma 3 [3]When has the M − Π(t) transfer ratio
matrix is located has the border areaD apex, territory
D1 by the following expression is composed:

D1 = {Π(r(t))|Π(r(t))

=
M∑
l=1

rl(t)Π
(l),

M∑
l=1

rl(t) = 1, rl(t) ≥ 0

}
(4)

where Π(l)(l = 1, 2, · · ·, M) are vertices, r(t) is the
parameter vector, it is assumed that the changes are
known. As a result, ṙ(t) is as follows:

D2 = {−vl≤ṙl(t)≤vl , vl≥0, l = 1, 2, · · ·, M − 1
}
(5)

Remark 6 Easy to get
∑M

l=1 rl(t) = 1 is equivalent to∑M−1
l=1 ṙl(t) + ṙM (t) = 0. So ṙM (t) is expressed by

| ṙM (t) |≤ ∑M−1
l=1 vl .

Lemma 4 [4] If the vector function x satisfies x :
[0, �] → Rn, given any positive definite matrix U and
positive scalar �, the following relation holds

�−1
[∫ �

0
x(s)ds

]T
U
[∫ �

0
x(s)ds

]

≤
∫ �

0
xT(s)Ux(s)ds

Lemma 5 [28] For any real matrices D, E, F and
scalar ε > 0, when FTF ≤ I is satisfied, the following
inequalities hold

DFE + ETFTDT ≤ εDDT + ε−1ETE
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Assumption (A1) The neuron excitation function
f (·) satisfies the following conditions:

0 <
fi (ui − vi )

ui − vi
≤ li (i = 1, 2 · · · , N )

where ui and vi are arbitrary real numbers, and u �= v.
li are known constants.

3 Main results

Theorem 1 Given scalars di > 0, i = 1, 2, 3 and
ḋ1(t), and satisfy, di (t) ∈ [0, di ], i = 1, 2, 3, ḋ1(t) ∈
[h1, h2], for any delay d(t), MJNN-DS (1) and MJNN-
RS (2) achieve complete synchronization, if there exist
symmetry matrices P(l)

P > 0 ∈ R7n, Qi > 0, i =
1, 2, 3, 4 ∈ Rn, Ri > 0, i = 1, 2 ∈ Rn, Zi >

0, i = 1, 2 ∈ Rn, S > 0 ∈ Rn, any matrices
Xi , i = 1, 2, 3, 4 ∈ R4n×3n, M1, M2 and χi are matri-
ces of suitable dimensions, such that the followinghold:

Υ
(ls)
P (di (t), ḋ1(t)) + Υ

(sl)
P (di (t), ḋ1(t)) < 0 (6)

Υ
(ls)
P (di (t), ḋ1(t))

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΨP (di (t), ḋ1(t)) ΠT
1 X1 ΠT

2 X2 ΠT
3 X3 ΠT

4 X4 Φ1 Φ2

∗ Δ22 0 0 0 0 0
∗ ∗ Δ33 0 0 0 0
∗ ∗ ∗ Δ44 0 0 0
∗ ∗ ∗ ∗ Δ55 0 0
∗ ∗ ∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ ∗ ∗ − 1

ε
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where

Δ22 = −d1(t)R1N Δ33 = −(d1 − d1(t))R1N

Δ44 = −d3(t)R2N Δ55 = −(d3 − d3(t))R2N

RiN = diag{Ri , 3Ri , 5Ri } i = 1, 2

ΨP (di (t), ḋ1(t))

= Ω
(ls)
P (di (t), ḋ1(t))

+ eT1

4∑
i=1

Qie1 − (1 − ḋ1(t))e
T
2 Q1e2

− eT20Q2e20 − eT3 Q3e3

− eT11Q4e11 + eT21(d1R1 + d3R2)e21

−ΠT
1 (X1M + MTXT

1 )Π1 − ΠT
2 (X2M

+ MTXT
2 )Π2 − ΠT

3 (X3M + MTXT
3 )Π3

−ΠT
4 (X4M + MTXT

4 )Π4

+ eT21

⎡
⎣
(
d21
2

)2

Z1 +
(
d23
2

)2

Z2

⎤
⎦ e21

− [d1e1 − e16]
T Z1 [d1e1 − e16] − 2

[
−d1

2
e1 − e16

+ 3

d1
e17

]T
Z1

[
−d1

2
e1 − e16 + 3

d1
e17

]

− [d3e1 − e18]
T Z2 [d3e1 − e18] − 2

[
−d3

2
e1

− e18 + 3

d3
e19

]T
Z2

[
−d3

2
e1 − e18 + 3

d3
e19

]

+ d2e
T
1 Se1 − δ1

[
eT23e23 − eT1 L

TLe1
]

− δ2

[
eT24e24 − eT2 L

TLe2
]

− δ3d
−1
2 eT22e22 + Φ3

Ω
(ls)
P (di (t), ḋ1(t)) (8)

= He{T T
0 (ḋ1(t))P

(l)
P T1(d1(t))} + T T

1 (d1(t))
N∑
j=1

μ
(l)
i j P

(s)
j T1(d1(t))

+ T T
1 (d1(t))

M−1∑
n=1

±(P(n)
P − P(M)

P )T1(d1(t)) (9)

Φ1 = col{M1G 0 · · · 0︸ ︷︷ ︸
19n

M2G 0 0 0} (10)

Φ2 = col{0 · · · 0︸ ︷︷ ︸
19n

−ET
3 0 ET

4 ET
1 ET

2 } (11)

M =
⎡
⎣In −In 0n 0n
In In −2In 0n
In −In 6In −12In

⎤
⎦ (12)

Π1 = col{e1 e2 e6 e8}
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Π2 = col{e2 e3 e7 e9}
Π3 = col{e1 e10 e12 e14}
Π4 = col{e10 e11 e13 e15} (13)

Φ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0︸ ︷︷ ︸
9n

χi 0 · · · 0︸ ︷︷ ︸
9n

−ε1M2C̄P −ε1M2 ε1M2 D̄P ε1M2 ĀP ε1M2 B̄P

0 · · · 0︸ ︷︷ ︸
9n

0 0 · · · 0︸ ︷︷ ︸
9n

0 0 0 0 0

...
...

... · · · · · · · · · · · · · · ·
0 · · · 0︸ ︷︷ ︸

9n

χi 0 · · · 0︸ ︷︷ ︸
9n

−M2C̄P −M2 − MT
2 M2 D̄P M2 ĀP M2 B̄P

0 · · · 0︸ ︷︷ ︸
9n

0 0 · · · 0︸ ︷︷ ︸
9n

0 0 0 0 0

0 · · · 0︸ ︷︷ ︸
9n

0 0 · · · 0︸ ︷︷ ︸
9n

0 0 0 0 0

0 · · · 0︸ ︷︷ ︸
9n

0 0 · · · 0︸ ︷︷ ︸
9n

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

ei (i = 1, · · · , 24) ∈ Rn×24n are identity matrices.
Sample point controller parameters can be obtained:
Ki = M−1

2 χi .

Proof An improved LKFs are defined: V (x(t), t, r(t))
= V1(t) + V2(t) + V3(t) + V4(t) + V5(t). where

V1(t) = ηT1 (t)P(r(t))η1(t)

V2(t) =
∫ t

t−d1(t)
eT(s)Q1e(s)ds+

∫ t

t−σ

eT(s)Q2e(s)ds

+
∫ t

t−d1
eT(s)Q3e(s)ds+

∫ t

t−d3
eT(s)Q4e(s)ds

V3(t) =
∫ 0

−d1

∫ t

t+θ

ėT(s)R1ė(s)dsdθ

+
∫ 0

−d3

∫ t

t+θ

ėT(s)R2ė(s)dsdθ

V4(t) = d21
2

∫ t

t−d1

∫ t

θ

∫ t

u
ėT(v)Z1ė(v)dvdudθ

+ d23
2

∫ t

t−d3

∫ t

θ

∫ t

u
ėT(v)Z2ė(v)dvdudθ

V5(t) =
∫ 0

−d2

∫ t

t+θ

eT(s)Se(s)dsdθ

where

η1(t) = col { e(t) e(t − d1(t)) e(t − d1)∫ t

t−d1(t)
e(s)ds

∫ t−d1(t)

t−d1
e(s)ds

1

d1(t)

∫ 0

−d1(t)

∫ t

t+θ

e(s)dsdθ
1

d1 − d1(t)∫ −d1(t)

−d1

∫ t−d1(t)

t+θ

e(s)dsdθ

}

By deriving V (x(t), t, r(t)), meanwhile, Lemma 1
and Lemma 2 are used for V3(t) and V4(t) respectively,
we get the following results

V̇1(t) = He{T T
0 (ḋ1(t))PPT1(d1(t))} + T T

1 (d1(t))
N∑
j=1

μi j (r(t))Pj (r(t))T1(d1(t))

+ T T
1 (d1(t))

(
dPP (r(t))

dt

)
T1(d1(t))

V̇2(t) = eT1

4∑
i=1

Qie1 − (1 − ḋ1(t))e
T
2 Q1e2

− eT20Q2e20 − eT3 Q3e3 − eT11Q4e11

V̇3(t) = eT21(d1R1 + d3R2)e21 −
∫ t

t−d1
ėT(s)R1ė(s)ds

−
∫ t

t−d3
ėT(s)R2ė(s)ds

≤ eT21(d1R1 + d3R2)e21 − ΠT
1 (X1M + MTXT

1

− d1(t)X1R
−1
1N XT

1 )Π1

− ΠT
2 (X2M + MTXT

2 − (d1 − d1(t))X2R
−1
1N XT

2 )Π2

− ΠT
3 (X3M + MTXT

3 − d3(t)X3R
−1
2N XT

3 )Π3

− ΠT
4 (X4M + MTXT

4

− (d3 − d3(t))X4R
−1
2N XT

4 )Π4

V̇4(t) ≤ eT21

⎡
⎣
(
d21
2

)2

Z1 +
(
d23
2

)2

Z2

⎤
⎦

e21 − [d1e1 − e16]TZ1[d1e1 − e16]
− 2

[
−d1

2
e1
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−e16 + 3

d1
e17

]T
Z1

[
−d1

2
e1 − e16 + 3

d1
e17

]

− [d3e1 − e18]TZ2[d3e1 − e18]
− 2

[
−d3

2
e1 − e18 + 3

d3
e19

]T
Z2

[
−d3

2
e1 − e18 + 3

d3
e19

]

V̇5(t) = d2e
T
1 Se1 −

∫ t

t−d2(t)
eT(s)Se(s)ds

where

T0(ḋ1(t))

= col
{

e21 (1 − ḋ1(t))e4 e5 e1 − (1 − ḋ1(t))e2

(1 − ḋ1(t))e2 − e3e1 − (1 − ḋ1(t))e6

− ḋ1(t)e8 (1 − ḋ1(t))e2 − e7 + ḋ1(t)e9
}

T1(d1(t))

= col{ e1 e2 e3 d1(t)e6 (d1 − d1(t))e7 d1(t)e8

d1 − d1(t))e9 }
And the definitions of Φ1, Φ2, M , Π1, Π2, Π3 and

Π4 are shown in (10)–(13). ��
The following inequalities are defined according to

Assumption (A1)

gT(e(t))g(e(t)) − eT(t)LTLe(t) ≤ 0

gT(e(t − d1(t)))g(e(t − d1(t)))

−eT(t − d1(t))L
TLe(t − d1(t)) ≤ 0∫ t

t−d2(t)
gT(e(s))g(e(s))ds

−
∫ t

t−d2(t)
eT(s)LTLe(s)ds ≤ 0

where L = diag{l1, l2, · · · , ln}.Meanwhile, given any
positive constant: δ1, δ2 and δ3, the following inequal-
ities can be obtained

− δ1[gT(e(t))g(e(t)) − eT(t)LTLe(t)] ≥ 0 (15)

− δ2[gT(e(t − d1(t)))g(e(t − d1(t)))

−eT(t − d1(t))L
TLe(t − d1(t))] ≥ 0 (16)

− δ3[
∫ t

t−d2(t)
gT(e(s))g(e(s))ds

−
∫ t

t−d2(t)
eT(s)LTLe(s)ds] ≥ 0 (17)

From Lemma 4, the following can be obtained

−δ3

∫ t

t−d2(t)
gT(e(s))g(e(s))ds

≤ −δ3d
−1
2

[∫ t

t−d2(t)
g(e(s))ds

]T
[∫ t

t−d2(t)
g(e(s))ds

]
(18)

Given any constant M1 and M2, the following equa-
tion holds

0 = 2[eT(t)M1 + ėT(t)M2]
[−ė(t) − C(r(t))e(t − σ) + A(r(t))g(e(t))

+B(r(t))g(e(t − d1(t))) + D(r(t))∫ t

t−d2(t)
g(e(s))ds + K (r(t))e(t − d3(t))

]

(19)

Add (15)–(19) to V̇1(t)-V̇5(t), and then deal with the
items. Separating the definite items from the uncertain
items in A(·), B(·),C(·) and D(·), the following results
can be obtained:

Φ̄3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0︸ ︷︷ ︸
19n

−M1ΔC 0 M1ΔD M1ΔA M1ΔB

0 · · · 0︸ ︷︷ ︸
19n

0 0 0 0 0

... · · · · · · · · · · · · · · ·
0 · · · 0︸ ︷︷ ︸
19n

−M2ΔC 0 M2ΔD M2ΔA M2ΔB

0 · · · 0︸ ︷︷ ︸
19n

0 0 0 0 0

0 · · · 0︸ ︷︷ ︸
19n

0 0 0 0 0

0 · · · 0︸ ︷︷ ︸
19n

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Φ̄3 is a matrix consisting of uncertain terms and
Φ3 is a matrix consisting of deterministic terms, as
shown in (14). Next, lemma 5 is used for matrix Φ̄3,
which can be obtained as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1G
0
...

0
M2G
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
−ET

3
0
ET
4

ET
1

ET
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
−ET

3
0
ET
4

ET
1

ET
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FT(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1G
0
...

0
M2G
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
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≤ ε−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1G
0
...

0
M2G
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1G
0
...

0
M2G
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+ ε

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
−ET

3
0
ET
4

ET
1

ET
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
−ET

3
0
ET
4

ET
1

ET
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(20)

For convenience, let M1 = ε1M2 and χi = M2Ki ,
ε1 is an arbitrary real number. To sum up, combined
with (20), we can get:

V̇ (x(t), t, r(t)) ≤ ξ TΥ (di (t), ḋ1(t))ξ(t) (21)

where

Υ (di (t), ḋ1(t))

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ (di (t), ḋ1(t)) ΠT
1 X1 ΠT

2 X2 ΠT
3 X3 ΠT

4 X4 Φ1 Φ2

∗ Δ22 0 0 0 0 0
∗ ∗ Δ33 0 0 0 0
∗ ∗ ∗ Δ44 0 0 0
∗ ∗ ∗ ∗ Δ55 0 0
∗ ∗ ∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ ∗ ∗ − 1

ε
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

Ψ (di (t), ḋ1(t))

= Ω(di (t), ḋ1(t)) + eT1

4∑
i=1

Qie1

−(1 − ḋ1(t))e
T
2 Q1e2

−eT20Q2e20 − eT3 Q3e3

−eT11Q4e11 + eT21(d1R1 + d3R2)e21

−ΠT
1 (X1M + MTXT

1 )Π1 − ΠT
2 (X2M

+MTXT
2 )Π2 − ΠT

3 (X3M + MTXT
3 )Π3

−ΠT
4 (X4M + MTXT

4 )Π4

+eT21

⎡
⎣
(
d21
2

)2

Z1 +
(
d23
2

)2

Z2

⎤
⎦ e21

−[d1e1 − e16]TZ1[d1e1 − e16]
−2

[
−d1

2
e1 − e16 + 3

d1
e17

]T

Z1

[
−d1

2
e1 − e16 + 3

d1
e17

]

−[d3e1 − e18]TZ2[d3e1 − e18]
−2

[
−d3

2
e1 − e18 + 3

d3
e19

]T
Z2

[
−d3

2
e1 − e18

+ 3

d3
e19

]
+ d2e

T
1 Se1

−δ1[eT23e23 − eT1 L
T Le1] − δ2[eT24e24 − eT2 L

TLe2]
−δ3d

−1
2 eT22e22 + Φ3 (23)

Ω(di (t), ḋ1(t))

= He{T T
0 (ḋ1(t))PP (r(t))T1(d1(t))}

+T T
1 (d1(t))

N∑
j=1

μi j Pj (r(t))T1(d1(t))

+T T
1 (d1(t))

(
dPP (r(t))

dt

)
T1(d1(t)) (24)

ξ(t)

= col { e(t) e(t − d1(t)) e(t − d1)

ė(t − d1(t)) ė(t − d1)
1

d1(t)

∫ t

t−d1(t)
e(s)ds

1

d1 − d1(t)∫ t−d1(t)

t−d1
e(s)ds

1

d21 (t)

∫ 0

−d1(t)

∫ t

t+θ

e(s)dsdθ

1

(d1 − d1(t))2

∫ −d1(t)

−d1∫ t−d1(t)

t+θ

e(s)dsdθ e(t − d3(t)) e(t − d3)

1

d3(t)

∫ t

t−d3(t)
e(s)ds

1

d3 − d3(t)

∫ t−d3(t)

t−d3
e(s)ds

1

d23 (t)∫ 0

−d3(t)

∫ t

t+θ

e(s)dsdθ

1

(d3 − d3(t))2

∫ −d3(t)

−d3

∫ t−d3(t)

t+θ

e(s)dsdθ

∫ t

t−d1
e(θ)dθ

∫ t

t−d1

∫ t

θ

e(s)dsdθ

∫ t

t−d3
e(θ)dθ

∫ t

t−d3∫ t

θ

e(s)dsdθ e(t − σ) ė(t)

∫ t

t−d2(t)
g(e(s))ds g(e(t))

g(e(t − d1(t)))} (25)

Therefore, as long as satisfying (22) is negative
definite, then V̇ (x(t), t, r(t)) is strictly negative def-
inite in the interval d1(t) ∈ [0, d1], ḋ1(t) ∈ [h1, h2].
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Synchronization control of Markov jump neural networks 1885

According to Lyapunov stability theory, under the con-
trol of the sample point controller, the MJNN-DS (1)
and the MJNN-RS (2) are completely synchronized.
Sample point controller parameters can be obtained:
Ki = M−1

2 χi .

Remark 7 In (24), because of the existence of dPP (r(t))
dt ,

we cannot directly calculate the results by MATLAB,
so we use Lemma 3 to deform PP (r(t)). The results
are as follows:

D1 = {PP (r(t))|PP(r(t))

=
M∑
l=1

rl(t)P
(l)
P ,

M∑
l=1

rl(t) = 1, rl(t) ≥ 0

}
(26)

where P(l)
P expresses respective polyhedron apex. The

time-varying transition rates in PP (r(t)) deforms as
follows:

PP (r(t)) =
M∑
l=1

rl(t)P
(l)
P �⇒ dPP (r(t))

dt

=
M∑
l=1

ṙl(t)P
(l)
P =

M−1∑
n=1

ṙn(t)(P
(n)
P − P(M)

P )

According to (22), we have

Υ (di (t), ḋ1(t))

=
M∑
l=1

r2l (t)Ῡ (ll)
P (di (t), ḋ1(t))

+
M−1∑
l=1

M∑
s=l+1

rl(t)rs(t)(Ῡ
(ls)
P (di (t), ḋ1(t))

+Ῡ
(sl)
P (di (t), ḋ1(t))) < 0

where Ῡ
(ls)
P (di (t), ḋ1(t)) is equivalent to Υ (di (t),

ḋ1(t)) except Ω̄
(ls)
P (di (t), ḋ1(t)), it is expressed as fol-

lows:

Ω̄
(ls)
P (di (t), ḋ1(t))

= He{T T
0 (ḋ1(t))P

(l)
P T1(d1(t))}

+T T
1 (d1(t))

N∑
j=1

μ
(l)
i j P

(s)
j T1(d1(t))

+T T
1 (d1(t))

M−1∑
n=1

ṙn(t)(P
(n)
P − P(M)

P )T1(d1(t))

(27)

We can get (6)–(9) by using the method of dealing
with

∑M−1
n=1 ṙn(t)(P

(n)
P − P(M)

P ) in [3]. Therefore, as

Fig. 1 Area in general sense

long as (6) is satisfied, (22) is strictly negative definite.
This completes the proof. ��
Remark 8 When using Lemma 1 to deal with V̇ (t),
we set the Legendre parameter N = 2. If we take
N = 1, we just need to replace η1(t) with η̄1(t) =
[eT(t) eT(t − d1(t)) eT(t − d1)

∫ t
t−d1(t)

eT(s)ds∫ t−d1(t)
t−d1

eT(s)ds]T, and the rest of the processing is
basically the same as Theorem 1.

Remark 9 If we increase the Legendre parameter N ,
we can get a stricter bound for the integral term in
V̇3(t). In this case, Lyapunov functions, especially
η1(t) in V1, should be changed appropriately in the
order of increasing N to obtain a less conservative sta-
bility condition. N = 1 and N = 2 correspond to∫ b
a e(s)ds and 1

(b−a)

∫ b
a

∫ b
θ
e(s)dsdθ in η1(t), respec-

tively. When N > 2, corresponding to the following:
1

(b−a)N−1

∫ b
a

∫ b
α1

· · · ∫ b
αN−1

e(αN )dαN · · · dα2dα1.

Remark 10 Whenconsidering the rangeof time-varying
delays, it is generally set to: h1 ≤ h ≤ h2,d1 ≤ ḣ ≤ d2.
For the convenience of the next discussion, we present
the delay and its derivatives in a two-dimensional plane
as shown in Fig. 1.

The plane presents a rectangle, and the coordinates
of its four vertices are: (h1, d1), (h1, d2), (h2, d1) and
(h2, d2). The area of rectangle is the range of time-
varying delays. It is improved by [21]. Change the four
vertices into the following: (0, 0), (h1, d2), (h2, 0) and
(h2, d1). The shape is shown in Fig. 2. It can be seen
that in the same time-delay interval, the area of Fig. 2 is
smaller than that of Fig. 1, which indicates that it is less
conservative. Therefore, Theorem 1 can be optimized
by this theory, and the results are as follows.
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Fig. 2 Area improved in this paper

Theorem 2 Same as Theorem 1, MJNN-DS (1) and
MJNN-RS (2) achieve complete synchronization, if the
following hold:

Υ
(ls)
P (0, 0) + Υ

(sl)
P (0, 0) < 0 (28)

Υ
(ls)
P (0, h2) + Υ

(sl)
P (0, h2) < 0 (29)

Υ
(ls)
P (di , h1) + Υ

(sl)
P (di , h1) < 0 (30)

Υ
(ls)
P (di , 0) + Υ

(sl)
P (di , 0) < 0 i = 1, 3 (31)

where Υ
(ls)
P (·) + Υ

(sl)
P (·) < 0 is defined in (6).

4 Numerical examples

Firstly, Examples 1 and 2 illustrate the validity of
affineBessel–Legendre inequalities andWirtinger dou-
ble integral inequalities. Secondly, Example 3 illus-
trates the effectiveness of optimizing two-dimensional
space of time delay. Finally, Example 4 shows that
under the control of sample point controller,MJNN-DS
(1) and MJNN-RS (2) can achieve synchronization.

Example 1 Consider the following two modes and the
matrix parameters[16]:

A1 =
[
0.5 −1
0 −3

]
A2 =

[−5 1
1 0.2

]

B1 =
[
0.5 −0.2
0.2 0.3

]
B2 =

[−0.3 0.5
0.4 −0.5

]

with transition rates matrix

Π =
[−7 7
3 −3

]

Let h2 = 0, μ11 = −7. We compare the upper
bounds of time-varying delays. The results are shown

Table 1 Different results to d1 for Example 1

μ22 = −1 μ22 = −2 μ22 = −3

By [5] 0.6898 1.1077 1.2455

By Theorem
1 of [35]

0.6976 1.1384 1.5091

By Theorem
1 of [16]

0.9324 1.2508 1.7531

By Theorem
1 (N=1) of
this paper

1.0231 1.3027 1.8251

By Theorem
1 (N=2) of
this paper

1.0952 1.4125 1.8976

in Table 1. From Table 1, we can see that with the
increase in N , the better the effect of affine Bessel–
Legendre inequalities is.

Example 2 The following two modes and the matrix
parameters[16] are hold:

A1 =
[−3.4888 0.8057
−0.6451 −3.2684

]

A2 =
[−2.4898 0.2895
1.3396 −0.0211

]

B1 =
[−0.8620 −1.2919
−0.6841 −2.0729

]

B2 =
[−2.8306 0.4978
−0.8436 −1.0115

]

with transition rates matrix

Π =
[−0.1 0.1
0.8 −0.8

]

By setting different upper bounds of delay deriva-
tives h2, we obtain different upper bounds of delay as
shown in Table 2. From Table 2, we can see that with
the increase in N , the better the effect of affine Bessel–
Legendre inequalities is.

Example 3 ConsiderMJNN-DS (1) andMJNN-RS (2)
with two modes and the matrix parameters:

A1 =
[
0 0.6
0 1

]
B1 =

[
0.5 0.9
0 2

]

C1 =
[
1 0
1 0

]
D1 =

[
0.9 0
1 1.6

]

A2 =
[−4.5 2
−0.8 −4.3

]
B2 =

[−3.5 1.2
1.0 −1.9

]
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Table 2 Different results to d1 for Example 2

h2 = 0.6 h2 = 0.8 h2 = 1.6

By Theorem 1 of [27] 0.4428 0.3795 0.3469

By Theorem 2 of [27] 0.4492 0.4341 0.4314

By [31] 0.4927 0.4261 0.3860

By Theorem 1 of [35] 0.5159 0.4814 0.4789

By Theorem 1 of [16] 0.5342 0.5147 0.5029

By Theorem 1 (N=1) of this paper 0.5398 0.5204 0.5162

By Theorem 1 of [24] 0.5642 0.5456 0.5279

By Theorem 1 (N=2) of this paper 0.5679 0.5501 0.5326

C2 =
[
0.6 1.6
1.8 −1.1

]
D2 =

[
1.6 0.5

−0.7 1.0

]

G =
[
0.1 0
0 0.1

]
Ei =

[
0.2 0
0 0.2

]

i = 1, 2, 3, 4 L =
[
0.1 0
0 0.1

]

Assume that the transition rate matrix is time-
varying in the following vertex polyhedron Π(t) =
sin2(t)Π(1) + cos2(t)Π(2):

Π(1) =
[−0.8 0.8
0.6 −0.6

]
Π(2) =

[−0.6 0.6
0.8 −0.8

]

Let δ1 = δ2 = δ3 = ε = ε1 = 0.1. When N = 2,
the time-varying delay range obtained from Theorem
1: 0 ≤ d1(t) ≤ 1.63. Similarly, the time-varying delay
range obtained from Theorem 2: 0 ≤ d1(t) ≤ 1.70. It
can be shown that Theorem 2 is effective in optimizing
the two-dimensional geometric space of time delay.

Example 4 ConsiderMJNN-DS (1) andMJNN-RS (2)
with two modes and the matrix parameters:

A1 =
[
0 0.6
0 1

]
B1 =

[
0.5 0.9
0 2

]

C1 =
[
1 0
1 0

]
D1 =

[
0.9 0
1 1.6

]

A2 =
[−4.5 2
−0.8 −4.3

]
B2 =

[−3.5 1.2
1.0 −1.9

]

C2 =
[
0.6 1.6
1.8 −1.1

]
D2 =

[
1.6 0.5

−0.7 1.0

]

G =
[
0.1 0
0 0.1

]

Ei =
[
0.2 0
0 0.2

]

Fig. 3 Chaotic curve

Fig. 4 Time response of r(t)

i = 1, 2, 3, 4 L =
[
0.1 0
0 0.1

]

Assume that the transition rate matrix is time-
varying in the following vertex polyhedron Π(t) =
sin2(t)Π(1) + cos2(t)Π(2):

Π(1) =
[−0.8 0.8
0.6 −0.6

]

Π(2) =
[−0.6 0.6
0.8 −0.8

]

Let δ1 = δ2 = δ3 = ε = ε1 = 0.1, the range of
mixed time-varying delay is: 0 ≤ d1(t) ≤ 1.7, 0 ≤
d2(t) ≤ 0.3, 0 ≤ d3(t) ≤ 1.9, 0.1 ≤ ḋ1(t) ≤ 0.6.
Substitute the above data intoTheorem2,we canget the
parameters of the sample point controller as follows:

K1 =
[−6.35965433 2.82331641
2.82331676 −9.48809923

]
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Fig. 5 Time response of x1(t), y1(t)

Fig. 6 Time response of x2(t), y2(t)

K2 =
[−6.35965406 2.82331609
2.82331651 −9.48809847

]

The neuron excitation function is f (x) = tanhx .
The initial condition is x0(θ) = [−0.3, 2, 1.2]. As
shown inFig. 3,whenMJNN(1) takes the aboveparam-
eters, it shows obvious chaotic characteristics. Figure 4
is a Markov jump response curve with time-varying
probability transition perturbations. Figures 5 and 6
describe the time state curves of MJNN-DS (1) and
MJNN-RS (2). Figures 7 and 8 describe the conver-
gence behavior of errors between MJNN-DS (1) and
MJNN-RS (2). The numerical simulation shows the
validity of the sample point controller for the complete
synchronization of MJNN-DS (1) and MJNN-RS (2)

Fig. 7 Time response of e1(t)

Fig. 8 Time response of e2(t)

with mixed time-varying delay and parameter uncer-
tainties.

5 Conclusions

In this paper, a sample point controller is used to syn-
chronize the DS and RS of MJNN with mixed time-
varying delay and uncertain parameters. When dealing
with error systems, Wirtinger double integral inequali-
ties and affine Bessel–Legendre inequalities are intro-
duced intoLyapunov functional to reduce conservative-
ness. In addition, when discussing the two-dimensional
geometric area with time-varying delays, the conser-
vativeness is reduced by changing the vertex of the
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polyhedron without changing the range of the delays.
Finally, it is verified by numerical simulation that
MJNN-DSandMJNN-RSare fully synchronizedunder
the control of sample point controller, and the parame-
ters of the controller are obtained.
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