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Abstract In this paper, the position control and swing
motion control problem are investigated for an aerial
payload transportation system which consists of a
quadrotor unmanned aerial vehicle (UAV) and a sus-
pended payload. Under the constraints of underactu-
ated properties and unknown systemparameters, a non-
linear adaptive control strategy is designed based on
the energymethodology, which achieves accurate posi-
tion control of the UAV as well as the payload’s fast
swing suppression during the flight. The stability of
the closed-loop system, asymptotic convergence of the
UAV’s position error and payload swing suppression
are proved via Lyapunov-based stability analysis. Real-
time experimental results validate the effectiveness of
the developed technique.
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1 Introduction

A quadrotor UAV has many advantages in respect of
its rapid maneuvering, precise hovering and vertical
taking-off and landing (VTOL) features [1–6], which
plays an important role in many fields such as search
and rescue [7], aggressive maneuvering [8], fire fight-
ing [9], environmental monitoring [10], infrastructure
reconstruction [11] and so on. The cargo transporting
by using a quadrotor UAV is a promising application
area.

The control of unmanned aerial vehicle such as satel-
lite or quadrotor UAVs has been a topic of consider-
able interests. The modeling and control for unmanned
aerial vehicle has been intensively studied over the past
decades [12,13], especially the nonlinear robust control
under the uncertainties [14–18]. However, the task for
the quadrotor aerial transportation system is extremely
hazardous because the quadrotor dynamic is affectedby
the suspended payload through the tension force along
the connecting cable. In the past few years, researchers
have paid great attentions on the quadrotor aerial trans-
porting system, the applications of the system vary
from obstacle avoidance [19,20], payload lift maneu-
vering [21,22], transporting a payload via flexible cable
[23,24], multiple quadrotors cooperative transporting
[25–27] and so on. The control objective for the sys-
tem is to deliver slung-payload to its destination in a
smooth, safe and efficientway. Twomainmethods have
been adopted to solve the control problem. One is the
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open loop strategy to generate the desired trajectory
via different methodologies such as dynamic program-
ming, differential flatness approach and so on. Palunko
et al. present a discrete piecewise linear model of the
quadrotor slung-payload system in [28], then adynamic
programming approach is used to generate the swing-
free trajectory. In [29], Sreenath et al. propose a nom-
inal trajectory generation method by using differential
flatness property of the quadrotor slung-payload sys-
tem, meanwhile a controller is designed which enables
tracking of the quadrotor’s attitude and the payload’s
position. The secondmethod is the closed-loop strategy
which utilizes the payload swing angles directly for the
control development. A reinforcement learning-based
control algorithm is proposed in [30] for a quadrotor
slung-payload system to achieve trajectory tracking of
the quadrotor UAV without exact model knowledge
of the system’s dynamics. In [31], a nonlinear hier-
archical control scheme is proposed for the system.
For the outer-loop subsystem, the position controller
is designed based on an energy storage function, and
then, a coordinate-free geometric attitude controller is
designed for the inner-loop subsystem.

Despite the aforementioned achievements, there are
still some important problems about the system that
need to be addressed: (1) Some existing control algo-
rithms are developed based a simplified 2D dynamic
model (i.e, only the horizontal motion of the quadro-
tor aerial is considered) and the payload’s swing angles
are assumed to be very small thus the coupling between
the quadrotor motion and the payload’s swing motion
can be neglected. (2) Some existing works utilize a lin-
ear dynamic model which is obtained via linearizing
the nonlinear model near a specified equilibrium point,
normally chosen near the hoveringmode. Thus the con-
troller is only valid for a very restricted flight envelope.
(3) Few works have considered about the uncertain-
ties associated with the dynamic model of the system,
meanwhile the exact model knowledge of the system is
not easy to be obtained. (4) For many existing works,
only numerical simulation results are presented which
prevent their application from the practical aerial trans-
porting operation.

In this paper, the flight control strategy is designed
based on a three-dimensional dynamicmodel, and thus,
both the horizontal motion and the vertical motion are
included for the control development. Motivated by
passivity property of the system’s energy, we construct
a nonlinear adaptive controller, which can achieve posi-

tion control of quadrotor as well as suppression of pay-
load swing motion. Finally, the stability of the closed-
loop system is proved via Lyapunov-based analysis,
and the effectiveness of the proposed control strategy
are validated via real-time experimental results. There-
fore, the main contributions of the proposed nonlin-
ear controller include the following: (1) A nonlinear
dynamic model is employed to formulate the proposed
control strategy without linearization; thus, the oper-
ation range of the controller is not limited to a very
narrow scope near the system’s equilibrium point. (2)
Nonlinear adaptive estimation laws are developed to
compensate for the unknown system parameters; thus,
explicit model knowledge of the nonlinear model is not
required. (3) The proposed anti-swing controller can
regulate the quadrotor to its destination asymptotically
and suppress swing motion effectively without restric-
tion on the payload’s swingmotion while most existing
works require the payload’s swing angle should stay in
a small range (i.e, assuming that sinθ ≈ θ [32,33]). (4)
The proposed controller is developed based on a three-
dimensional model of the system, so it is more suitable
for the real flight of the quadrotor aerial transporting
system.

Comparing with the most recent work in [34], the
main difference of this paper can be summarized as:
(1) In [34], the disturbances are considered to be small
enough that can be ignored. In this paper, it is shown
that the proposed control strategy is robust against the
unknown external air turbulence both theoretically and
experimentally. (2) The payload’s mass is considered
to be exactly known in [34]. In this paper, not only
the influence of the uncertainty of the payload’s mass
can be compensated, but also the proposed parameter
update law can accurately estimate the payload’s mass
online. (3) In addition to the basic regulation control
verification and robustness to initial swing disturbance
in [34], the robustness to different payload’s mass and
the external disturbances during the transportation are
considered in this paper.

The rest contents of this paper are organized as fol-
lows. The nonlinear dynamic model of the quadrotor
aerial transporting system is described in Sect. 2. Sec-
tion 3 provides a nonlinear adaptive controller inspired
by energy analysis of the system. In Sect. 4, we detail
the stability analysis of the quadrotor aerial trans-
porting system with the proposed controller by using
Lyapunov-based analysis. Section 5 shows experimen-
tal results and compares the proposed controller with
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Fig. 1 Schematic of the quadrotor UAV slung-payload system

linear quadratic regulator (LQR) controller with regard
to the control performance. Finally, some concluding
remarks are presented in Sect. 6.

2 Problem formulation

This section describes the three-dimensional dynamic
model for the quadrotorwith a cable suspended load.As
Fig. 1 shows, the payload is attached to a quadrotor via
a massless and unstretchable cable. And the payload
is hinged by mean of a ball joint at the quadcopter’s
center of mass.

To describe the kinematics of the quadrotor, let
I = {X I , YI , Z I } represent a right hand inertia frame
with Z I being the vertical direction to the earth. The
body fixed frame is denoted byB = {XB, YB, ZB}. By
using the Eulerian–Lagrangian formulation, the three-
dimensional quadrotor with a slung-payload is given as
follows:

Mc(q)q̈ + C(q, q̇)q̇ + G(q) = f (t) + fd(t) (1)

where q(t) = [x(t), y(t), z(t), γx (t), γy(t)]T ∈ R
5

denotes the system state vector, x(t), y(t), z(t) rep-
resent the quadrotor position in the X I , YI , Z I direc-
tions, respectively, γx (t), γy(t) represent the payload
swing angle about X I and YI , respectively, as shown
in Fig. 1. The terms Mc(q), C(q, q̇) ∈ R

5×5, G(q),
f (t), fd(t) ∈ R

5 in (1) denote the inertia matrix, the
centripetal-Coriolis matrix, the gravity vector, the con-

trol input vector, the aerodynamic drag force vector,
respectively, which are defined as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mc(q)=

⎡

⎢
⎢
⎢
⎢
⎣

mc11 0 0 mc14 mc15
0 mc22 0 0 mc25
0 0 mc33 mc34 mc35

mc41 0 mc43 mc44 0
mc51 mc52 mc53 0 mc55

⎤

⎥
⎥
⎥
⎥
⎦

mc11 = mc22 = mc33 = mq + m p mc55 = m pl2

mc44 = m pl2C2
y mc14 = mc41 = m plCx Cy

mc15 = mc51 = −m plSx Sy mc25 = mc52 = m plCy

mc34 = mc43 = m plSx Cy mc35 = mc53 = m plCx Sy

,

(2)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(q, q̇) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 c14 c15
0 0 0 0 c25
0 0 0 c34 c35
0 0 0 c44 c45
0 0 0 c54 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c14 = − m plγ̇x Sx Cy − m plγ̇yCx Sy

c15 = − m plγ̇x Cx Sy − m plγ̇y Sx Cy

c25 = − m plγ̇y Sy c44 = − m pl2y γ̇yCy Sy

c45 = − m pl2x γ̇x Cy Sy c54 = m pl2x γ̇x Cy Sy

c34 = m plγ̇x Cx Cy + m plγ̇y Sx Sy

c35 = m plγ̇x Sx Sy + m plγ̇yCx Cy

, (3)

⎧
⎪⎨

⎪⎩

G(q) = [
0 0 g31 g41 g51 x

]T

g31 = (mq + m p)g

g41 = m pglSx Cy g51 = m pglCx Sy

, (4)

f = [
fx fy fz 0 0

]T
, (5)

fd = [ − cx ẋ −cy ẏ −cz ż −cγx γ̇x −cγy γ̇y
]T

.

(6)

In (2)–(6), mq , m p are the mass of the quadrotor and
the payload, respectively, and m p is unknown, l is the
cable length, g is the acceleration of gravity, fx (t),
fy(t), fz(t) denote the control inputs in X I , YI , Z I

directions, respectively, cx , cy , cz , cγx , cγy are unknown
aerodynamic drag force coefficients, Cx , Cy , Sx , Sy

are abbreviations of cos γx , cos γy , sin γx and sin γy ,
respectively.

Remark 1 The control inputs fx (t), fy(t) and fz(t) in
inertia frame I can be converted to actual lift forces
and torque generated by four motors in body fixed
frameB via the similar procedure in [1].

Remark 2 The quadrotor itself is an underactuated sys-
tem [1]. The introducing of the payload results in the
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increase in system’s degree of freedom. That is, the
quadrotor’s states x(t), y(t) and z(t) are affected by
the input fx (t), fy(t) and fz(t) directly while the pay-
load’s swing angles γx (t) and γy(t) are not controlled
directly with fx (t), fy(t) and fz(t). Thus, the dynamic
system in (1) is underactuated.

The inertia matrix Mc(q) has the following proper-
ties [35,36]:

Property 1 The inertia matrix Mc(q) is symmetric and
positive definite. Furthermore, for any vector χ ∈ R

5,
there always exist two positive constants λm and λM

which satisfy the following inequality

λm ‖χ‖2 ≤ χT Mc(q)χ ≤ λM ‖χ‖2 . (7)

Property 2 The inertia matrix Mc(q) and the cent-
ripetal-Coriolis matrix C(q, q̇) satisfy the following
equation

Ṁc(q) = CT (q, q̇) + C(q, q̇). (8)

Although the controller design is under the condition
of the unknown payload’s mass m p, we can usually
obtain a prior information about the upper and lower
bounds for m p as follows:

m
¯ p ≤ m p ≤ m̄ p. (9)

According to the practical flight scenarios, the fol-
lowing assumptions will be invoked in the subsequent
control development and stability analysis..

Assumption 1 The payload is always below the
quadrotor, and the swing angle γx (t), γy(t) satisfy

− π

2
≤ γx (t) ≤ π

2
− π

2 ≤ γy(t) ≤ π
2 . (10)

Remark 3 For most quadrotor UAV, the rotational
dynamics converge faster than the translational dynam-
ics, thus a lot of existing works do not take the rota-
tional dynamics into consideration [28,37,38]. Sim-
ilarly, the controller design developed in this paper
mainly focuses on the translational dynamics of the
quadrotor.

In this paper, we will develop an adaptive nonlin-
ear controller of the quadrotor with a slung-payload
subject to unknown parameters such as payload mass
and air damping coefficients. The control objective is
to ensure that the quadrotor moves to the target posi-
tion precisely, while the payload’s swing angles are
suppressed rapidly, which can be described as follows:

lim
t→∞

[
x(t) y(t) z(t) γx (t) γy(t)

] = [xd yd zd 0 0] .

(11)

where xd , yd , zd ∈ R denote the target position of
the quadrotor.

To quantify the control performance, regulation error
signals are defined as follows:

ex (t)= x(t)−xd ey(t)= y(t) − yd ez(t)= z(t)−zd

e(t) = [
ex (t) ey(t) ez(t) γx (t) γy(t)

]T .

(12)

3 Control development

In this section, an adaptive controller will be presented
firstly based on energy analysis of the system. Then, a
parameter adaptive update law will be proposed in the
presence of the unknown plant parameters (including
payload’s mass and drag coefficients of aerodynamic
drag force).

The energy E(t) of the quadrotor slung-payload sys-
tem, combining the kinetic and potential energy, can be
denoted as follows:

E(t) = 1

2
q̇T Mcq̇ + m pgl(1 − Cx Cy). (13)

Taking the time derivative of (13), and substituting (5)
and (6) into the resulting equation yields

Ė = q̇T [ f + fd − G(q)] + m pglγ̇x Sx Cy

− m pglγ̇yCx Sy

= ẋ( fx − δxξx ) + ẏ( fy − δyξy) + ż( fz − δT
z ξz)

− cγx γ̇
2
x − cγy γ̇

2
y . (14)

where δx (t), δy(t), δz(t) and ξx , ξy , ξz are defined as

δx = ẋ δy = ẏ δz = [
1 ż

]T

ξx = cx ξy = cy ξz = [
(mq + m p)g cz

] . (15)

Based on the passivity property of the quadrotor
slung-payload system energy, the adaptive controller
can be designed as [39]:
⎧
⎪⎨

⎪⎩

fx (t) = − kpx ex − kdx ẋ − Δx + kdγx γ̇x + δx ξ̂x

fy(t) = − kpyey − kdy ẏ − Δy + kdγy γ̇y + δy ξ̂y

fz(t) = − kpzez − kdz ż − Δz + δT
z ξ̂z

(16)

where Δx (t) = κxςx ex (t), Δy(t) = κyςyey(t),

Δz(t) = κzez(t) with ςx =
[ √

2(xd+εx )

(xd+εx )2−x2(t)

]2
,
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ςy =
[ √

2(yd+εy)

(yd+εy)2−y2(t)

]2

, ςz =
[ √

2(zd+εz)

(zd+εz)2−z2(t)

]2
, and

kpx , kdx , kdγx , kpy , kdy , kdγy , kpz , kdz , κx , κy , κz ∈ R
+

are some positive gains. The gains εx , εy , εz ∈ R
+ in

(16) are introduced to restrict the maximum overshoots
for ex (t), ey(t), ez(t), respectively, where they satisfy

εx > |xd − x(0)| εy > |yd − y(0)| εz > |zd − z(0)| .
(17)

The dynamic estimates ξ̂x (t), ξ̂y(t) and ξ̂z(t) are esti-
mations for the unknown parameters ξx , ξy and ξz ,
respectively, and denoted as

ξ̂x = ĉx ξ̂y = ĉy ξ̂z = [
(mq + m̂ p)g ĉz

]
. (18)

Remark 4 The controller in (16) is referred to [39], but
it is different from the one in [39]. The system’s degree
of freedom in this paper is bigger than the one in [39],
and consequently, the stability analysis becomes much
more complicated. On the other hand, new auxiliary
functionsΔx (t),Δy(t) andΔz(t) are added in the con-
troller for the consideration of overshoot restriction in
this paper while the control design in [39] does not take
this issue into account. This will also make the stability
analysis in this paper is much different from the one in
[39].

By substituting (16) into (14), it can be obtained that

Ė = − kdx ẋ2 − kdy ẏ2 − kdz ż2−cγx γ̇ 2
x − cγy γ̇

2
y −k px ẋex

− k py ẏey − k pz żez + kdγx γ̇x ẋ + kdγy γ̇y ẏ − δx ξ̃x ẋ

− δy ξ̃y ẏ − δT
z ξ̃z ż − Δx ẋ − Δy ẏ − Δz ż, (19)

where ξ̃x (t), ξ̃y(t), ξ̃z(t) are online errors for ξx , ξy , ξz ,
respectively, and defined as follows:

ξ̃x = ξx − ξ̂x ξ̃y = ξy − ξ̂y ξ̃z = ξz − ξ̂z . (20)

Based on the subsequent stability analysis, the param-
eter estimates ξ̂x (t), ξ̂y(t) and ξ̂z(t) are updated via the
following adaption algorithm
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

·
ξ̂ x = −Γxδx

[
α ẋ + ρ

( ex
2

)]

·
ξ̂ y = −Γyδy

[
α ẏ + ρ

( ey
2

)]

·
ξ̂ z = −Γzδz

[
αż + ρ

( ez
2

)]

(21)

where Γx = μx > 0, Γy = μy > 0, Γz =
diag{μm p , μz} > 0 and α ∈ R

+ are some positive

gains. The function ρ(s) in (21) is a differential satu-
ration function, which is defined as

ρ(s) =

⎧
⎪⎨

⎪⎩

1, s > π
2

sin(s), |s| ≤ π
2

− 1, s < −π
2

. (22)

It can be proved that the following properties hold for
ρ(s) in (22):

1. for any value s ∈ R, |ρ(s)| ≤ 1,
2. the partial derivative of ρ(s) with respect to s can

be expressed as

ρs(s) = ∂ρ(s)

∂s
=

{
0, |s| > π/2
cos(s), |s| ≤ π/2

(23)

and for any s ∈ R, |ρs(s)| ≤ 1,
3. for any s ∈ R, ρ2(s) ≤ sρ(s).

4 Stability analysis

The main stability result of the adaptive controller pro-
posed in (16) and (21) can be stated by the following
theorem.

Theorem 1 The proposed adaptive controller in (16)
and (21) ensure that all the closed-loop signals are
bounded, and quadrotor’s positive errors are asymp-
totically regulated in the sense that
⎧
⎨

⎩

lim
t→∞

[
ex (t) ey(t) ez(t)

] = [
0 0 0

]

lim
t→∞

[
ėx (t) ėy(t) ėz(t)

] = [
0 0 0

] , (24)

the payload’s swing angles are asymptotically regu-
lated in the sense that

lim
t→∞

[
γx (t) γy(t) γ̇x (t) γ̇y(t)

] = [0 0 0 0] . (25)

Meanwhile, the quadrotor’s motion during the flight
procedure are ensured to stay in a bounded region in
the sense that

x(t) < xd + εx y(t) < yd + εy z(t) < zd + εz . (26)

The estimate for the unknown mass of the payload con-
verges to its real value such that

lim
t→∞m̂ p(t) = m p. (27)

Proof To prove the above theorem, a nonnegative Lya-
punov function candidate V (t) is chosen as follows:

V = 1

2
αq̇T Mc(q)q̇ + αm pgl(1 − Cx Cy)+ 1

2
αkpx e2x
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+ 1

2
αkpye2y + 1

2
αkpze2z + ρT

e

( e

2

)
Mc(q)q̇

+ 1

2
ξ̃ T

x Γ −1
x ξ̃x

+ 1

2
ξ̃ T

y Γ −1
y ξ̃y + 1

2
ξ̃ T

z Γ −1
z ξ̃z + κxα

(xd +εx )2−x2
e2x

+ κyα

(yd + εy)2 − y2
e2y + κzα

(zd + εz)2 − z2
e2z

(28)

where ρe(
e
2 ) is defined as

ρe

( e

2

)
=

[
ρ

( ex

2

)
ρ

(ey

2

)
ρ

( ez

2

)
ρ

(γx

2

)
ρ

(γy

2

)]T
.

(29)

To show that V (t) is nonnegative, we can rearrange the
first four terms in (28), denoted as V f 4(t), as follows:

V f 4(t) = 1

2
αq̇T Mc(q)q̇ + 2α

[

kpx

(ex

2

)2

+ kpy

(ey

2

)2 + kpz

(ez

2

)2
]

+ αm pgl
(
2 sin2

γx

2
+ 2 sin2

γx

2

− 4 sin2
γx

2
sin2

γx

2

)

≥1

2
αq̇T Mc(q)q̇ + 2α

[

kpx

(ex

2

)2 + kpy

(ey

2

)2

+ kpz

(ez

2

)2
]

+ αm pgl(2 sin2
γx

2
+ 2 sin2

γx

2
)

≥1

2
αq̇T Mc(q)q̇ + 2αρT

e

( e

2

)

× diag{kpx , kpy, kpz, m pgl, m pgl}ρe

( e

2

)
.

(30)

By using the Young’s inequality, V f 4(t) in (30) can be
lower bounded as follows:

V f 4(t) ≥ 1

2
αq̇T Mc(q)q̇ + 2α·

min{kpx , kpy, kpz,m
¯ pgl,m

¯ pgl} ·
∥
∥
∥ρe

( e

2

)∥
∥
∥
2

≥ 2α
√

λm · min{kpx , kpy, kpz,m
¯ pgl,m

¯ pgl}

× ‖q̇‖ ·
∥
∥
∥ρe

( e

2

)∥
∥
∥

≥ 2α
√

λm · m
¯ pgl ‖q̇‖ ·

∥
∥
∥ρe

( e

2

)∥
∥
∥ . (31)

Here, the control gains kpx , kpy , and are kpz chosen to
satisfy

kpx > m
¯ pgl kpy > m

¯ pgl kpz > m
¯ pgl . (32)

Besides, the fifth term in (28) can be lower bounded as

ρT
e

( e

2

)
Mc(q)q̇ ≥ −λM · ‖q̇‖ ·

∥
∥
∥ρe

( e

2

)∥
∥
∥ . (33)

The control gain α is selected to satisfy the following
inequality

α >
λM

2
√

λm · m
¯ pgl

(34)

Thus, it is not difficult to check that V f 4(t) + ρT
e ( e

2 )

Mc(q)q̇ ≥ 0 holds, and consequently V (t) in (28) is
nonnegative.

The time derivative of (28) can be expressed as fol-
lows:

V̇ = −αkdx ẋ2 − αkdy ẏ2 − αkdz ż2

− αcγx γ̇
2
x − αcγy γ̇

2
y + αkdγx γ̇x ẋ

+ αkdγy γ̇y ẏ − αδx ξ̃x ẋ − αδy ξ̃y ẏ

− αδT
z ξ̃z ż + ρT

e

( e

2

)
Mc(q)q̈ + ρT

e

( e

2

)
Ṁc(q)q̇

+ ρ̇T
e

( e

2

)
Mc(q)q̇ + ξ̃ T

x Γ −1
x

·
ξ̃ x

+ ξ̃ T
y Γ −1

y

·
ξ̃ y + ξ̃ T

z Γ −1
z

·
ξ̃ z . (35)

For ρT
e ( e

2 )Mc(q)q̈ in (35) denoted as H0(t), substitut-
ing (1) into it yields

H0 = − kpx exρ
(ex

2

)
− kdx ẋρ

(ex

2

)
+kdγx γ̇xρ

(ex

2

)

− δx ξ̃xρ
(ex

2

)
− Δxρ

(ex

2

)
− kpyeyρ

(ey

2

)

− kdy ẏρ
(ey

2

)
+ kdγy γ̇yρ

(ey

2

)
− δy ξ̃yρ

(ey

2

)

− Δyρ
(ey

2

)
− kpzezρ

(ez

2

)
− kdz żρ

(ez

2

)

− δT
z ξ̂zρ

(ez

2

)
− Δzρ

(ez

2

)
− cγx γ̇xρ

(γx

2

)

− m pglSx Cyρ
(γx

2

)
− cγy γ̇yρ

(γy

2

)

− m pglCx Syρ
(γy

2

)
− ρT

e

( e

2

)
C(q, q̇)q̇. (36)
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ForρT
e ( e

2 )Ṁc(q)q̇ in (35) denoted as H1(t), byutilizing
the expression of (8), it can be obtained that

H1 = ρT
e

( e

2

)
C(q, q̇)q̇ + q̇T C(q, q̇)ρe

( e

2

)
. (37)

For ξ̃ T
x (t)Γ −1

x

·
ξ̃ x (t)+ξ̃ T

y (t)Γ −1
y

·
ξ̃ y(t)+ξ̃ T

z (t)Γ −1
z

·
ξ̃ z(t)

in (35) denoted as H2(t), substituting (21) into it yields

H2 = αξ̃ T
x δx ẋ + αξ̃ T

y δy ẏ + αξ̃ T
z δz ż + ξ̃ T

x δxρ
(ex

2

)

+ ξ̃ T
y δyρ

(ey

2

)
+ ξ̃ T

z δzρ
(ez

2

)
. (38)

After substituting (36)–(38) into the (35), the fol-
lowing expression for V̇ (t) can be obtained

V̇ = −αkdx ẋ2 − αkdy ẏ2 − αkdz ż2 − αcγx γ̇
2
x

− αcγy γ̇
2
y + αkdγx γ̇x ẋ + αkdγy γ̇y ẏ

− Δxρ
(ex

2

)
− Δyρ

(ey

2

)

− Δzρ
(ez

2

)
− kpx exρ

(ex

2

)
− kpyeyρ

(ey

2

)

− kpzezρ
(ez

2

)
− kdx ẋρ

(ex

2

)
− kdy ẏρ

(ey

2

)

− kdz żρ
(ez

2

)
+ kdγx γ̇xρ

(ex

2

)
+ kdγy γ̇yρ(

ey

2
)

− cγx γ̇xρ
(γx

2

)
− cγy γ̇yρ

(γy

2

)

− m pglSx Cyρ
(γx

2

)
+ q̇T C(q, q̇)ρe

( e

2

)

− m pglCx Syρ
(γy

2

)
+ ρ̇T

e

( e

2

)
Mc(q)q̇. (39)

From (39), by defining

H3 = − Δx (t)ρ

(
ex (t)

2

)

− Δy(t)ρ

(
ey(t)

2

)

− Δz(t)ρ

(
ez(t)

2

)

− kpx ex (t)ρ

(
ex (t)

2

)

− kpyey(t)ρ

(
ey(t)

2

)

− kpzez(t)ρ

(
ez(t)

2

)

(40)

the following inequality can be obtained upon the use
of the third property of ρ(s)

H3 ≤ − 2κxςxρ
2
(ex

2

)
− 2κyςyρ

2
(ey

2

)

− 2κzςzρ
2
(ez

2

)

− 2kpxρ
2
(ex

2

)
− 2kpyρ

2(
ey

2
) − 2kpzρ

2
(ez

2

)
.

(41)

For − kdx ẋ(t)ρ
(

ex (t)
2

)
− kdy ẏ(t)ρ(

ey(t)
2 ) − kdz ż(t)ρ

(
ez(t)
2 ) in (39) denoted as H4(t), the following inequal-

ity holds upon the use of the Young’s inequality

H4 ≤ k2dx

2
ẋ2 + k2dy

2
ẏ2 + k2dz

2
ż2 + 1

2
ρ2

(ex

2

)

+ 1

2
ρ2

(ey

2

)
+ 1

2
ρ2

(ez

2

)
. (42)

For −m pglSx (t)Cy(t)ρ(
γx (t)
2 ) − m pglCx (t)Sy(t)ρ

(
γy(t)
2 ) in (39) denoted as H5(t), the following inequal-

ity can be obtained

H5 ≤ −2m pglCy

(
sin

γx

2
cos

γx

2

)2

− 2m pglCx

(
sin

γy

2
cos

γy

2

)2
. (43)

For q̇T C(q, q̇)ρe(
e
2 ) in (39) denoted as H6(t), after

substituting (3) and (29) into it and some mathematical
manipulation, the following inequality can be obtained

H6 ≤ 2m2
p ẋ2 + 1

4
m2

p ẏ2 + 2m2
p ż2 + 2l2γ̇ 2

x

+ 3l2γ̇ 2
y + m pl2γ̇ 2

x . (44)

For kdγx γ̇x (t)ρ(
ex (t)
2 ) + kdγy γ̇y(t)ρ(

ey(t)
2 )in (39)

denoted as H7(t), similarly, the following inequality
holds

H7≤ 1

2
k2dγx

γ̇ 2
x + 1

2
ρ2

(ex

2

)
+ 1

2
k2dγy

γ̇ 2
y + 1

2
ρ2

(ey

2

)
.

(45)

For ρ̇T
e ( e

2 )Mc(q)q̇ in (39), based on the second prop-
erty of ρ(s) and (7), it is implied that

ρ̇T
e

( e

2

)
Mc(q)q̇

≤
max

{

ρ ex
2

( ex
2

)
, ρ ey

2

(
ey
2

)
, ρ ez

2
(

ez
2 ), ρ γx

2

( γx
2

)
, ρ γy

2

(
γy
2

)}

2

λM ‖q̇‖2

≤ 1

2
λM (ẋ2 + ẏ2 + ż2 + γ̇ 2

x + γ̇ 2
y ). (46)

Substituting (41)–(45) and (46) into (39) yields

V̇ (t)≤−Λ(t)−cγx γ̇xρ
(γx

2

)
−cγy γ̇yρ

(γy

2

)
. (47)

123



1752 B. Xian et al.

where Λ(t) is defined as

Λ(t)
Δ= −

(

αkdx − 1

2
k2dx − 1

2
λM − 2m2

p

)

ẋ2

−
(

αkdy − 1

2
k2dy − 1

2
λM − 1

4
m2

p

)

ẏ2

−
(

αkdz − k2dz

2
− 1

2
λM − 2m2

p

)

ż2

−
(

αcγx − 1

2
λM − 2l2 − m pl2 − 1

2
k2dγx

)

γ̇ 2
x

−
(

αcγy − 1

2
λM − 3l2 − 1

2
k2dγy

)

γ̇ 2
y

− (2kpx + 2κxςx − 1)ρ2
(ex

2

)

− (2kpy + 2κyςy − 1)ρ2
(ey

2

)

−
(

2kpz + 2κzςz − 1

2

)

ρ2
(ez

2

)

− 2m pglCy

(
sin

γx

2
cos

γx

2

)2 + αkdγx γ̇x ẋ

− 2m pglCx

(
sin

γy

2
cos

γy

2

)2 + αkdγy γ̇y ẏ.

(48)

If the positive gains α, kdx , kdy , kdz , kpx , kpy , kpz ,
kdγx , kdγy , κx , κy , κz are chosen to satisfy the following
conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

kdx = kdy = kdz = 1
r α

max

{
λM

2
√

λm ·m
¯ p gl

, r
√

λM +4m2
p

2r−1 , β1, β3

}

< α < min{β2, β4}
kpx > max{ 12 ,m¯ pgl} kpy > max{ 12 ,m¯ pgl}
kpz > max{ 14 ,m¯ pgl} κx > 0 κy > 0 κz > 0

(49)

it can be guaranteed that −Λ(t) is negative definite,
where the gains β1, β2, β3, β4 and r are chosen to
satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = r2cγx − r
√

r2c2γx
− (4l2 + 2m̄ pl2 + λM )

β2 = r2cγx + r
√

r2c2γx
− (4l2 + 2m̄ pl2 + λM )

β3 = r2cγy − r
√

r2c2γy
− (6l2 + λM )

β4 = r2cγy + r
√

r2c2γy
− (6l2 + λM )

r > max

{
1
2 ,

√
4l2+2m̄ pl2+λM

c2γx
,

√
6l2+λM

c2γy

}

.(50)

The details for how to obtain the conditions in (49)
and (50) are presented in the “Appendix”.

By integrating both sides of (47)with respect to time,
it can be obtained that

V (t) − V (0) ≤ −
∫ t

0
Λ(τ)dτ

+ 2cγx

[

cos
γx (t)

2
− cos

γx (0)

2

]

+ 2cγy

[

cos
γy(t)

2
− cos

γy(0)

2

]

≤4cγx + 4cγy . (51)

Thus, it indicates that

V (t) ≤ V (0) + 4cγx + 4cγy 
 +∞. (52)

Now, it is not difficult to obtain that |ex (0)| < xd +
εx ,

∣
∣ey(0)

∣
∣ < yd + εy , |ez(0)| < zd + εz from (17).

Assuming that ex (t) (respectively, ey(t), ez(t)) tends
to exceed the boundary of |ex (t)| < xd + εx from the
interior (respectively,

∣
∣ey(t)

∣
∣ < yd +εy , |ez(t)| < zd +

εz), then we can conclude from (28) that V (t) → ∞
which invalidates V (t) 
 +∞ in (52). Thus, we have

|ex (t)| < xd + εx
∣
∣ey(t)

∣
∣ < yd + εy |ez(t)|

< zd + εz . (53)

It is not difficult to show that ẋ(t), ẏ(t), ż(t), γ̇x (t),
γ̇y(t), ex (t), ey(t), ez(t), ξ̃x (t), ξ̃y(t), ξ̃z(t) ∈ L∞,

and e2x (t)
(xd+εx )2−x2(t)

,
e2y(t)

(yd+εy)2−y2(t)
,

e2z (t)
(zd+εz)2−z2(t)

∈ L∞
according to (28) and (52). Moreover if ex (t) → 0,
then 1

(xd+εx )2−x2(t)
→ 1

(xd+εx )2−x2d
∈ L∞. In addi-

tion, if ex (t) does not converge to 0, then it follows

from ex (t) ∈ L∞ and e2x (t)
(xd+εx )2−x2(t)

∈ L∞ that
1

(xd+εx )2−x2(t)
∈ L∞. Similar analysis can be applied

on 1
(yd+εy)2−y2(t)

and 1
(zd+εz)2−z2(t)

, thus we can obtain

that 1
(yd+εy)2−y2(t)

∈ L∞, 1
(zd+εz)2−z2(t)

∈ L∞. Con-

sequently due to (16), we can obtain that fx (t), fy(t),
fz(t) ∈ L∞. Then, based on the structure of the system
dynamics in (1), it is not difficult to conclude that ẍ(t),
ÿ(t), z̈(t), γ̈x (t), γ̈y(t) ∈ L∞. Moreover, we can obtain∫ t
0 Λ(ex (τ ), ey(τ ), ez(τ ), γx (τ ), γy(τ ), ẋ(τ ), ẏ(τ ),

ż(τ ), γ̇x (τ ), γ̇y(τ ))dτ ∈ L∞ since V (t) ∈ L∞. And
it implies from (64) that ẋ(t), ẏ(t), ż(t), γ̇x (t), γ̇y(t),

ρ(
ex (t)
2 ), ρ(

ey(t)
2 ), ρ(

ez(t)
2 ), sin γx (t), sin γy(t) ∈ L2.
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By invoking Barbalat’s lemma, we can conclude that
{

lim
t→∞ex (t), ey(t), ez(t) = 0 lim

t→∞γx (t), γy(t) = 0

lim
t→∞ẋ(t), ẏ(t), ż(t) = 0 lim

t→∞γ̇x (t), γ̇y(t) = 0
.(54)

By applying (54) to the first and second entry of (16),
it leads to the fact that lim

t→∞ fx (t) = 0, lim
t→∞ fy(t) = 0.

Substituting (54) into the dynamics of x(t), y(t) in (1),
it can be concluded that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lim
t→∞

[
(mq + m p)ẍ(t) + m plγ̈x (t)

] = 0

lim
t→∞

[
m pl ẍ(t) + m pl2γ̈x (t)

] = 0

lim
t→∞

[
(mq + m p)ÿ(t) + m plγ̈y(t)

] = 0

lim
t→∞

[
m pl ÿ(t) + m pl2γ̈y(t)

] = 0

. (55)

Thus, we have

lim
t→∞ [ẍ(t) ÿ(t)] = [0 0] lim

t→∞
[
γ̈x (t) γ̈y(t)

] = [0 0] .(56)

According to the dynamics of z(t) in (1), we can obtain
that

(mq + m p)(z̈(t) + g)

= − kpzez − kdz ż − Δz +(mq +m̂ p)g+ĉz ż − cz ż

− m plCy(γ̈x Sx + γ̇ 2
x Cx ) − 2m plγ̇x γ̇y Sx Sy

− m plCx (γ̈y Sy + γ̇ 2
y Cy). (57)

The expression in (57) leads to

(mq + m p)z̈(t) = m̃ p(t)g + Ξ(t) (58)

where Ξ(t) is defined as follows:

Ξ(t) = kpzez − kdz ż − Δz + ĉz ż − cz ż

− 2m plγ̇x γ̇y Sx Sy − m plCy(γ̈x Sx + γ̇ 2
x Cx )

− m plCx (γ̈y Sy + γ̇ 2
y Cy). (59)

Based on (54) and (56), it can be concluded that

lim
t→∞ Ξ(t) = 0, (60)

and from the third entry of (21), we can obtain
·

m̃ p(t)g = −μm p

[
αż + ρ

(ez

2

)]
∈ L∞, (61)

and
·

m̃ p(t)g ∈ L∞. Based on (58), (60) and (61), the
extendedBarbalat’s lemma [40] can be invoked to show
that
lim

t→∞ z̈(t) = 0 lim
t→∞ m̃ p(t)g = 0 . (62)

Thus, it can be concluded that

lim
t→∞ m̂ p(t) = m p (63)

since g is a nonzero positive constant. ��

Fig. 2 The experiment testbed

5 Experimental results

To validate the control performance of the proposed
strategy, real-time experiments are performed on a self-
buildUAV testbed shown in Fig. 2. The testbed consists
of a small-size quadrotor, a cable-connected payload,
a motion capture system, a ground station, and a XBee
based wireless data link. For the quadrotor platform,
the STM32 chip is used as a real-time engine, which
can provide the accurate attitude information with the
gyroscope and accelerometer sensors integrated on the
board. In addition, the real-time embedded controller
offers the attitude controller and position controller.
The motion capture system Optitrack is employed to
measure the positions of quadrotor and the payload.
Based on these position informations, the swing angles
can be calculated and then the data packets are transmit-
ted to the ground stations via the Ethernet. The ground
station PC plays two roles. On the one hand, the ground
station is used to record the experimental data dur-
ing the flight. On the other hand, the ground station
is responsible for parsing the data packets transferred
from the Optitrack. In order to achieve the communi-
cation between the Optitrack and the quadrotor, we use
two XBee modules which provide cost-effective wire-
less connectivity to devices in ZigBee networks. One
is connected to controller chip of the quadrotor and the
other one is connected to the Serial port of the ground
station.

The parameters of the quadrotor slung-payload sys-
tem are listed as mq = 1.0082kg, m p = 0.0761kg,
l = 1.085m and g = 9.81m/s2. In all cases, the
initial and desired positions for the quadrotor are set
as x(0) = − 0.5m, y(0) = 1.5m, z(0) = − 1.6m,
xd = 0.5m, yd = − 1.0m and zd = − 1.7m. And
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the control parameters of the proposed adaptive con-
troller for the quadrotor slung-payload system are set
α = 0.5, Γx = Γy = 2.0, Γz = diag{1.2, 10},
kpx = kpy = 4.9, kdx = kdy = 8.0, kpz = 16.0,
kdz = 9.0, and kdγx = kdγy = 0.7.

To compare and analyze the effectiveness of the pro-
posed methodology, a LQR controller is also imple-
mented on the testbed. The dynamic mode in (1) is
linearized to obtain the LQR controller. The LQR
controller is designed as f (t) = − K x(t), where
x(t) = [ ex (t) ey(t) ez(t) ẋ(t) ẏ(t)ż(t) γx (t) γy(t)

γ̇x (t) γ̇y(t)
]T ∈ R

10×1, K is control gainmatrixwhich
is the optimal solution in theory calculated via MAT-
LAB toolbox.

For the convenience of quantitative analysis of the
experimental results, some definitions in this paper are
given as follows:

1. The steady-state value is the regionwhen the devia-
tion between the actual value anddesired state value
stay in the given range Θ , in this paper, Θx =
0.08m, Θy = 0.1m, Θz = 0.03m, Θγx = 3◦,
Θγy = 3.5◦.

2. The adjusting time Ta is defined as the required
time to reach the steady-state process.

In this section, four cases of experiments are imple-
mented on the testbed.

Case 1–Comparison with LQR controller The exper-
imental results are shown in Figs. 3, 4, 5, which,
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Fig. 3 The quadrotor’s position (x, y, z) and the payload’s
swing angle (γx , γy) in case 1 [blue line: the proposed controller;
red line: LQR controller]

0 10 20 30 40 50 60

−2

0

2

Time (sec)

f x(t)
 (N

)

0 10 20 30 40 50 60

−2

0

2

Time (sec)

f y(t)
 (N

)

0 10 20 30 40 50 60

−13

−12

−11

Time (sec)

f z(t)
 (N

)

Fig. 4 The control output ( fx , fy, fz) in case 1 [blue line: the
proposed controller; red line: LQR controller]
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Fig. 5 The estimation of payload’s mass in case 1 [blue line: the
proposed controller]

respectively, represent the quadrotor’s positions, the
payload’s swing angles, the control outputs of the
proposed controller and LQR controller and the esti-
mation of payload’s mass of the proposed controller.
We analyze the data in a quantitative form as listed
in Table 1, which includes adjusting time Ta =[
tax tay taz taγx taγy

]
, standarddeviationof steady-state

process Σd = [
σdx σdy σdz σdγx σdγy

]
and maximum

residual of steady-state process Mr = [
mr x mr y mrz

mrγx mrγy

]
. From Figs. 3, 4 and Table 1, one can see

that the proposed controller can achieve higher posi-
tioning accuracy and faster convergence for horizontal
motion of the quadrotor, meanwhile suppress the pay-
load swing angle faster. Particularly, maximum pay-
load residual swing angles in steady-state process for
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Table 1 Quantitative analysis of data in case 1

Case 1 The proposed controller The LQR controller

Ta(s)
[
4.7850 7.4950 4.1920 3.9610 9.0190

] [
6.7290 9.0870 7.4700 11.4340 13.5370

]

Σd
[
0.0142 0.0148 0.0066 0.6759 0.7286

] [
0.0167 0.0250 0.0069 0.9836 1.2965

]

Mr (m,◦ )
[
0.0177 0.0310 0.0185 1.8143 1.9723

] [
0.0435 0.0650 0.0161 2.3038 3.2150

]
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Fig. 6 The quadrotor’s position (x, y, z) and the payload’s
swing angle (γx , γy) in case 2

the proposed controller are far less than that LQR
controller. In particular, when the system reaches the
steady-state process, the proposed controller has bet-
ter performance than LQR controller according to both
standard deviation andmaximum residual. FromFig. 5,
we can see that the estimation of the unknown payload
mass is about 0.0743kg, and the estimation error is
about 0.0018kg, which indicates the online estimation
for payload’s mass converges nearly to its real value.
And the result is consistent with theoretical analysis.

Case 2–Robustness to different payload’s mass We
change the payload from 0.0761 to 0.1789kg, the
experimental results of the proposed controller are
shown in Figs. 6, 7, 8, which, respectively, represent
the quadrotor’s positions, the payload swing angles, the
control outputs, and the estimation of payload’s mass
of the proposed controller. Similarly, the quantitative
results are listed in Table 2. Compared with the exper-
imental results in case 1, it can be seen obviously that
overall control performance of the proposed controller
does not vary much although the payload’s mass has
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Fig. 7 The control output ( fx , fy, fz) in case 2

0 10 20 30 40 50 60

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Time (sec)

m̂
(t
)(
k
g
)

56 58 60
0.1819

0.182

0.1821

Fig. 8 The estimation of payload’s mass in case 2

changed. We can obtain that the steady-state mean in
vertical direction of the proposed controller is about
− 1.7037m, which indicates the final position of the
proposed controller is almost to its desired position.
According to Fig. 8, the online estimation for the pay-
load’s weight is approximately 0.1825kg that means
the estimation error is about 0.0036kg. So we can con-
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Table 2 Quantitative analysis of data in case 2

Case2 The proposed controller

Ta(s)
[
4.3260 7.5190 9.7990 3.5600 9.9320

]

Σd
[
0.0165 0.0230 0.0065 0.4720 0.5322

]

Mr (m,◦ )
[
0.0562 0.0498 0.0147 0.9841 1.5709

]
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Fig. 9 The quadrotor’s position (x, y, z) and the payload’s
swing angle (γx , γy) in case 3

clude that the proposed online estimator for payload’s
weight can converge to its true value precisely.

Case 3–Robustness to initial disturbances We consider
the system is perturbed by initial swing angles. The
initial payload’s swing angles γx (t), γy(t) are set as
22.1◦, 13.5◦, respectively, as shown in Fig. 9. The cor-
responding experimental results are shown in Figs. 9,
10, which represent the quadrotor’s positions, the pay-
load’s swing angles and the control outputs of the pro-
posed controller, respectively. And the relevant quan-
titative results are shown in Table 3. We can see that
adjusting time Ta is a bit long because of the large ini-
tial swing angles. However, the payload’s swing angles
γx (t), γy(t) drop down to half of maximum swing
angles (γx max = 23.9◦, γy max = 21.2◦) in a short
time (about 2.6 s, 5.2 s, respectively), which indicates
the proposed controller has good effect in reducing the
large swing angles. FromFigs. 9, 10 andTable 3,we can
see that the overall control performance keeps good in
termsof steady-statemean error, standard deviation and
maximum residual in steady state. These experimental
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Fig. 10 The control output ( fx , fy , fz) in case 3

Table 3 Quantitative analysis of data in case 3

Case 3 The proposed controller

Ta(s)
[
8.9730 10.0900 3.2150 10.4090 12.7920

]

Σd
[
0.0141 0.0191 0.0067 0.7294 0.7987

]

Mr (m,◦ )
[
0.0415 0.0360 0.0136 1.9232 1.9803

]

results demonstrate that the proposed control law has
good robustness to the initial swing disturbances.

Case 4–Robustness to external disturbances In this
case, we introduce some disturbance at about 19.5 s
when the quadrotor has reached the definition for a
while. The disturbance induced swing angles γx (t),
γy(t) are approximately 32.5◦ and 36.0◦, respectively.
The experimental results are shown in Figs. 11, 12,
which represent the quadrotor’s positions, the pay-
load’s swing angles and the control outputs of the
proposed controller, respectively. And the quantitative
results are shown in Table 4. We can see that the con-
trol force changes due to disturbance, as a result, the
quadrotor’s positions are regulated by the controller in
order to suppress the payload’s swingmotion. From the
adjusting time Ta in Table 4, we can conclude that the
regulation process is quick with small adjusting time
for the quadrotor’s position x(t), y(y) in XB, YB direc-
tions and payload’s swing angles γx (t), γy(t). The pay-
load’s swing angles γx (t), γy(t) reach the steady-state
process in 4.490 s, 6.299s, respectively, under the large
interferences, which shows the satisfying robustness
of the proposed controller with respect to the external
disturbances. From the third entry of Table 4, one can
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swing angle (γx , γy) in case 4
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Fig. 12 The control output ( fx , fy, fz) in case 4

Table 4 Quantitative analysis of data in case 4

Case 4 The proposed controller

Ta(s)
[
2.9075 2.7092 0.0000 4.4900 6.2990

]

Σd
[
0.0109 0.0110 0.0047 0.6672 0.4692

]

Mr (m,◦ )
[
0.0235 0.0330 0.0114 2.0438 1.0221

]

conclude that behaviors in the steady state stay very
well with small standard deviation of steady-state pro-
cess Σd and small maximum residual of steady-state
process Mr .

6 Conclusion

Anonlinear adaptive controller for the quadrotor slung-
payload system has been presented under the unknown
aerodynamic drag force and unknown system parame-
ters, which can achieve accurate quadrotor positioning
and rapid payload swing suppression simultaneously.
Besides, a parameter online estimation can precisely
identify the unknown payload’s mass. The Lyapunov-
based analysis is used to prove the stability of the pro-
posed control laws. Experiment results performed on
the self-build testbed confirm its superior performance
and robustness.

About the future work, we will extend the current
design to multiple quadrotor cooperative aerial trans-
portation system. In addition, since the actual flight
is susceptible to external gust disturbance, the corre-
sponding adaptive robust controller will be designed
considering the coexistence of unknown parameters
and external wind disturbance.
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Appendix

Parameter condition derivation

The function Λ(t) in (48) can be expressed as follows:

−Λ(t) = − η1 ẋ2 − η2 ẏ2 − η3 ż2 − η4γ̇
2
x − η5γ̇

2
y

− η6ρ
2
(ex

2

)

− η7ρ
2
(ey

2

)
− η8ρ

2
(ez

2

)
+ αkdγx γ̇x ẋ

+ αkdγy γ̇y ẏ − 2m pglCx

(
sin

γy

2
cos

γy

2

)2

− 2m pglCy

(
sin

γx

2
cos

γx

2

)2
(64)
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where η1, η2, η3, η4, η5, η6, η7, η8 are defined as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1
Δ= αkdx − 1

2k2dx − 1
2λM − 2m2

p

η2
Δ= αkdy − 1

2k2dy − 1
2λM − 1

4m2
p

η3
Δ= αkdz − k2dz

2 − 1
2λM − 2m2

p

η4
Δ= αcγx − 1

2λM − 2l2 − m pl2 − 1
2k2dγx

η5
Δ= αcγy − 1

2λM − 3l2 − 1
2k2dγy

η6
Δ= 2kpx + 2κxςx − 1

η7
Δ= 2kpy + 2κyςy − 1

η8
Δ= 2kpz + 2κzςz − 1

2

. (65)

Now, we define S(t) as follows:

S = − η1 ẋ2 − η2 ẏ2 − η3 ż2 − η4γ̇
2
x

− η5γ̇
2
y + αkdγx γ̇x ẋ + αkdγy γ̇y ẏ

= s PsT (66)

where P is a 5 × 5 matrix, s = [
ẋ ẏ ż γ̇x γ̇y

] ∈ R
1×5

and denoted via the following equations
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P =

⎡

⎢
⎢
⎢
⎢
⎣

η1 0 0 p14 0
0 η2 0 0 p25
0 0 η3 0 0

p41 0 0 η4 0
0 p52 0 0 η5

⎤

⎥
⎥
⎥
⎥
⎦

p14 = p41 = − 1
2αkdγx p25 = p52 = − 1

2αkdγy

,(67)

Consequently, S(t) in (66) can be described as

S = − ėT (t)Pė(t). (68)

By substituting (68) into (64), we can obtain

−Λ(t) = − ėT (t)Pė(t) − η6ρ
2(

ex

2
) − η7ρ

2
(ey

2

)

− η8ρ
2
(ez

2

)
− 2m pglCx

(
sin

γy

2
cos

γy

2

)2

− 2m pglCy

(
sin

γx

2
cos

γx

2

)2
. (69)

In order to ensure −Λ(t) to be negative definite, it
is implied that P need to be positive definite, then the
conditions can denote as follows:
{

η1 > 0 η1η2 > 0 η1η2η3 > 0

η1η2η3η4+( 12αkdγx )
2η2η3>0 η1η2η3η4η5>0

,

(70)

and it yields from (70) that

η1 > 0 η2 > 0 η3 > 0 η4 > 0 η5 > 0 . (71)

Suppose that kdx = kdy = kdz = 1
r α where r ∈ R

+
is positive constant. Hence, (71) can be denoted as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 =
(
1
r − 1

2r2

)
α2 − 1

2λM − 2m2
p > 0

η2 =
(
1
r − 1

2r2

)
α2 − 1

2λM − 1
4m2

p > 0

η3 =
(
1
r − 1

2r2

)
α2 − 1

2λM − 2m2
p > 0

η4 = − 1
2r2

α2+cγx α − 1
2λM − 2l2−m pl2>0

η5 = − 1
2r2

α2 + cγy α − 1
2λM − 3l2 > 0

.(72)

By making some mathematical manipulation, it is
reduced as
⎧
⎪⎨

⎪⎩

(2r − 1)α2 > (λM + 4m2
p)r

2

α2 − 2r2cγx α + r2(4l2 + 2m pl2 + λM ) > 0

α2 − 2r2cγy α + r2(6l2 + λM ) > 0

.

(73)

Thus, α should be selected to satisfy

max

⎧
⎨

⎩
β1 β3 r

√

λM + 4m2
p

2r − 1

⎫
⎬

⎭
< α < min {β2 β4}

(74)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β1 = r2cγx − r
√

r2c2γx
− (4l2 + 2m̄ pl2 + λM )

β2 = r2cγx + r
√

r2c2γx
− (4l2 + 2m̄ pl2 + λM )

β3 = r2cγy − r
√

r2c2γy
− (6l2 + λM )

β4 = r2cγy + r
√

r2c2γy
− (6l2 + λM )

,

(75)

and r should be chosen to satisfy

r ≥ max

⎧
⎨

⎩

1

2
,

√

4l2 + 2m̄ pl2 + λM

c2γx

,

√
6l2 + λM

c2γy

⎫
⎬

⎭
.

(76)

On the other hand, considering the negative property
of −Λ(t), the following inequalities hold
⎧
⎪⎨

⎪⎩

η6 = 2kpy + 2κxςx − 1 > 0

η7 = 2kpy + 2κyςy − 1 > 0

η8 = 2kpz + 2κzςz − 1
2 > 0

, (77)
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that means

kpx >
1

2
kpy >

1

2
kpz >

1

4
κx > 0 κy > 0 κz > 0.

(78)

Thus, combined with (32) and (34), we can obtain
the conditions for α, kdx , kdy , kdz , kpx , kpy , kpz , kdγx ,
kdγy , κx , κy , κz in (49) and (50) based on (71)-(78).
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