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Abstract While periodic responses of periodically
forced dissipative nonlinear mechanical systems are
commonly observed in experiments and numerics, their
existence can rarely be concluded in rigorous math-
ematical terms. This lack of a priori existence crite-
ria for mechanical systems hinders definitive conclu-
sions about periodic orbits from approximate numeri-
calmethods, such as harmonic balance. In thiswork,we
establish results guaranteeing the existence of a peri-
odic response without restricting the amplitude of the
forcing or the response. Our results provide a priori
justification for the use of numerical methods for the
detection of periodic responses. We illustrate on exam-
ples that each condition of the existence criterion we
discuss is essential.

Keywords Nonlinear oscillations · Periodic response ·
Global analysis · Harmonic balance · Existence
criterion

1 Introduction

Nonlinear mechanical systems are generally assumed
to approach a periodic orbit under external periodic
forcing. While approximately periodic responses are
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commonlyobserved in numerical routines (e.g., numer-
ical time integration, numerical continuation or har-
monic balance) and experiments, concluding the exis-
tence of periodic response rigorously in a nonlinear
system is more delicate.

For nonlinear systems close to a solvable limit, per-
turbation methods remain a powerful tool to compute
periodic responses. Among these, the method of aver-
aging requires slowly varying amplitude equations (cf.
Sanders et al. [37]), while themethod ofmultiple scales
(cf. Nayfeh [33]) assumes evolution on different time
scales generated by small parameters. The method of
normal forms (cf. Murdock [32]) introduces a series of
smooth coordinate changes to approximate and sim-
plify the essential dynamics in a Taylor series in a
small enough neighborhood of an equilibrium. Due to
the truncation of infinite series arising in these proce-
dures, the approximate dynamics remains valid only
for sufficiently small values of an underlying perturba-
tion parameter. How small that parameter is required
to be is generally unclear, and hence, the relevance
of the results obtained from perturbation procedures
under physically relevant parameter values is a priori
unknown.

Rigorous numerics (cf. van den Berg and Lessard
[45]), estimating the ignored tail of Taylor expansions,
is only applicable to specific numerical examples. In
applications, therefore, one typically employs an addi-
tional numerical method to verify the predictions of
perturbation methods. This is clearly not optimal.
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Due to the broad availability of effective numerical
packages, numerical time integration is often used to
compute periodic responses. Modern, lightly damped
engineering structures, however, require long integra-
tion times to reach a steady-state response. Further-
more, the observed periodic response depends on the
initial condition and unstable branches of the full set of
periodic responses cannot be located in this fashion.

More advanced numerical schemes, such as har-
monic balance (cf. Mickens [31]) and numerical collo-
cation (cf. Ascher et al. [2]), reformulate the underlying
ordinary differential equations or boundary value prob-
lem into a set of algebraic equations by approximating
the periodic response in terms of a set of finite basis
functions (e.g., polynomial or Fourier basis). Coupled
with numerical continuation schemes, this approach
enables the computation of periodic responses even
for high-amplitude oscillations (cf. Dankowicz and
Schilder [11]). To justify this procedure a priori and
estimate the error due to the truncation of the infinite-
dimensional basis-function space, the existence of the
periodic orbit would need to be established by an
analytic criterion. While this can be guaranteed for
small forcing or small nonlinearities by Poincaré map
arguments, the problem remains unsolved for general,
forced nonlinear mechanical systems.

Recently, Jain et al. [19] have proposed iterative
methods to efficiently compute periodic responses
of periodically forced nonlinear mechanical systems
without small-parameter assumptions. Their existence
criterion, derived via the Banach fixed-point theorem,
however, fails for high forcing amplitudes and forcing
frequencies in resonance with an eigenfrequency of the
linearized system.

In the absence of small parameters, general fixed-
point theorems, such as Brouwer’s or Schauder’s fixed-
point theorem or the Leray–Schauder principle, are
powerful tools to prove the existence of periodic orbits
(cf. Bobylev et al. [3] or Precup [35] for a summary).
Lefschetz [23], for example, proved the existence of
a periodic orbit for a specific one-degree-of-freedom,
forced nonlinear mechanical system. His result, how-
ever, requires the damping force to be of the same order
as the geometric nonlinearities. Therefore, his argu-
ment does not apply to common mechanical systems,
such as the classic Duffing oscillator, with linear damp-
ing.

This restriction on the damping was relaxed sig-
nificantly by Lazer [22]. Based on Schauder’s fixed-

point theorem, Lazer’s result allows for linear damp-
ing but requires a growth restriction on the nonlinear-
ity. This result was further strengthened and extended
to higher dimensions by Mawhin [27], who required
the damping simply to be differentiable. Both results,
however, restrict the growth of the nonlinearities to be
less than linear for sufficiently high displacements, i.e.,
exclude polynomial or even linear stiffness forces. As
Martelli [26] noted, this restriction can be relaxed to
a linear growth with sufficiently low slope, depending
on the eigenfrequency of the system and the forcing
frequency. Due to the growth restriction on the nonlin-
earities, these results are inapplicable for simple poly-
nomial nonlinearities.

The results ofMawhin andLazer havebeen extended
to non-smooth systems by Chu et al. [7] and Torres
[42] and to more complex differential operators (cf.
Mawhin [28]), relying on an extension of the gener-
alized continuation theorems by Gaines and Mawhin
[14] and Manásevich and Mawhin [25]. Furthermore,
Antman and Lacabonara [1] give an existence criterion
for periodic solutions based on the principle of guiding
functions (cf. Krasnosel’skij [21]). This result, how-
ever, relies on the specific form of the nonlinearity and
external forcing for shells.

A general existence criterion for periodic orbits in
second-order differential equations with linear dissipa-
tion can be found in the work of Rouche and Mawhin
[36]. Their result implies the existence of a periodic
response for dissipative nonlinear mechanical systems
for arbitrary large forcing amplitudes. It appears, how-
ever, that the results in [36] are not known in the
mechanical vibrations literature.

In this paper, we refine the Rouche–Mawhin results
to be directly relevant for mechanical systems. This
gives a general sufficient criterion for the existence
of periodic orbits in multi-degree-of-freedom forced-
damped nonlinear mechanical systems, without any
restriction on the magnitude of the forcing or vibration
amplitude. We also give mechanically relevant exam-
ples of periodically forced systems violating our crite-
rion in which a periodic response does not exist. These
show that the assumptions in our results are indeed
relevant for mechanical systems and cannot be individ-
ually omitted without loosing the conclusion. Further,
we identify a broad family of nonlinearmechanical sys-
tems for which our theorem guarantees the existence
of a periodic response. This result enables the rigor-
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ous computation of periodic orbits for a large class of
strongly nonlinear mechanical systems.

2 Problem statement

We consider a general N -degree-of-freedom mechani-
cal system of the form

Mq̈ + Cq̇ + S(q) = f(t), f(t + T ) = f(t),

q ∈ R
N , (1)

where the mass matrix M ∈ R
N×N is positive def-

inite and C ∈ R
N×N denotes the damping matrix.

The geometric nonlinearities S(q) contain all position-
dependent forces, including potential and non-potential
forces, such as follower forces [4].Wealso assumeS(q)

to be continuous in its arguments. The external forcing f
is assumed to be T -periodic and continuous.

To emphasize the importance of rigorous existence
criteria for periodic orbits of nonlinear mechanical sys-
tems, we next present two examples for which the pop-
ular harmonic balance procedure leads to wrong con-
clusions. First, addressing the common belief that peri-
odic forcing always leads to a periodic response of sys-
tem (1), we start with an example illustrating the con-
trary. Furthermore, we demonstrate numerically that
the harmonic balance method yields false results on
this example. Secondly, we demonstrate that for a lin-
ear system the harmonic balance procedure can predict
an inaccurate periodic orbit.

2.1 Motivating examples

In the harmonic balance procedure, the equation of
motion of the dynamical system (1) is evaluated along
an assumed periodic orbit of the form

q∗(t) = c0
2

+
K∑

k=1

[sk sin(k�t) + ck cos(k�t)] ,

sk, ck ∈ R
N . (2)

Next, the forcing term f(t) and the nonlinearity evalu-
ated along the postulated periodic orbit, S(q∗(t)), are
projected on the first K Fourier modes and higher
modes are ignored. As a result, one obtains a finite set
of nonlinear algebraic equations for the unknown con-
stants ck and sk . This set of equations can generally not
be solved analytically, and therefore, iterativemethods,

such as a Newton–Raphson iteration, are employed to
generate an approximate solution. For more details, we
refer to Mickens [31].

Besides the a priori assumption of the existence of a
periodic orbit, the truncation of the periodic orbit (2) at
some finite order K needs to be justified. Classic results
(cf. Bobylev et al. [3] or Leipholz [24]) show that this
truncation can be justified for a sufficiently large K
when a periodic orbit of system (1) actually exists. If
the existence of a periodic orbit cannot be guaranteed
a priori, conditions derived by Urabe [44] or Stokes
[39] might guarantee the existence of a periodic orbit
close to the harmonic balance approximation. These
conditions, however, can only be evaluated a posteri-
ori, as they rely on the harmonic balance solution itself.
Notably, Kogelbauer et al. [20] strengthen the results
of Urabe [44] and Stokes [39] and provide an explic-
itly verifiable condition for the existence of a periodic
orbit. In practice, however, their conditions restrict the
forcing and response amplitudes to small values.

To illustrate issues that can arise with harmonic bal-
ance, we consider the two degree-of-freedom oscillator
[
m1 0
0 m2

]
q̈ +

[
c1 + c2 −c2
−c2 c1 + c2

]
q̇

+
[
k1 + k2 −k2

−k2 k1 + k2

]
q + κ

[
q21 + q22
q21 + q22

]
=
[
f1
f2

]
.

(3)

The nonlinearities assumed in system (3) may arise
in a Taylor series approximation of a more complex
nonlinear forcing vector, which is terminated at sec-
ond order. Specifically, quadratic nonlinearities arise
in the modeling of ship capsize (cf. Thompson [40]),
ear drums (cf.Mickens [29]) and shells (cf.Antman and
Lacabonara [1]). Touzé et al. [43] study a spring–mass
system inwhich quadratic nonlinearities arise naturally
due to the geometry.

We assume forcing in the form of a triangular wave

f1(t) = − f2(t) = 2 fm
π

∫ t

0
sign(cos(�s))ds

= fm
8

π2

∞∑

k=0

(−1)k
sin((2k + 1)�t)

(2k + 1)2
, (4)

where the parameter fm denotes the amplitude and� =
2π/T the excitation frequency. For the remaining
parameters, we assume the following non-dimensional
numerical values
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Fig. 1 Amplitudes and
time series obtained with
the harmonic balance
procedure for the
mechanical system (3) with
parameters (5) and
forcing (4)
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m1 = m2 = 1, k1 = 1, k2 = 4, c1 = 0.001,

c2 = 0, fm = 0.01178, � = 1, κ = 1. (5)

We apply the harmonic balance to system (3) with the
parameters (5) and forcing (4). We solve the result-
ing algebraic system of equations with a Newton–
Raphson iteration, whereby we evaluate the nonlinear-
ity in the time domain and transform the time signal to
the frequency domain using fast Fourier transforms (cf.
Cameron and Griffin [6]). Following common practice
(cf. Cochelin and Vergez [9]), we start with a low num-
ber of harmonics and successively increase the number
K of harmonics in ansatz (2) until the resulting oscilla-
tion amplitude appears converged, i.e., does not change
with increasing K .Wedepict the result of this harmonic
balance procedure in Fig. 1.

From the amplitudes depicted in Fig. 1a, one would
normally conclude the converge of the displacement
amplitude of the first coordinate to a value of about 0.6.
Also, the time series for the choices of K , shown
in Fig. 1b, are practically indistinguishable. There is,
therefore, every indication that the harmonic balance
method has correctly identified a periodic orbit for sys-
tem (3).

The periodic orbit suggested by the numerical result
in Fig. 1, however, does not exist in system (3) for the
parameters (5) and the forcing (4). More generally, in
“Appendix B1” we prove that if the amplitude fm of
the forcing (4) is above a certain threshold, no periodic
orbit exists for system (3). Since the value of the forcing
amplitude (5) is above this threshold, the periodic orbit
indicated by the harmonic balance procedure in Fig. 1
does not actually exists.

One might argue that due to the discontinuity of the
forcing (4), the assumption of a twice differentiable
solution is not justified. Indeed, due to the Lipschitz

continuity of the forcing (4) just the existence and
uniqueness of a local solution can be guaranteed by
Picard’s theorem (cf. Coddington and Levinson [10]).
Our nonexistence proof, however, relies only on the
fact that the amplitude of the forcing is above a certain
threshold. One can therefore easily replace the forc-
ing (4) by a smoother, even analytic alternative and
obtain the same conclusion.

The unforced limit of system (3) has twofixed points
which are connected through a homoclinic orbit. As
Thompson andSteward [41] observe, these features can
give rise unbounded (escape) behavior for the forced
system. For small enough forcing amplitudes, the exis-
tence of the periodic orbit is guaranteed by the general
results of Haro and de Llave [17]. For larger forcing
amplitudes, however, the result of Haro and de Llave
[17] cannot guarantee the existence of a periodic orbit
and exceeding the threshold (67) rules out the possibil-
ity of any periodic motion.

As we will see shortly, the crucial reason for the
nonexistence of a periodic orbit in the above example
is the form of the nonlinearity. Indeed, for a simple
system with a single quadratic nonlinearity, Thompson
and Steward [41] were unable to continue a periodic
orbit numerically for arbitrarily high forcing ampli-
tudes. Difficulties in applying harmonics balance to
systems with quadratic nonlinearities have also lead to
the practical guidelines by Mickens [30], who heuristi-
cally restricts the harmonics balance procedure to sys-
tems with odd nonlinearities.

Next, we give an example for which the harmonic
balance procedure yields an inaccurate periodic orbit,
due its unavoidable truncation of the basis-function
space. We consider the linear forced-damped oscillator

q̈ + cq̇ + kq = f (t), k = 400, c = 0.01, (6)
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Fig. 2 Forcing and periodic
orbits obtained with the
harmonic balance procedure
for the linear oscillator (6)
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with a forcing shown in Fig. 2a. This forcing is clearly
dominated by a fundamental harmonic. The harmonic
balance procedure for the choice of five harmonics
yields a periodic orbit, which is dominated by the fun-
damental harmonic with an amplitude at about 0.0025
(c.f. Fig. 2b). Increasing the number of harmonics con-
sidered to ten and fifteen, we obtain the periodic orbits
in Fig. 2b, which are practically indistinguishable from
the periodic orbit obtained from five harmonics. In
practice, one would practically terminate the harmonic
balance procedure and conclude the convergence of
method to a periodic orbit with the maximal position
equal to 0.0025 in magnitude.

The untruncated version of the periodic orbit
depicted in Fig 2b, however, differs significantly from
the approximation obtained from the harmonic balance
procedure. The maximal position along the true peri-
odic orbit is twice the value predicted with a low-order
truncation. We note that the forcing f (t) and the cor-
responding periodic orbit q∗(t) of system (6) are given
by

f (t) = 1

400
(399 sin(t) + 0.01 cos(t) + 0.2 cos(20t)) ,

q∗(t) = 0.0025(sin(t) + sin(20t)). (7)

The periodic orbit (7) has a fundamental harmonic,
which is identified correctly by the harmonic balance
approximations (c.f. Fig 2b). The higher-frequency
component, however, is truncated in the harmonic bal-
ance procedure and is therefore not captured. Even-
tually, increasing the number of harmonics considered
above twenty, we obtain the correct result from the har-
monic balance, but there is no rigorous criterion that
would indicate this in advance. Even in the case of
infinite harmonics in ansatz (2), the approximate peri-
odic orbit from the harmonic balance procedure can

differ significantly from the actual periodic orbit, as
we demonstrate in “Appendix B2”.

As we have illustrated, even in the case of an appar-
ently convergent harmonic balance approximation the
existence of a periodic orbit cannot be guaranteed. Rig-
orous criteria for the existence of periodic orbits, how-
ever, can exclude false positives.

3 Existence of a periodic response

With the mean forcing defined as

f̄ = 1

T

∫ T

0
f(t)dt, (8)

we will prove the following general result

Theorem 3.1 Assume that the forcing f(t) in sys-
tem (1) is continuous and the following conditions hold:

(C1) The dampingmatrixC is definite, i.e., there exists
a constant C0>0 such that

|xTCx| > C0|x|2, x ∈ R
N . (9)

(C2) Thegeometric nonlinearities derive fromapoten-
tial, i.e., there exists a continuously differentiable
scalar function V (q) such that

S(q) = ∂V (q)

∂q
. (10)

(C3) For eachdegreeof freedom, thequantity q j (S j (q)

− f̄ j ) has a constant, nonzero sign far enough
from the origin. Specifically, there exists a dis-
tance r > 0 and an integer 1 ≤ n ≤ N such
that

q j
(
S j (q) − f̄ j

)
> 0, |q j | > r, j = 1, . . . , n,

q j
(
S j (q) − f̄ j

)
< 0, |q j | > r, j = n + 1, . . . , N .

(11)
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Then system (1) has a twice continuously differentiable
periodic orbit.

Proof We deduce this theorem from Theorem 6.3 by
Rouche andMawhin [36] after the removal of an unnec-
essary zero-mean forcing assumption in its original ver-
sion. We detail the proof in “Appendix A1”. ��
Remark 3.1 As a consequence of the proof of Theo-
rem 3.1, we obtain an upper bound on the amplitude
of the existing periodic orbit. Specifically, with the
squared L2-norm

C2
f :=

∫ T

0
fT fdt, (12)

of the forcing an estimate for the maximal oscillation
amplitude is given by

sup
0≤t≤T

|q| ≤ √
N

(
r + √

T
C f

C0

)
, (13)

where the constant C0 is defined in Eq. (9). We detail
the derivation of this estimate in “Appendix A2”. Our
bound (13) is stricter than that obtained by Rouche
and Mawhin [36], who have an additional summand
of

√
TC f /C0 in Eq. (13). Further, the bound (13)

confirms the intuition arising from linear theory that
the maximal response amplitude is proportional to the
quotient of forcing amplitude and minimum damping
coefficient. The inequality (13) confirms this intuition
for the full nonlinear system without small-parameter
assumptions.

For a single degree-of-freedom harmonic oscillator
(N = 1, r = 0, damping coefficient c and eigenfre-
quency ω0) and single harmonic forcing with ampli-
tude f at resonance, i.e., for a system

q̈ + cq̇ + ω2
0q = f sin(ω0t), (14)

the relationship between the bound (13) and the exact
solution qlin = f T/(2πc) is as follows:

sup
0≤t≤T

|q| ≤ √
N

(
r + √

T
C f

C0

)
= f T

2c

>
f T

2πc
= qlin . (15)

As expected, the bound (15) is conservative, but only
by a factor of π .

Condition (C3) implies a sign change of the geometric
nonlinearities minus the mean forcing componentwise
inside the interval [−r, r ]. In Fig. 3, we sketch graphs

r−r

qj

Sj(q)

f̄j

Fig. 3 Illustration of condition (C3): the green and blue curve
satisfy condition (C3), while the red curve violates condi-
tion (C3). (Color figure online)

of three different geometric nonlinearities. If the value
of the geometric nonlinearities S j (q) is greater than
the mean forcing for q j < −r (i.e., lies in the upper
left dotted square of Fig. 3), then the quantity (S j (q)−
f̄ j )q j evaluated for q j < −r is negative. Therefore,
for condition (C3) to hold, (S j (q) − f̄ j )q j for q j > r
needs to be negative, which implies that the geometric
nonlinearity S j (q) needs to be below f̄ j . In Fig. 3, the
graph of S j (q) needs to end in the lower right dotted
square. Such a nonlinearity is depicted in blue in Fig. 3.
Similarly, a geometric nonlinearity satisfying (S j (q)−
f̄ j )q j > 0 for all |q j |> r needs to be contained in the
two shaded regions of Fig. 3. For the red curve, we have
(S j (q)− f̄ j )q j <0 for q j <−r and (S j (q)− f̄ j )q j >0
for q j >r , i.e., condition (C3) is not satisfied.

Theorem 3.2 If the geometric nonlinearities S(q) are
differentiable, condition (C3) holds if

(C3*) The Hessian of V (q) is definite for |q|>r∗, i.e.,
for some constant Cv >0,

|xT ∂2V (q)

∂2q
x| > Cv|x|2, x ∈ R

N , |q| ≥ r∗.(16)

Proof See “Appendix A3” for a proof. ��
Remark 3.2 Condition (C3*) is more restrictive than
condition (C3). For example, consider the potential

V (q1, q2) = k1q
2
1 + k2q

2
2 , (17)

which satisfies (C3*) only if k1 and k2 have the same
sign (k1k2 > 0), while it satisfies condition (C3) for
any nonzero k1 and k2. However, condition (C3*) is
more intuitive as it restricts the global geometry to be
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cup-shaped sufficiently far from the origin. In addition,
condition (C3*) is generally easier to verify, since pos-
itive or negative definiteness of the Hessian can be ver-
ified through direct eigenvalue computation, the lead-
ing minor criterion (i.e., Sylvester’s criterion) or the
Cholesky decomposition (cf. Horn and Johnson [18]).

Theorems 3.1 and 3.2 can guarantee the existence of
periodic orbits for arbitrary large forcing and response
amplitudes. These theorems, therefore, enable an a
priori justification of the use of otherwise heuristic
approaches, such as harmonic balanceor numerical col-
location. In the following, we demonstrate the use of
these theorems on various mechanical systems.

4 Examples

First, we illustrate via mechanically relevant exam-
ples that conditions (C1)–(C3) of Theorem 3.1 can-
not be omitted without replacement by some other
requirement. Next, we identify a large class of high-
dimensional mechanical systems for which the exis-
tence of periodic orbits can be guaranteed by Theo-
rems 3.1 and 3.2.

4.1 The importance of condition (C1)–(C3)

In the following, we show that if one of the condi-
tions (C1)–(C3) is violated, one can find mechanical
systemswith no periodic orbits that nevertheless satisfy
the remaining conditions of Theorem 3.1. This under-
lines the importance of conditions (C1)–(C3).

Example 4.1 (Zero-damping) All solutions in a one-
degree-of-freedom, undamped linear oscillator grow
unbounded when the oscillator is forced at resonance.
As a consequence, no periodic orbits may exist in such
a system. Indeed, any undamped linear oscillator vio-
lates condition (C1), because damping matrix is iden-
tically zero and therefore neither positive nor negative
definite.

Example 4.2 (Non-potential nonlinearities) We have
seen in Sect. 2.1 that system (3) has no T -periodic orbit.
Indeed, trying to apply Theorem 3.1 to this problem,
we find that condition (C2) is not satisfied. To examine
condition (C3), we evaluate the quantity S j (q) − f̄ j
along q2 = 0. This parabola opens upward and is pos-
itive outside a closed interval, i.e.,

((k1 + k2)q1 + κq21 − f̄1) > 0, q1 >

√
| f̄1|
κ

, or

q1 < −k1 + k2
κ

−
√

| f̄1|
κ

. (18)

Therefore, the quantity q1((k1 + k2)q1 + κq21 − f̄1)

is positive for all q1 >

√
| f̄1|
κ

and negative for q1 <

− k1+k2
κ

−
√

| f̄1|
κ
. This implies that no constant r exists

such that q1((k1 + k2)q1 − k2q2 + κ(q21 + q22 ) − f̄ j )
has a constant sign for all |qi | > r , i.e., condition (C3)
is violated.

We now consider a slight modification of system (3)
in the form of
[
1 0
0 1

]
q̈ +

[
c1 0
0 c2

]
q̇ +

[
ω2
1 0
0 ω2

2

]
q

+ κ

[
q1q22
0

]
=
[

f1(t)
a sin(�t)

]
, (19)

which satisfies conditions (C3), for the choice

κ > 0, ⇒ q1(q1(ω
2
1+κq22 )− f̄1) ≥ q1(q1ω

2
1− f̄1) > 0,

for all |q1| >
f̄1
ω1
1

, q2 ∈ R. (20)

Condition (C1) is also satisfied for positive damping
values c1, c2 > 0. Condition (C2), however, is not sat-
isfied as the geometric nonlinearities of system (19) do
not derive from a potential. In the following, we will
show that system (19) has no T -periodic orbits for an
appropriately chosen set of parameters.

Assuming the contrary, we consider a periodic solu-
tion q∗(t) and solve the second equation in (19) to
obtain

q∗
2 (t) = A(ω2, c2, a,�) sin(�t − ψ(ω2, c2, a,�)),

(21)

where the amplification factor A(ω2, c2, a,�) and the
phase shiftψ(ω2, c2, a,�) are constants depending on
the damping coefficient and eigenfrequency, as well as
the forcing amplitude and frequency, as indicated. The
exact form of A and ψ can be determined from linear
theory (see, e.g., Géradin and Rixen [15]). Substituting
Eq. (21) into the first equation in (19), we obtain

q̈∗
1 + c1q̇

∗
1 + q∗

1 (ω2
1 + κA2

2

−κA2

2
cos(2�t − 2ψ)) = f1(t), (22)
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which is a modification of classic forced-damped
Matthieu equation (cf.,Guckenheimer andHolmes [16]
for the undamped-unforced limit, or Nayfeh andMook
[34] for the unforced limit). Compared to the stan-
dard Matthieu equation, an additional term q∗

1κA2/2
arises in Eq. (22). For the unforced Matthieu equation
( f1 = 0), a change of stability of the trivial solution is
commonly observed for various values of the damping,
stiffness and forcing frequency. Utilizing this observa-
tion, we can prove the nonexistence of a periodic orbit
in system (19) with the following fact:

Fact 4.1 If the trivial solution of the system

q̈∗
1 + c1q̇

∗
1 + q∗

1 (k1 + κA2

2

−κA2

2
cos(2�t − 2ψ)) = 0, (23)

is unstable for some parameter values a, �, c2 >

0, c1 > 0, ω1, ω2 and κ , then we can find a T -periodic
forcing f1(t), such that system (22) has no periodic
orbit.

Proof The proof relies on the fact that a T -periodic
solution to system (22) does not exist if a non-
trivial T -periodic solution exists in the homogeneous
system (23) and additional orthogonality conditions
between the external forcing and non-trivial T -periodic
solutions are violated (cf. Farkas [13]). In “Appendix
B3”, we show the existence of non-trivial T -periodic
solutions (23) and show that the orthogonality condi-
tions are generally violated for appropriately chosen
f1. ��
We can use the above fact to establish the nonexistence
of a periodic orbit for system (19). To this end, we have
to find a set of parameters for which the trivial solution
of system (23) is unstable. For the non-dimensional
parameters

ω2 = 1, c1 = c2 = 0.01, κ = 1, � = 1, (24)

we calculate the monodromy matrix for the equilib-
rium at the origin using numerical integration, covering
a parameter range for the forcing amplitude a and the
eigenfrequency ω1. We depict the result of the Floquet
analysis performed on themonodromymatrix in Fig. 4,
wherewe indicate the systemconfigurationswith stable
trivial solution in green, while red indicates a system
configurationwith an unstable trivial solution. The crit-
ical system configurations can be found on the stability

1 2 3 4
0

2

4

·10−2

eigenfrequency ω2
1

am
pl

it
ud

e
a

Fig. 4 Stability map of the trivial solution of system (23) with
parameters (24). Red denotes the instability of the trivial solution,
while green denotes a stable trivial solution. Black lines indicate
the stability boundary. At the latter parameter values, one of the
Floquet multipliers is equal to one in norm. (Color figure online)

boundary, which is highlighted in black in Fig. 4. As
we prove in “Appendix B3”, for the black configura-
tions, we can find a continuous T -periodic forcing f1
such that the system (22), and hence system (19), has
no periodic orbit.

Example 4.3 (Geometric nonlinearities with global
extrema) Condition (C3) requires the sign of the quan-
tities q j (S j (q) − f̄ j ) to be constant and nonzero for
|q j |>r . If the geometric nonlinearities minus themean
forcing has a constant sign outside the region |q j |> r
for some degree of freedom (sign(S j (q)− f̄ j ) = const.
for |q j | > r ), then the quantities q j (S j (q) − f̄ j ) eval-
uated for q j > r and for q j < −r have opposite sign.
Therefore, condition (C3) is violated. This is certainly
the case if the geometric nonlinearities have a global
minimum value and the mean forcing of a single coor-
dinate is below that minimum value, i.e.,

S j (q) > Smin > f̄l , j = 1, . . . , N ,

1 ≤ l ≤ N , q ∈ R
N . (25)

Then,
(
Sl(q) − f̄l

)
is alwayspositive andql

(
Sl(q) − f̄l

)

changes sign. For system (1) with geometric nonlin-
earities and mean forcing satisfying (25), we have the
following fact:

Fact 4.2 If the geometric nonlinearities and the mean
forcing of system (1) satisfy the conditions (25), then
no periodic orbit exists for system (1).

Proof We detail this proof in “Appendix B4”. ��
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Fig. 5 Features of the
Duffing oscillator (30) for
κ ≥ 0 (hardening spring
stiffness)

q

qS(q)

∂2V (q)

V (q)

(a) Potential and nonlinearity forκ ≥ 0 of system (30).
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f = 0.01

(b) Frequency-response curves for the Duffing oscilla-
tor (30); solid lines mark stable and dashed lines un-
stable periodic orbits; parameters: c = 0.01, ω2 = 1
and κ=1.

Remark 4.1 The conclusion of Fact (4.2) also holds in
the case of geometric nonlinearities with global max-
ima Smax and a mean forcing larger than Smax , i.e., for
systems satisfying,

S j (q) < Smax < f̄l , j = 1, . . . , N ,

1 ≤ l ≤ N q ∈ R
N . (26)

hold.

An example for a nonlinearity satisfying (25) and (26)
is the simple pendulum, whose geometric nonlinear-
ity S(q) = cp sin(q) has global maximum and mini-
mum values. Therefore, the damped-forced pendulum

q̈ + cq̇ + cp sin(q) = f (t), | f̄ | > |cp|, (27)

has no T -periodic solution.
The previous example indicates that the mean value

of the forcing plays a critical role in the existence
of periodic orbits. One might wonder if a zero-mean
restriction of the forcing, as in the theorem of Rouche
andMawhin [36] (cf. TheoremA.1 in “Appendix A1”),
allows relaxing some of our conditions, notably condi-
tion (C3). In the following example, we show that even
for zero-mean forcing ( f̄ j = 0) condition (C3) cannot
be relaxed.

Example 4.4 (Constant-sign geometric nonlinearities,
zero-mean forcing)Weconsider the nonlinear oscillator

q̈ + cq̇ + ω2q + κq2 = f cos(�t), (28)

the simplest examplewith geometric nonlinearities vio-
lating condition (C3). As forcing, we choose simple
single harmonic forcing with amplitude f . For sys-
tem (28), we have then the following fact:

Fact 4.3 If the forcing amplitude f formechanical sys-
tem (28) is above the threshold

| f | >
ω2

2|κ|
(
| − �2 + ic� + ω2| + 2ω2

)
+ |κ| ω4

4κ2 ,

(29)

then no T -periodic solution to system (28) exists.

Proof We detail the proof in “Appendix B5”. ��
Therefore, choosing any forcing amplitude exceeding
the threshold (29)will necessarily rule out the existence
of a periodic orbit.

4.2 Examples with periodic orbits guaranteed by
Theorem 3.1

In the following, we give examples in which Theo-
rem 3.1 guarantees the existence of a periodic response.
Since the damping condition (C1) and the assump-
tion (C2) on the geometric nonlinearities derived from
a potential are simple to verify, we focus on condi-
tion (C3) and (C3*). We start with the classic Duffing
oscillator and proceed with higher-dimensional exam-
ples.

Example 4.5 (Duffing oscillator) The forced-damped
Duffing oscillator is simple harmonic oscillator with
an additional cubic nonlinearity added, i.e.,

q̈ + cq̇ + ω2q + κq3 = f cos(�t), (30)

where we have chosen single harmonic forcing with
amplitude f and frequency �.

For κ ≥0, the potential of Eq. (30) is positive definite
for all q (cf. Fig. 5a). Therefore, condition (C3*) is triv-
ially satisfied. Furthermore, condition (11) is satisfied
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Fig. 6 Features of the
Duffing oscillator (30) for
κ < 0 (softening spring
stiffness)

q

qS(q)

∂2V (q)

V (q)

r−r r∗−r∗

(a) Potential and nonlinearity forκ < 0 of system (30).
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(b) Amplitude and the mean position q̄ of the periodic
orbit of system (30), depending on the forcing ampli-
tude; solid lines mark stable and dashed lines unstable
periodic orbits; parameters c = 0.01, ω2 = 1, κ = −1
and Ω=1.

Fig. 7 Oscillator chain in
Example 4.6
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for arbitrarily small radius r , which can be used for the
upper bound on the amplitudes (13). Therefore, both
Theorems 3.1 and 3.2 apply and guarantee the exis-
tence of a periodic solution without any numerics. We
compute periodic responses with the automated con-
tinuation package coco [11] and show the amplitudes
in Fig. 5b.

For negative values of the coefficient κ , the Hes-
sian of the potential is not globally positive (cf. Fig 6a
green curve). However, outside the ball of radius r∗ =
ω

√−1/(3κ), the second derivative of the potential is
negative. Therefore, the existence of a periodic orbit
is guaranteed by Theorem 3.2. Furthermore, two non-
trivial equilibria arise at q0 = ω

√−1/κ (cf. Fig 6a,
black curve). If we select this q0 as the radius r in
Theorem 3.1, then condition (C3) is satisfied. Again,
both Theorems 3.1 and 3.2 guarantee the existence of
a periodic response.

We numerically continue the trivial and two non-
trivial periodic orbits for increasing forcing ampli-
tude at the fixed forcing frequency � = 1 and show
the amplitudes of the periodic response in Fig. 6b.
For larger forcing amplitudes, numerical continuation
becomes more challenging, yet our results continue to
imply the existence of a periodic response rigorously.

Example 4.6 (Oscillator chain) We consider the N -
dimensional oscillator chain depicted in Fig. 7. Two
adjacent masses are connected via nonlinear springs

and linear dampers. The first mass and last mass are
suspended to the wall. The equation of motion of the j-
th mass is given by

m j q̈ j − c j (q̇ j−1 − q̇ j )

+ c j+1(q̇ j − q̇ j+1) − S j (q j−1 − q j )

+ S j+1(q j − q j+1) = f j (t), j = 1, . . . , N , (31)

where we set the coordinates q0 and qN+1 to zero. Vari-
ants of such systems have been investigated by Shaw
and Pierre [38], Breunung and Haller [5] and Jain et
al. [19]. Physically, the system may represent, e.g., a
discretized beam. As we detail in “Appendix B6”, the
following fact holds for the chain system (31):

Fact 4.4 For positive masses, damping coefficients
and hardening spring stiffnesses, i.e.,

m j > 0, c j > 0,
∂S j (δ)

∂δ
> 0,

j = 1, . . . , N + 1, (32)

system (31) satisfies the conditions of Theorem 3.1 and
hence must have a steady-sate response.

The systems investigated by Shaw and Pierre [38],
Breunung and Haller [5], Jain et al. [19] satisfy the
conditions (32), as the stiffness forces are of the
form S j (δ)=k jδ+κ jδ

3 with k j >0 and κ j ≥0. There-
fore, we can guarantee the existence of the periodic
response of these systems for arbitrary large forcing
amplitudes.

123



When does a periodic response exist in a periodically forced multi-degree-of-freedom 1771

In the derivations in “Appendix B6”, we further
detail that the assumptions on the parameters (32)
can be relaxed to include either the cases cN+1 = 0
and SN+1(qN+1)=0 or c1=0 and S1(q1)=0. In both
cases, the damping matrix C and the second derivative
of the potential remain positive definite. The conditions
on the first and the N + 1-th damping coefficient and
stiffness force cannot be relaxed simultaneously. In the
case of S1(q1) = SN+1(qN )=0, the system is not con-
nected to the walls and hence a non-periodic, free rigid
body motion of the whole chain can be initiated with
appropriate forcing. For c1 = cN+1 = 0, this motion is
undamped and hence if the springs are linear, then forc-
ing at resonance cannot result in a periodic response.

5 Conclusions

We have discussed the example of a specific mechan-
ical system for which the application of the harmonic
balance procedure leads to the wrong conclusion about
the existence of a periodic response. This underlines
the necessity of rigorous existence criteria for periodic
orbits in damped-forced nonlinearmechanical systems.
Such existence criteria can give a priori justification
for the use of formal perturbation methods and numer-
ical continuation, eliminating erroneous conclusions or
wasted computational resources.

Toobtain such an existence criterion,wehave extend
a theorem by Rouche and Mawhin [36] to obtain gen-
erally applicable sufficient conditions for the existence
of a periodic response in periodically forced, nonlinear
mechanical systems. Roughly speaking, these condi-
tions guarantee a periodic orbit under arbitrarily large
forcing and response amplitudes, as long as the dissipa-
tion acts on all degrees of freedom, the spring forces are
potential, and the potential function is strictly convex or
strictly concave outside a neighborhood of the origin.

Since the conditions of our theorem are sufficient
but not necessary, the question arises whether they can
be relaxed. With mechanically relevant examples, we
have illustrated that none of the conditions in our the-
orem can be individually omitted while keeping the
others. Based on these results, we identify a large class
of nonlinear mechanical systems for which numerical
procedures, such as the harmonic balance and the col-
location method, are a priori justified. This enables the
reliable computation of periodic orbits for large forcing
and oscillation amplitudes in this class of systems.

Theorem 3.1 guarantees the existence of a periodic
orbit but gives not immediate conclusion about the sta-
bility of the orbit. For positive definite damping, we do
observe both stable and unstable periodic orbits numer-
ically (c.f. Fig 6a) when the conditions of Theorem 3.1
hold.

We have limited our discussion to periodic forcing,
for which the extensive mathematical literature exists.
Quasi-periodic forcing is also of interest in engineering
applications; indeed, the harmonic balance method has
been extended to compute quasi-periodic steady-state
response of nonlinear mechanical systems (cf. Chua
and Ushida [8]). The extension of the present results
to quasi-periodic forcing, however, is not immediately
clear.

Our discussion is restricted to mechanical equations
of motions with position depended nonlinearities, as it
is customary in the structural vibrations literature. It is
also of interest, however, to extend our conclusions to
velocity-dependent nonlinearities.
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A Proofs of the main theorems

In the following, we prove the main Theorems 3.1
and 3.2 and derive an upper bound on the amplitudes
of the periodic orbits.

A1 Proof of Theorem 3.1

We base our proof of Theorem 3.1 on a theorem by
Rouche and Mawhin [36], who analyze systems of the
following form

q̈ + C̄q̇ + ∂ V̄ (q)

∂q
= g(t), g(t) = g(t + T ), V̄ ∈ C1.

(33)

Theorem A.1 Assume system (33) satisfies the follow-
ing conditions:

(RM1) The damping matrix C̄ is positive or negative
definite.
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(RM2) There exists a distance r > 0 and an integer
1≤n≤ N such that

q j
∂ V̄ (q)

∂q j
> 0, |q j | > r, j = 1, . . . , n,

q j
∂ V̄ (q)

∂q j
< 0, |q j | > r, j = n + 1, . . . , N .

(34)

(RM3) The forcing g is continuous with zero mean
value, i.e.,

ḡ = 1

T

∫ T

0
g(t)dt = 0. (35)

Then, system (33) has at least one T -periodic solution.

Proof The proof relies on a homotopy of Eq. (33) to
the equation q̈ = 0. Conditions (RM1)–(RM3) ensure
a bound on the solution for all homotopy parameters. In
addition, condition (RM2) ensures a nonzero Brouwer
degree, i.e., the existence of at least oneT-periodic solu-
tion during the homotopy. For a detailed proof, we refer
to Rouche and Mawhin [36]. ��
We transform system (1) such that it is in the form (33)
and then show that the conditions of Theorem3.1 imply
that Theorem A.1 applies. First, we absorb the mean
forcing into the potential by setting

Ṽ (q) = V (q) − qT f̄, f̃ = f − f̄ . (36)

The equation of motion with nonlinearity derived from
the potential Ṽ and forcing f̃ is equivalent to system (1).
Since the mass matrix is positive definite by assump-
tion, its square rootM−1/2M−1/2 := M is exists and is
positive definite. Performing the change of coordinates
p = M1/2q in Eq. (1) and further right-multiplying
withM−1/2, we obtain

p̈ + M− 1
2CM− 1

2 ṗ + ∂ Ṽ

∂p
= M− 1

2 f̃(t). (37)

The potential for the geometric nonlinearities of sys-
tem (37) is given by V̄ (p) := Ṽ (M−1/2p). Therefore,
system (37) can be rewritten in the form (33). Since
the mass matrix is positive definite by assumption, the
product C̄ :=M−1/2CM−1/2 is positive or negative def-
inite. Therefore, condition (C1) of Theorem 3.1 implies
that condition (RM1) of Theorem A.1 is satisfied.

Rewriting condition (C3) for the potential V̄ (p),
one recovers the equivalent condition (RM2). Since f̃
has zero mean, condition (RM3) holds. Therefore, the
conditions in Theorem 3.1 ensure that Theorem A.1
applies, and hence, the existence of a periodic orbit can
be guaranteed.

A2 Maximal amplitude of the periodic response

Essential to the proof of Rouche and Mawhin [36] is
an upper bound on the periodic solution of Eq. (1). In
the following, we show that this can be obtained for
system (1) in its original form. Therefore, a transfor-
mation to Eq. (33) is not necessary. We derive an upper
bound on the solutions of

Mq̈ + Cq̇ + S(q) = f(t), q ∈ C2(T ), (38)

in the C0 norm defined by

||q||C0 = max
0≤t≤T

|q| . (39)

First, we follow the derivation by Rouche and Mawhin
[36] by left-multiplying Eq. (38) with q̇T and integrat-
ing over one period to obtain
∫ T

0
q̇TMq̈ dt +

∫ T

0
q̇TCq̇ dt +

∫ T

0
q̇TS(q) dt

=
∫ T

0
q̇T f(t) dt. (40)

Observing that
∫ T

0
q̇TMq̈ dt =

∫ T

0

d

dt

(
1

2
q̇TMq̇

)
dt = 0, (41)

where we have used the symmetry of the mass matrix
(M = MT ) and the periodicity of q. Similarly,
∫ T

0
q̇TS(q) dt =

∫ T

0

d

dt
(V (q)) dt = 0, (42)

where we have used the fact that the geometric nonlin-
earities arise from a potential (10) and again the peri-
odicity of q. Therefore, from Eq. (40), we obtain
∣∣∣∣
∫ T

0
q̇TCq̇ dt

∣∣∣∣ =
∣∣∣∣
∫ T

0
q̇T f dt

∣∣∣∣ . (43)

With the assumption of a positive or negative definiteC
matrix (cf. Eq. (9)), we obtain a lower bound on the left-
hand side of Eq. (43) to

C0

∫ T

0
|q̇|2dt ≤

∣∣∣∣
∫ T

0
q̇TCq̇dt

∣∣∣∣ . (44)

For the right-hand side of Eq. (43), we obtain an upper
bound by using the Cauchy–Schwartz inequality
∣∣∣∣
∫ T

0
q̇f dt

∣∣∣∣ ≤
(∫ T

0
|q̇|2 dt

)1/2 (∫ T

0
|f |2 dt

)1/2

.

(45)

Using the definition (12) ofC f and combining the esti-
mates (44) and (45), we obtain from Eq. (43) that
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(∫ T

0
|q̇|2 dt

)1/2

≤ C f

C0
. (46)

Equation (46) is an upper bound on the L2-norm of
the velocity of the periodic orbit. Rouche and Mawhin
[36] derive the same bound. Now we depart from the
derivations by Rouche and Mawhin [36] and integrate
system (38) for one period, which yields
∫ T

0
S(q) dt = T f̄, ⇔

∫ T

0

(
S(q) − f̄

)
dt = 0,

(47)

where we used the definition (8) of the mean forcing f̄ .
Applying themean-value theorem to (47), we conclude
that there exist t j such that

S j (q(t j )) − f̄ j = 0, 0 ≤ t j ≤ T, j = 1, . . . , N .

(48)

From condition (11), we conclude that Eq. (48) is only
satisfied if |q j (t j )| < r . We conclude

q2j (t) =
(
q j (t j ) +

∫ t

t j
q̇ j (s)ds

)2

= q j (t j )
2

+ 2q j (t j )
∫ t

t j
q̇ j (s)ds +

(∫ t

t j
q̇ j (s)ds

)2

≤ r2 + 2r |t − t j | 12
(∫ t

t j
q̇2j (s)ds

)1/2

+ |t − t j |
∫ t

t j
q̇2j (s)ds

≤ r2 + 2r
√
T

(∫ T

0
q̇2j (s)ds

)1/2

+ T
∫ T

0
q̇2j (s)ds ≤

(
r + √

T
C f

C0

)2

,

(49)

where we have used the upper bound (46). Therefore,
for the C0-norm of the positions, we obtain

||q||C0 <

⎛

⎝
N∑

j=1

sup
0≤t≤T

(q2j (t))

⎞

⎠
1/2

≤ √
N

(
r + √

T
C f

C0

)
, (50)

In contrast,Rouche andMawhin [36] use thebound (46)
to obtain an upper estimate on the oscillatory part of the
position q̃ := q − 1/T

∫ T
0 q dt to ||q̃||C0 ≤ TC f /C0.

From Eq. (47), they directly obtain that each compo-
nent of the mean q̄ := 1/T

∫ T
0 q dt is bounded by

r + TC f /C0. Adding the mean and oscillatory part,
Rouche and Mawhin [36] derive the bound

||q||C0 ≤ √
N

(
r + √

T
C f

C0

)
+ TC f

C0
, (51)

which includes the additional summand TC f /C0 com-
pared to our bound (50).

A3 Proof of Theorem 3.2

In the following, we show that condition (C3*) implies
that condition (C3) is satisfied. We note that each con-
tinuous function S j (q) has a maximum value and a
minimum value in a ball of radius r∗, which we label
with S j

max and S j
min. Choosing the radius

r j = r∗ + max

(
0,

f̄ j − S j
min

Cv

,
S j
max − f̄ j
Cv

)
, (52)

ensures that the quantity q j (S j (q)− f̄ j ) has a constant,
nonzero sign for all

q ∈ Q j := {q ∈ R
N | |q j | > r j }. (53)

First, we assume a positive definite Hessian outside a
ball of radius r∗. Using a Taylor series expansion of
the nonlinearity, we note that outside the r∗ ball the
following holds:

hT (S(q + h) − S(q)) =
∫ 1

0
hT

∂2V (q + sh)

∂q2
hds

> Cv|h|2, q,h ∈ R
N , 0 ≤ s ≤ 1,

|q + sh| > r∗. (54)

For every point q ∈ Q j , we select h to be the vec-
tor pointing from the q j -axis to q with minimal length.
Denoting the j-th unit vector by e j , we set h=q−q je j
andq = q je j . Since |q j |>r∗, line connectingq je j and
q is in the region, where the potential V (q) is positive
definite. From Eq. (54), we obtain

(q − q je j )T (S(q) − S(q je j ))

=
N∑

n = 1
n �= j

qn
[
Sn(q) − Sn(q je j )

]
> 0. (55)

Further, we reduce the j-th coordinate until we reach
|q j | = r∗. The line connecting between the points
sign(q j )r∗e j and q je j lies in the region with a pos-
itive definite Hessian. We evaluate (54) for q =
sign(q j )r∗e j and h=q − sign(q j )r∗e j to obtain

(q − sign(q j )r
∗e j )T (S(q) − S(sign(q j )r

∗e j )
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=
N∑

n = 1
n �= j

qn
[
Sn(q) − Sn(q je j )

]

+ (q j − sign(q j )r
∗) (56)

[
S j (q) − S j (sign(q j )r

∗e j )
]

> (q j − sign(q j )r
∗)
[
S j (q) − S j (sign(q j )r

∗e j )
]

> Cv(q j − sign(q j )r
∗)2, q ∈ Q j .

For q j > 0, Eq. (52) implies that (q j − sign(q j )r∗) is
positive. Therefore, we obtain from Eq. (56) that

S j (q) > Cv(q j − r∗) + S j (r
∗e j ) > Cv(q j − r∗)

+S j
min > Cv(r

∗ + f̄ j − S j
min

Cv

− r∗) + S j
min = f̄ j ,

q j > r j . (57)

Similarly, for q j < 0 the quantity S(q j − sign(q j )r∗)
is negative, therefore Eq. (56) implies

S j (q) < Cv(q j + r∗) + S j (−r∗e j ) < Cv(q j + r∗)

+S j
max < Cv(−r∗ − S j

max − f̄ j
Cv

+ r∗) + S j
max = f̄ j ,

q∗
j < −r j . (58)

Equations (57) and (58) together imply

q j (S j (q) − f j ) > 0, q ∈ Q j , (59)

which is equivalent to the upper condition (11), if we
set r := max j (r j ).

The same argument can be repeated for potentials
having a negative definite Hessian. The sign in Eq. (54)
changes, and therefore, one obtains

q j (S j (q) − f j ) < 0, q ∈ Q j , (60)

which is equivalent to the lower condition (11), if we
set r := max j (r j ).

B Derivations for specific examples

B1 Necessary bound on the forcing amplitude for sys-
tem (3)

In the following, we prove a necessary bound on the
forcing amplitude (4) for the existence of periodic solu-
tions for system (3) with parameters (5). Specifically,
we assume the existence of a twice continuous differ-
entiable periodic orbit q∗. Transforming system (3) to
modal coordinates, we obtain

q∗
1 = x1 + x2, q∗

2 = x1 − x2,

ẍ1 + c1 ẋ1 + k1x1 + 2κx21 = −2κx22 , (61a)

ẍ2 + c1 ẋ2 + (k1 + 2k2)x2 = f1. (61b)

The equation of motion of the second modal degree-
of-freedom (61b) is linear, and therefore, the assumed
periodic response of the second degree of freedom x2
can be obtained analytically:

x2 = 8 fm
π2

∞∑

k=0

(−1)k sin((2k + 1)�t − ϕk)

(2k + 1)2
√

((k1 + 2k2) − (2k + 1)2�2)2 + ((2k + 1)c1�)2
= 8 fm

π2

∞∑

k=0

ck sin((2k + 1)�t − ϕk),

ϕk = tan−1
(

(2k + 1)c1�

(k1 + 2k2) − (2k + 1)2�2

)
,

(62)

Here, we have relabeled the amplitudes for notational
convenience. Next, we integrate (61a) over one period
and impose periodicity to obtain
∫ T

0

(
k1x1 + 2κx21

)
dt = −2κ

∫ T

0
x22dt,

= −T κ
64 f 2m
π4

∞∑

k=0

|ck |2. (63)

The infinite sum converges to the limit c∞, since it can
be majorized by 1/k6, i.e.,
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c∞ :=
∞∑

k=0

|ck |2 =
∞∑

k=0

1

(2k + 1)4(((k1 + 2k2) − (2k + 1)2�2)2 + ((2k + 1)c1�)2)

≤ 1

c21�
2

∞∑

k=0

1

(2k + 1)6
≤ 1

c21�
2

∞∑

k=1

1

k6
.

(64)

For the parameters (5), we compute the value c∞
numerically and obtain

c∞ := 1371.7577441 > 1371.757744027918. (65)

By the mean-value theorem applied to Eq. (63), there
must be a time instance t∗ ∈ [0, T ] at which the inte-
grand on the left-hand side multiplied by T is equal to
the infinite sum on the right-hand side. Calculating the
minimumof the parabola in that integrand and inserting
the numerical parameter values (5) yields

− k21
8κ

T ≤
(
k1 x̃1(t

∗) + 2κ x̃21 (t
∗)
)
T

= −κT
64 f 2m
π4 c∞, 0 ≤ t∗ < T . (66)

Solving (66) for the forcing amplitude, we obtain

| fm | <

√
k21π

4

512κ2c∞
= 0.011777, κ > 0. (67)

Since the forcing amplitude (5) is above the thresh-
old (67), the periodic orbit indicated by the harmonic
balance method does not exist.

B2 Failure of the harmonic balance with infinite har-
monics

In the following, we construct a forcing for the linear
system (6), such that even for infinite number of har-
monics in ansatz (2), the harmonic balance procedure
yields a periodic orbit that differs from the actual peri-
odic orbit significantly. Generally speaking, the com-
putability of a finite number of terms in a Fourier series
of a periodic solution does not guarantee the pointwise
convergence of that series to the periodic orbit.We con-
sider the function

f f =
K∑

k=1

2

k2
sin(pkt)

qk∑

l=1

1

l
sin(lt),

pk = 2k
3+1, qk = 2k

3
, (68)

which is a truncated version of a classic example due to
Fejér (c.f. Edwards [12]).We note that the function (68)
is analytic and therefore the forcing

f (t) = f̈ f + c ḟ f + k f f , (69)

is well defined. Applying this forcing in system (6), we
obtain the periodic orbit in the form q∗ = f f . The har-
monic balance procedure, therefore, produces a Fourier
series of the function (68). As Edwards [12] details, the
function f f can be bounded from above by a constant
independent of K , while its Fourier series at t = 0 is
unbounded for K → ∞. Therefore, for large enough
K the Fourier series of f f will deviate from the func-
tion (68) at t = 0. Choosing an appropriately large K
leads to a large deviation of the approximative peri-
odic orbit obtained by the harmonic balance from the
unique periodic orbit of system (6) with forcing (68).
Therefore, the harmonic balance fails to approximate
the periodic orbit at t=0.

B3 Proof of Fact 4.1

In the following, we show that no periodic orbit for
system (22) exists, for an appropriately chosen set of
parameters. For these sets of parameters, one of the
Floquet multipliers of the unforced limit of system (22)
equals to one in norm. This introduces the possibility
of resonance between the external periodic forcing and
the non-trivial solution of the homogeneous part (23),
under which no periodic orbit for system (22) can exist.

For further analysis, we introduce the matrices and
vectors

x :=
[
q∗
1

q̇∗
1

]
,

A(t) :=
[

0 1

−k1 − κA2

2 + κA2

2 cos(2�t − 2ψ) −c1

]
,

g(t) :=
[

0
f1(t)

]
. (70)
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With the notation (70), we express system (22) in first-
order form

ẋ = A(t)x + g(t), A(t + T/2) = A(t),

T = 2π/�, (71)

and denote its homogeneous part by

ẋ = A(t)x. (72)

Furthermore, we define the adjoint problem,

ẏ = −A(t)T y. (73)

To show the nonexistence of a periodic orbit of sys-
tem (71), we use the following theorem:

Theorem A.2 Assume that system (72) has k lin-
early independent, non-trivial T -periodic solutions
and denote k linearly independent T -periodic solutions
to the adjoint system (73) by ỹ1, ỹ2, …, ỹk . Then, the
non-autonomous system (71) has a T -periodic solution
if and only if the orthogonality conditions
∫ T

0
ỹTj g(t)dt = 0, j = 1, . . . , k, (74)

hold.

Proof For a proof, we refer to Farkas [13]. ��
First,wenote system (72) is periodicwith periodT/2

(cf. Eq. (71)), where T is determined by the external
forcing f2 (cf. Eq. (22)). We denote the complex con-
jugate Floquet multipliers of system (71) by ρ1 and ρ2
and further obtain from Liouville’s theorem that

ρ1ρ2 = e
∫ t0+T/2
t0

Tr[A(s)]ds = e− c1T
2 , ρ1 = ρ̄2. (75)

Equation (75) implies that the Floquet multipliers are
located either on the circle with radius e−c1T/4 (red cir-
cle in Fig. 8) or on the real axis (blue line in Fig. 8) in
the complex plane.

If the forcing f2 is zero, then the parameter A in
system (22) is zero and, due to the positive damp-
ing value c1, the trivial solution of system (72) stable.
Therefore, the Floquetmultipliers are located on the red
circle in Fig. 8. If we observe instability of the trivial
solution to Eq. (72) for some nonzero forcing (A �=0),
then the Floquet multipliers must have crossed the unit
circle in the complex plane. In this critical case, one
of the Floquet multipliers is either one or negative one,
which we mark with a black square in Fig. 8.

Re(ρ)

Im(ρ)

1−1

e
−
c 1

T
4

Fig. 8 Locations of the Floquet multipliers of system (72) in the
complex plane. The two critical cases, ρ1 = 1 and ρ1 = −1, are
marked with black squares. (Color figure online)

If one of the multipliers, ρ1, is one, there exists a
non-trivial T/2-periodic solution of the homogeneous
part of system (71). In the case of a Floquet multi-
plier of negative one, a non-trivial T -periodic solution
exists (cf. Farkas [13]). As Farkas details further, in
both cases, the adjoint system (72) has a non-trivial T/2
or T -periodic solution, which we denote by ỹ. Analyz-
ing Eq. (73), we conclude that a non-trivial ỹ implies a
non-constant value of both coordinates ỹ1(t) and ỹ2(t).
We choose the forcing

f1(t) = ỹ2(t). (76)

Then, the orthogonality condition is
∫ T

0
ỹg(t)dt =

∫ T

0
ỹ22dt �= 0, (77)

Clearly, the orthogonality condition (77) is not satis-
fied and therefore, by Theorem A.2, system (22) has
no periodic solution.

B4 Proof of Fact 4.2

In the following, we show that no periodic orbit for
system (1) exists if the geometric nonlinearities pos-
sess a global minimum, and the mean forcing is below
thisminimumvalue (i.e., Eq. (25) is satisfied). To prove
the nonexistence of a T -periodic orbit, we proceed as
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in Appendix B1, assuming the existence of a twice dif-
ferentiable periodic orbit q∗ for system (1). Integrating
Eq. (1) for one period and imposing periodicity yields
∫ T

0
S(q∗(t))dt = T f̄, ⇔

∫ T

0

(
S(q∗(t)) − f̄

)
dt = 0.

(78)

By the mean-value theorem, there exist time instances
t∗j within the period at which the integrand in Eq. (78)
is equal to zero, i.e.,

S j (q∗(t∗j )) − f̄ j = 0, j = 1, . . . , N , 0 ≤ t j ≤ T .

(79)

However, due to the choice of the forcing (25), we
obtain for j = l that

Sl(q∗(t∗)) − f̄l > 0, (80)

which contradicts (79). Therefore, the periodic orbit
cannot exist.

B5 Proof of Fact 4.3

In the following, we prove that if the forcing amplitude
f in the oscillator (28) is above the threshold (29), then
no periodic solution to system (28) exists. Again, we
assume the existence of a twice continuous differen-
tiable periodic orbit q∗ and split the coordinate q∗ into
a constant and a purely oscillatory part, i.e.,

q̄ := 1

T

∫ T

0
q∗(t)dt, q̃(t) = q∗ − q̄. (81)

Substituting the definitions (81) into the equation of
motion (28) yields

¨̃q + cq̇ + ω2
0(q̄ + q̃) + κ(q̄2 + 2q̄q̃ + q̃2)

= f cos(�t). (82)

Integrating Eq. (82) over one period, we obtain
∫ T

0
q̃2dt = −T

(
ω2

κ
q̄ + q̄2

)
≤ Tω4

4κ2 , (83)

where we have used that q̃ has zero mean (cf. defini-
tion (81)). Furthermore, we note that the left-hand side
of (83) is positive. Since the right-hand side of Eq. (83)
is a parabola which is concave downward, it is positive
on a closed interval. We thus obtain the upper bound
on q̄ in the form

|q̄| <
ω2

|κ| , (84)

which is independent of the sign of κ . Since q∗ is twice
continuously differentiable, it can be expressed in a
convergent Fourier series. We denote the Fourier coef-
ficients of q̃ by

q̃k := 1

T

∫ T

0
qte

−ik�tdt, k ∈ Z. (85)

Using Parseval’s identity and Eq. (83), we obtain an
upper bound on the Fourier coefficients of the assumed
periodic orbit as follows:

|q̃k | ≤
(
∑

k∈Z
|q̃k |2

)1/2

=
(
1

T

∫ T

0
q̃2dt

)1/2

≤ ω2

2|κ| , k ∈ Z. (86)

Multiplying Eq. (82) with e−i�t and integrating over
one period yields
∫ T

0
( ¨̃q + c ˙̃q + ω2

0q̃ + 2κ q̄q̃)e−i�tdt

+
∫ T

0
κ q̃2e−i�tdt = f

2
. (87)

From Eq. (87), we obtain
∣∣∣∣
f

2

∣∣∣∣ ≤
∣∣∣∣
∫ T

0
( ¨̃q + c ˙̃q + ω2

0q̃ + 2κ q̄q̃)e−i�tdt

∣∣∣∣

+ |κ|
∫ T

0
|q̃2(t)||e−i�t |dt

≤ |(−�2 + ic� + ω2 + 2κ q̄)q̃1| + |κ| ω4

4κ2

≤ ω2

2|κ|
(
| − �2 + ic� + ω2| + 2ω2

)
+ |κ| ω4

4κ2 ,

(88)

where we have used the upper bounds (84) and (86).
Equation (88) gives an upper bound for the forcing
amplitude f of the oscillator (28). For forcing ampli-
tudes exceeding this threshold, we obtain a contradic-
tion and therefore no periodic orbit can exist for the
oscillator (28).

B6 Proof of Fact 4.4

We show that the chain system (31) with the param-
eters (32) satisfies the conditions of Theorem 3.1 and
hence a steady-state response exists. First, we show that
the conditions (C2) and (C3*) on the geometric nonlin-
earities are satisfied for the set of parameters (32). The
definiteness of the dampingmatrix (i.e., condition (C1))
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can be shown in a fashion similar to the definiteness
of the Hessian.

As for condition (C2), the spring forces of sys-
tem (31) can be derived from the potential

V (q) =
∫ q1

0
S1(−p)dp +

N∑

j=2

∫ q j−1−q j

0
S j (p)dp

+
∫ qN

0
SN+1(p)dp. (89)

Since the spring forces in of system (31) are continuous
by assumption, the integrals in Eq. (89) exist. With the
notation

S j,l := ∂

∂ql

(
S j (q j−1 − q j )

)
, (90)

the Hessian of the potential is given by

H := ∂2V (q)

∂q2
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−S1,1 + S2,1 S2,2 0
−S2,1 −S2,2 + S3,2 S3,3 0
0 −S3,2 −S3,3 + S4,3 S4,4 0

0
. . .

. . .
. . . 0

0 −SN−1,N−2 −SN−1,N−1 + SN ,N−1 SN ,N

0 −SN ,N−1 −SN ,N + SN+1,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(91)

Due to the choice of parameters (32), we have follow-
ing identities

S j, j < 0, S j+1, j > 0, S j, j = −S j, j−1, (92)

which implies that themain diagonal entries of theHes-
sian (91) are positive and the off-diagonal elements
negative. We define the matrices

H j =

⎡

⎢⎢⎢⎢⎢⎣

−S1,1 − S2,2 S2,2 0
S2,2 −S2,2 − S3,3 S3,3 0
0 S3,3 −S3,3 − S4,4 S4,4 0

0
. . .

. . .
. . . S j, j

0 S j, j −S j, j

⎤

⎥⎥⎥⎥⎥⎦
∈ R

j× j , (93)

which are equivalent to the leading minors of the Hes-
sian, except for the last term in themain diagonal where
the term−S j+1, j ismissing. Therefore,HN is not equal
to H. The matrices H j can be constructed recursively
as follows:

H1 = −S1,1, H j+1 =
[
H j 0
0 0

]
+
⎡

⎣
0 0 0
0 −S j, j S j, j

0 S j, j −S j, j

⎤

⎦ .

(94)

We show that the matrices H j are positive definite by
induction. As a first step, we note that H1 is positive
definite. Performing the induction step, we have

xTH jx = xT
[
H j−1 0
0 0

]
x + xT

⎡

⎣
0 0 0
0 −S j, j S j, j

0 S j, j −S j, j

⎤

⎦ x.

(95)

Since the matrix H j−1 is positive definite, the first
summand in (95) is always positive unless x aligns
with the x j -axis, i.e., x1=x2 = · · · =x j−1=0. Along
this axis the first quadratic form is zero and the second
quadratic form, however, yields−S j, j x2j which is posi-

tive. For the case x j=0 and |x̃|=| [x1, . . . , x j−1
]T |>0,

we obtain

x̃TH j−1x̃ + xT

⎡

⎣
0 0 0
0 −S j, j S j, j

0 S j, j −S j, j

⎤

⎦ x ≥ x̃TH j−1x̃,

|x̃| > 0, (96)

where we have used the fact that the matrix in the sec-
ond quadratic form in Eq. (95) is positive semi-definite.
Merging both cases

xTH jx ≥
{−S j, j x2j > 0, |x̃| = 0, |x j | > 0,
x̃TH j−1x̃ > 0, |x̃| > 0, x j = 0,

(97)

which implies positive definiteness of all matrices H j .
Since the Hessian can be written as the sum of the posi-
tive definite matrixHN and a positive semi-definite the
matrix, i.e.,
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H = HN +
[
0 0
0 −SN+1,N

]
, (98)

we conclude that the Hessian (91) positive definite.
Since the damping matrix is in the form of the Hes-

sian (91), the positive definiteness proof applies for the
dampingmatrix aswell. Therefore,we have verified the
remaining condition (C1) of Theorem 3.1, and the exis-
tence of a periodic orbit is guaranteed by Theorem 3.1.

We note that in the case of SN+1,N =0, the Hessian
H coincides with the matrixHN , which is positive defi-
nite. Therefore, the assumptions on the parameters (32)
can be relaxed to include this case.
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