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Abstract The N-fold Darboux transformation of the
coupled Lakshmanan–Porsezian–Daniel (LPD) equa-
tions is constructed. Based on the Darboux trans-
formation and the limiting technique, we investigate
two kinds of solutions for the coupled LPD equa-
tions, which are higher-order interactional solutions
and rogue wave (RW) pairs. Through considering
the double-root situation of the spectral characteris-
tic equation for the matrix in the Lax pair, we give
the higher-order interactional solutions among higher-
order RWs, multi-bright (dark) solitons and multi-
breather. Besides, we consider the triple-root situa-
tion of the spectral characteristic equation and get the
higher-order RW pairs. It demonstrates that the RW
pairs are greatly different form the traditional higher-
order RWs. The fist-order RW pairs can split into two
traditional first-order RWs, and four or six traditional
fundamental RWs can emerge from the second-order
case. The corresponding dynamics of these explicit
solutions are discussed in detail.
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1 Introduction

There are always the cross-phase modulation term and
the relative velocity among different component fields
in the multi-component coupled systems [1–4]. Com-
pared to the scalar systems [5–8], there exist very
abundant pattern dynamics for the localized waves
in the multi-component coupled systems [1,9,10]. In
recent years, the interactional solutions of the multi-
component systems have been widely researched,
which included bright-dark mixed solitons [11,12],
dark and anti-dark solitons [13,14], the interactional
solutions among rogue waves (RWs), solitons (bright
anddark solitons) andbreathers [15,16], etc.Compared
with the standard RWs in the scalar equations [5,7], a
mass of novel patterns for vector RWs have been con-
structed in the coupled systems [1,17–19].

Utilizing the Kadomtsev–Petviashvili (KP) hierar-
chy reduction method, the bright-dark mixed soli-
tons were constructed in the multi-component nonlin-
ear Schrödinger (NLS) equation [11], Yajima–Oikawa
(YO) system [12] and Mel’nikov system [20]. The
interactions between multi-dark solitons and multi-
anti-dark solitons were constructed in the scalar non-
local NLS equation by Darboux transformation [13].
The general soliton solutions, such as dark–dark, dark
and anti-dark, anti-dark and anti-dark solitons, for the
nonlocal NLS equation with PT-symmetry for both
zero and nonzero boundary conditions were given
by KP hierarchy reduction method [14]. The line
rogue waves with dark and anti-dark rational trav-
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eling waves were derived in the nonlocal Davey–
Stewartson (DS) equation by Darboux transformation
[21]. The semirational solutions including RWs inter-
actingwithmulti-breather, RWs interactingwithmulti-
bright or dark soliton were constructed in different sys-
tems [9,15,16,22–24]. In recent years, RWs have been
researched in a lot of documents [1,3,5,17–19,25–28].
Inmany documents [3,5,25–28], the first-orderRWhas
one hump, and the second-order and third-order RWs
can split into three and six first-order RWs, respec-
tively. Here, we call these RW patterns the traditional
structures. However, there have been some documents
focusing on the RW pairs in different systems, such
as the NLS equations [1], the Sasa–Satsuma equation
[17], the cubic–quintic NLS equations [18] and the
Fokas–Lenells equations [19]. In the RW pairs [1,17–
19], the first-order RW pairs can split into two tradi-
tional first-order RWs, and the second-order RW pairs
can split into four or six traditional lower-order RWs.
Here, we are interested in two kinds of the solutions
for the coupled nonlinear system. The first one is the
interactional solution among higher-order RWs, multi-
bright (or dark) solitons and breathers; the other is the
high-order RW pairs.

In this paper, we focus on the interactional solu-
tions and some RW pairs for the following coupled
Lakshmanan–Porsezian–Daniel (LPD) equations [29–
31]
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where q1 and q2 are all the functions of x and t , they
denote the complex envelopes of the electric field, and
the nonnumeric subscripted variables stand for the cor-
responding partial differentiation. The symbol “∗” indi-
cates the complex conjugate, and “||” is the modulus of
a complex function. The parameter γ is a real constant
and denotes the strength of higher-order dispersive and
nonlinear effects. The coupled LPD system (1) is also
called the fourth-order nonlinear Schrödinger system

and can be used to describe the ultrashort pulses in the
birefringent optical fiber [29–31].

The single component LPD equation was first
derived in [32], and its integrability was researched
by the Painlevé analysis method in [33]. The infinitely
many conservation laws and bound-state solitons of the
system (1)were given in [29]. In [30], the authors inves-
tigated the modulation instability and the first-order
semirational solutions for the coupled LPD equations
(1). The first- and second-order breather-to-soliton
solutions and the effect of the parameter γ for the sys-
tem (1) were all discussed in [31]. The soliton exci-
tations and interactions for the three-component LPD
equationswere constructed by the bilinearmethod [34].
Besides, the higher-order semirational solutions of the
three-component LPD system were derived through
the generalized Darboux transformation (DT) method
[35].

As far as we know, it has not been reported that
there are the interactional solutions amonghigher-order
RWs, multi-bright (dark) solitons and multi-breather
for the coupled LPD equations (1). Furthermore, the
higher-order RW pairs for the system (1) have also not
been investigated. It is very meaningful to construct
the higher-order interactional solutions and RW pairs
for the coupled LPD equations (1). Combining the DT
method and the limiting technique, we will separately
construct the above two kinds of solutions for the sys-
tem (1) in the double- and triple-root situation of the
spectral characteristic equation.

The present paper is organized as follows. In Sect. 2,
the Lax pair and the N-fold DT for the coupled LPD
equations (1) are given. In Sect. 3,we consider the spec-
tral characteristic equation own a double-root case, and
the interactional solutions are derived, which include
higher-order RWs interacting with multi-bright (dark)
solitons and multi-breather. In Sect. 4, considering the
triple-root situation of the spectral characteristic equa-
tion, we construct the higher-order RW pairs. The last
section includes several conclusions and discussions.

2 Darboux transformations for the coupled LPD
equations

The Lax pair of the coupled LPD equations (1) can be
given as [30,31]
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�x = U� =
⎛

⎝
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1 q∗
2
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where�(x, t) = (ψ1, ψ2, ψ3)
T (“T” denotes the trans-

pose of a vector) is the function of the independent
variables x and t . Besides, � denotes the eigenfunc-
tion and ξ is the spectral parameter. It is easily found
that the coupled LPD system (1) can be generated from
the compatibility conditionUt −Vx +UV −VU = 0.
Additionally, the concrete elements Vsj (1 ≤ s, j ≤
3) in the matrix V can be given as follows
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Based on the DT of Ablowitz–Kaup–Newell–Segur
(AKNS) system [36], we can directly construct the cor-
responding generalized DT for the system (1). Suppose
that �1(ξ1 + δ) = (ψ1, ψ2, ψ3)

T is a special solution
of the Lax pair (2) with q1 = q1[0], q2 = q2[0] and
ξ = ξ1 + δ (δ is an infinitesimal parameter), the eigen-
function �1(ξ1 + δ) can be expanded as the Taylor
series at δ = 0

�1 = �
[0]
1 + �

[1]
1 δ + �

[2]
1 δ2 + · · · + �

[N ]
1 δN + · · · ,

(3)

where
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2 , ψ

[ j]
3

)T

= 1

j !
∂ j�1

∂δ j
|δ=0, ( j = 0, 1, 2, 3 . . .).

Based on the above facts, the N-fold generalized DT
for the system (1) can be directly given in the follow-
ing theorem. In order to avoid tedious calculation of
determinant with high-order matrix, the iteration form
of the DT is chosen in the following contents.

Theorem 1 Utilizing the iterative formulae, the N-fold
generalized DT for the coupled LPD equations can be
directly constructed as follows

�[N ] = T [N ]T [N − 1] . . . T [1]�, (4)

T [ j] = (ξ − ξ∗
1 )

(
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1
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+ 2i(ξ∗
1 − ξ1)ψk+1[N − 1]ψ1[N − 1]∗

|ψ1[N − 1]|2 + |ψ2[N − 1]|2 + |ψ3[N − 1]|2 ,

(k = 1, 2) (7)

where �1[N − 1] = (ψ1[N − 1], ψ2[N − 1], ψ3[N −
1])T and T1[ j] = T [ j]|ξ=ξ1 , the symbol “

†” represents
Hermite conjugation, and I is the 3×3 identity matrix.

In order to generate the new solutions through the
above-mentioned N-fold generalized DT formulae, we
choose the following general plane wave solutions as
the seed solutions for the coupled LPD equations (1)
as

q1[0] = l1e
iθ1 , q2[0] = l2e

iθ2 , (8)

with

θ1 = m1x + n1t, θ2 = m2x + n2t,

n1 = γm4
1 − (12γ l21 + 4γ l22 + 1)m2

1 + 6γ (l21 + l22)
2

−4γ l22m2(m1 + m2) + 2(l21 + l22),

n2 = γm4
2 − (12γ l22 + 4γ l21 + 1)m2

2 + 6γ (l21 + l22)
2

−4γ l21m1(m1 + m2) + 2(l21 + l22),

where l1, l2,m1 and m2 are all real constants (l1 �=
l2, m1 �= m2).

When the functions qi (i = 1, 2) in the Lax pair (2)
are chosen as the seed solutions (8), we find that the
corresponding matrices U and V in the Lax pair (2)
include some exponential function elements. Choos-
ing the following gauge transformation � = M	, the
Lax pair including exponential function elements can
be transformed into the new Lax pair with constant ele-
ments

	x = (M−1UM − M−1Mx )	 ≡ U0	, (9)

	t = (M−1UM − M−1Mt )	 ≡ V0	, (10)

where

M = diag
(
e− i

3 (θ1+θ2), e
i
3 (2θ1−θ2), e

i
3 (2θ2−θ1)

)
,

all the symbol “diag” in this paper denotes the diagonal
matrix.

Utilizing the principle of diagonalization of matri-
ces, the special vector solutions for the new Lax pair
(9–10) can be directly derived. In order to solve the new
Lax pair (9–10), the spectral characteristic equation of
the matrix U0 in Eq. (9) should be considered, and it
reads as

ζ 3 − iξ ζ 2

+
(
1

3
m1

2 + 1

3
(−2 ξ − m2)m1 + ξ2

−2

3
m2ξ + l1

2 + l2
2 + 1

3
m2

2
)

ζ

−2 i

27
m1

3 − i

27
(−3 ξ − 3m2)m1

2

− i

27

(
−18 ξ2 + 21m2ξ + 9 l1

2 − 18 l2
2 − 3m2

2
)

m1 − 2 i

27
m2

3

+ i

9
m2

2ξ − i

27

(
−18 ξ2 − 18 l1

2 + 9 l2
2
)
m2

−i
(
ξ2 + l1

2 + l2
2
)

ξ = 0, (11)

where ξ is the spectral parameter of the Lax pair (2),
and ζ is the eigenvalue of the matrix U0.

From the spectral characteristic equation (11) of
the matrix U0, we can find that U0 have three eigen-
values ζ j ( j = 1, 2, 3) and Eq. (11) can be seen as
one-variable cubic equation of ζ . Through considering
the double-root and triple-root situations of the spec-
tral characteristic equation (11), we will discuss two
kinds of novel solutions for the coupled LPD equations
(1). If Eq. (11) has a double-root, we give the higher-
order interactional solutions among higher-order RWs,
multi-bright (dark) solitons and multi-breather for the
coupled LPD system (1). If Eq. (11) possesses a triple-
root, we construct the higher-order RW pairs for the
coupled LPD system (1).

3 Higher-order interactional solutions for the
double-root case

In the content of this paper, the interactional solu-
tions denote that higher-order RWs interact with multi-
bright solitons, dark solitons and breathers. Besides,
the interactional solutions can be also understood that
the higher-order RWs are generated on a multi-solitons
background or amulti-breather background. In order to
construct this kind of interactional solutions, we con-
sider that the spectral characteristic equation (11) owns
a double-root and that the special solutions of the Lax
pair (2) are the linear combination of all the fundamen-
tal solutions.

For convenience, we can choose m1 = m2 = 0 in
the seed solutions (8), and the new seed solutions can
be written as
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q1[0] = l1e
iθ t , q2[0] = l2e

iθ t , (12)

with θ = 2(l21 + l22)[3γ (l21 + l22) + 1]. Beginning with
the spectral parameter ξ and the seed solutions (12),
the special vector solutions of the Lax pair (2) can be
elaborately derived as

�1 =

⎛

⎜⎜⎝

(P1e2iξ
2t+H1 − P2e2iξ

2t+H1 )e− i
2 θ t ,

ρ1(−P2e2iξ
2t+H1 + P1e2iξ

2t+H1 )e
i
2 θ t − cl2eH2

ρ2(−P2e2iξ
2t+H1 + P1e2iξ

2t+H1 )e
i
2 θ t + cl1eH2

⎞

⎟⎟⎠ ,

(13)

with

P1 =
(ξ −

√
ξ2 + l21 + l22)

1
2

√
ξ2 + l21 + l22

,

P2 =
(ξ +

√
ξ2 + l21 + l22)

1
2

√
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, ρ1 = l1√
l21 + l22

,
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,

H1 = i
√
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[
x − 2ξ(1 + 2γ (l21 + l22 − 2ξ2))t

+
N∑

k=1

Sk f
2k

]
, H2 = iξ(x + 8γ ξ3t),

where Sk = mk + ink , c, mk and nk are all arbitrary
real constants, and f is a real infinitesimal parameter.
Choosing τ = l21 + l22 and ξ = ξ1 = i(

√
τ + f 2), the

spectral characteristic equation (11) can own a double-
root. At this point, we can expand the vector function
�1 at f = 0 as

�1 = �
[0]
1 + �

[1]
1 f 2 + �

[2]
1 f 4 + · · · + �

[N ]
1 f 2N + · · · ,

with �
[ j]
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[ j]
1 , ψ

[ j]
2 , ψ

[ j]
3 )T = 1

(2 j)!
∂2 j�1

∂ f 2 j
| f=0

( j = 0, 1, 2, 3 . . .).
Here, we only give the concrete expressions of �

[0]
1

and �
[1]
1 as follows

ψ
[0]
1 = τ−1/4 (1/2 + i/2) e−3 iτ t(τ γ+1)

√
2

(
24 τ 2tγ + 4 τ t + 2 i

√
τ x + i

)
,

ψ
[0]
2 = τ−5/4 (−1/2 − i/2)

√
2l1

(
24 τ 5/2γ t + 4 τ 3/2t + 2 iτ x − i

√
τ
)
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8 iτ 2γ t−√
τ x ,

ψ
[0]
3 = τ−5/4 (−1/2 − i/2)

√
2l2

(
24 τ 5/2γ t + 4 τ 3/2t + 2 iτ x − i

√
τ
)

× e3 iτ
2tγ−iτ t + cl1e

8 iτ 2γ t−√
τ x ,

ψ
[1]
1 = τ−3/4(−1/24 − 1/24 i)e−3 iτ (γ τ+1)t

√
2(−8 iτ 3/2x3 − 48 τ 2x2t − 288 γ τ 3x2t

+1152 iγ τ 7/2xt2

+ 3456 iγ 2τ 9/2xt2 + 96 iτ 5/2xt2

+ 6912 γ 2τ 5t3 + 1152 γ τ 4t3 + 64 τ 3t3

+ 13824 γ 3τ 6t3 − 12 iτ x2

− 144 τ 3/2xt − 288 γ τ 5/2xt + 1728 iγ τ 3t2

+1728 iγ 2τ 4t2

+ 240 iτ 2t2 − 6 i
√

τ x − 108 τ t − 744 τ 2γ t

− 24 iτ m1 + 24 τ n1 + 3 i),

ψ
[1]
2 = (cl2x − 32 iτ 3/2γ ctl2)e

−√
τ x+8 iγ τ 2t

+ τ−5/4(1/24 + 1/24 i)
√
2l1
e3 iγ τ 2t−iτ t ,

ψ
[1]
3 = (−cl1x + 32 iτ 3/2γ cl1t)e

−√
τ x+8 iγ τ 2t

+ τ−5/4(1/24 + 1/24 i)
√
2l2
e3 iγ τ 2t−iτ t ,


 = −8 iτ 3/2x3 − 48 τ 2x2t − 288 γ τ 3x2t

+1152 iγ τ 7/2xt2

+ 3456 iγ 2τ 9/2xt2 + 96 iτ 5/2xt2

+ 6912 γ 2τ 5t3

+ 64 τ 3t3 + 1152 γ τ 4t3 + 13824 γ 3τ 6t3

+12 iτ x2

− 48 τ 3/2xt + 288 γ τ 5/2xt + 576 iγ τ 3t2

+144 iτ 2t2

− 1728 iγ 2τ 4t2 − 6 i
√

τ x − 744 γ τ 2t

− 12 τ t − 24 iτ m1 + 24 τ n1 − 3 i.

Choosing N = 1 in Theorem 1, we can directly
derive the following concrete expressions of the first-
order interactional solutions for the coupled LPD equa-
tions (1) as

q1[1] = l1e
iθ t + 4l1F1eiθ t + cl2F2e11 iτ

2tγ+3 iτ t−√
τ x

c2(l12 + l22)e−2
√

τ x + G
,

(14)
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q2[1] = l2e
iθ t + 4l2F1eiθ t − cl1F2e11 iτ

2tγ+3 iτ t−√
τ x

c2(l12 + l22)e−2
√

τ x + G
,

(15)

with

F1 = τ− 1
2 (−576 τ 4γ 2t2 − 192 τ 3γ t2

+ 48 iτ 2tγ − 16 τ 2t2 + 8 iτ t − 4 τ x2 + 1),

F2 = 4
√

τ
√
2 (2 − 2 i)

(
−24 τ 2γ t − 4 τ t

+ 2 i
√

τ x + i
)

, τ = l21 + l22 ,

G = τ− 3
2 (576 τ 4γ 2t2l1

2

+ 576 τ 4γ 2t2l2
2

+ 576 τ 5γ 2t2 + 192 τ 3γ t2l1
2

+ 192 τ 3γ t2l2
2 + 192 τ 4γ t2

+ 16 τ 2t2l1
2 + 16 τ 2t2l2

2

+ 16 τ 3t2 + 4 τ x2l1
2 + 4 τ x2l2

2 + 4 τ 2x2

− 4
√

τ xl1
2 − 4

√
τ xl2

2

+ 4 τ 3/2x + l1
2 + l2

2 + τ).

Case 1 When c �= 0, one of the two parameters l1 and
l2 is zero, and we can get the first kind of the first-order
interactional solutions. FromFig. 1a, b, we can find that
q1 component is the first-order RW interactingwith one
bright soliton and q2 component is the first-order RW
interacting with one dark soliton. In q1 component, the
amplitude of the background that the RW emerges is
almost zero, so the RW in Fig. 1a is not easily observed.

Case 2 When c �= 0, l1l2 �= 0, the second kind of the
first-order interactional solutions can be constructed.
It is shown that the two components are all the first-
order RW and one breather in Fig. 1c, d. Comparing
with Fig. 1c , d, we can find that the breathers in q1
and q2 components are greatly different. In Fig. 1d,
the amplitudes of the breather beyond the background
are bigger than the ones under the background plane.
However, the situation is opposite in Fig. 1c.

Choosing N = 2 in Theorem 1, the second-order
interactional solutions can be similarly derived. The
concrete expressions for the second-order interactional
solutions are very tedious and complicated, and we
omit them and only give the corresponding figures. In
the following contents, the dynamics of the second-
order interactional solutions will be discussed in detail.

Case 1 If c �= 0, one of the two parameters l1 and l2
is zero, and the first type of the second-order interac-

tional solutions can be constructed. From Fig. 2, we
can find that q1 component is the second-order RW
coexisting with two bright solitons, and q2 component
is the second-order RW coexisting with two dark soli-
tons. When m1 = n1 = 0, the second-order RWs in
the interactional solutions are the fundamental one, see
Fig. 2a, b; when m1n1 �= 0, the fundamental second-
order RWs in Fig. 2a, b split into three first-order RWs,
which forms the triangular pattern, see Fig. 2c, d. In
Fig. 2a, the fundamental second-order RW in q1 com-
ponent emerges on the top of two bright solitons and it
can be seen easily. In Fig. 2c, the fundamental second-
order RW splits into three first-order RWs, and we find
that one first-order RW is generated on the top of one
soliton and can be easily seen. However, the other two
first-order RWs are generated on a plane with almost
zero amplitude and cannot be find easily.

Case 2 If c �= 0, l1l2 �= 0, the second type of the
second-order interactional solutions can be derived. At
this point, the two components are all the second-order
RWs interactingwith two-breather, see Fig. 3. TheRWs
in Fig. 3a, b are the fundamental second-order RWs
with the condition m1 = n1 = 0. Choosing m1n1 �= 0,
the fundamental RWs in Fig. 3a, b can split into three
first-order RWs, see Fig. 3c, d.

Utilizing the above Theorem 1, the more higher-
order interactional solutions for the coupled LPD equa-
tions (1) can be constructed. It can be found that these
solutions can bemainly classified as two types: (1) One
component is the higher-order RWs and multi-bright
solitons, and the other one is the higher-order RWs
and multi-dark solitons; (2) two components are all the
higher-order RWs and multi-breather.

4 Higher-order rogue wave pairs for the
triple-root case

Considering that the spectral characteristic equation
(11) owns a triple-root, we can construct the novel RWs
for the coupledLPDequations (1),which are calledRW
pairs. Here, the first-order RW pairs can split into two
traditional first-order RWs, and the second-order RWs
split into four or six traditional RWs.

Here, we will attempt to derive the higher-order RW
pairs of the system (1) with the assumption that the
characteristic equation (11) of U0 owns a triple-root.
In order to get the triple-root, the following constraint
conditions in the seed solutions (8) should be needed
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Fig. 1 The first-order
interactional solutions
γ = 1

100 : case 1 (a, b) with
l1 = 0, l2 = −1, c = 1

50 ;
case 2 (c, d) with
l1 = 1, l2 = − 1

2 , c = 1
500

ξ = 3
√
3

4
l1i, m2 = −m1, l2 = −l1, m1 = −1

2
l1.

Without loss of generality, the parameter l1 can be cho-
sen as l1 = 1, and then, the seed solutions (8) can be
rewritten as

q1[0] = eiη1 , q2[0] = −eiη2 ,

with

η1 =
(
321

16
γ + 15

4

)
t − 1

2
x,

η2 =
(
321

16
γ + 15

4

)
t + 1

2
x .

In order to utilize the limiting technique, we set the

spectral parameter as ξ = ξ1 = 3
√
3

4 i(1 + δ3), where
δ is a small parameter. Thus, the vector fundamental
solution of the Lax pair (2) can be given as

�(ξ1) = RM

⎛

⎝
[(ζ j − iξ1 + i

2 )(ζ j + iξ1 + i
2 )]eA j ,

(ζ j − iξ1 + i
2 )e

A j ,

(−ζ j + iξ1 + i
2 )e

A j )

⎞

⎠

( j = 1, 2, 3), (16)

where

RM = diag(e− i
3 (η1+η2), e

i
3 (2η1−η2), e

i
3 (2η2−η1)),

A j = ζ j x +
[(

4 iγ ξ1
2 − 23

4
iγ − i

)
ζ j

2

+
(
8 γ ξ1

3 − 15

2
γ ξ1 − 2 ξ1

)
ζ j

+ 4 iγ ξ1
4 + 11

4
iγ ξ1

2 + iξ1
2 − 3

2
i − 69

8
iγ

]
t,

where ζ j admits the following one-variable cubic equa-
tion

123



1738 T. Xu, G. He

Fig. 2 Case 1: the
second-order interactional
solutions γ = 1

50 , l1 =
0, l2 = −1, c = 1

106
: a, b

the second-order
fundamental RW interacts
with two bright and dark
solitons with m1 = n1 = 0;
c, d the second-order RW of
triangular pattern interacts
with two bright and dark
solitons with
m1 = −n1 = 400

ζ 3 + 3
√
3

4
(δ + 1)(δ2 − δ + 1)ζ 2

+ 9

16
(−6δ3 + 1 + 3δ6)ζ − 3

√
3

64
(9δ4 − 9δ3

+12δ2 + 3δ + 1)(δ + 1)(3δ2 + 3δ − 1)

(δ2 − δ + 1) = 0. (17)

When δ → 0, Eq. (17) can own the following triple-

root ζ1 = ζ2 = ζ3 = −
√
3
4 .

Choosing the spectral parameter ξ = ξ1 =
3
√
3

4 i(l1 + δ3), the special vector solution of the Lax
pair (2) can be written as

�2(δ) = f �1 + g�2 + h�3, (18)

where

f =
N∑

j=1

f jδ
3(N−1),

g =
N∑

j=1

g jδ
3(N−1),

h =
N∑

j=1

h jδ
3(N−1)

�1 = 1

3
(�1 + �2 + �3),

�2 = 3
√
2

3δ
(�1 + ω∗�2 + ω�3),

�3 = 3
√
4

3δ2
(�1 + ω�2 + ω∗�3).

Here, ω = e
2iπ
3 and f j , g j h j ( j = 1, 2, . . . , N ) are

all real constants. The vector eigenfunction �2(δ) can
be expanded as the following Taylor series at δ = 0

�2(δ) = �
[0]
2 + �

[1]
2 δ3 + · · · + �

[N ]
2 δ3(N−1) + · · · ,

where �
[ j]
2 = (ψ

[ j]
2 , φ

[ j]
2 , χ

[ j]
2 )T = ∂3 j�1

(3 j)!∂δ3 j
|δ=0

( j = 0, 1, 2, 3 . . .).
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Fig. 3 Case 2: the
second-order interactional
solutions γ = 1

50 , l1 =
1, l2 = − 1

2 , c = 1
106

: a, b
the second-order
fundamental RW interacts
with two breathers with
m1 = n1 = 0; c, d the
second-order RW of
triangular pattern interacts
with two breathers with
m1 = −n1 = 400

Setting N = 1 in Eq. (7), the concrete expressions
for the first-order RW pairs can be derived as

q1[1] = eiη1 + 3
√
3φ2[0]ψ2[0]∗

|ψ2[0]|2 + |φ2[0]|2 + |χ2[0]|2 ,

(19)

q2[1] = −eiη1 + 3
√
3χ2[0]ψ2[0]∗

|ψ2[0]|2 + |φ2[0]|2 + |χ2[0]|2 ,

(20)

with

ψ2[0] = ψ
[0]
2 = 1/8 e− 185

32 i tγ− 19
4 i t−1/4

√
3x

(
228 ih1

√
3xtγ + 24 ih1xt

√
3 + 3249 h1t

2γ 2

+ 228 ig1tγ + 1212 ih1tγ + 684 h1t
2γ

+ 24 ig1t + 120 ih1t − 8 g1
√
3x − 32 h1

√
3x

+ 36 h1t
2 − 12 h1x

2 − 8 f1 − 24 g1 − 48 h1
)

,

φ2[0] = φ
[0]
2 = −1/16 e

457
32 i tγ−i t−1/2 i x−1/4

√
3x

(− 228 g1tγ − 528 h1tγ − 24 g1t

− 48 h1t − 24 xg1 − 72 xh1 + 36 ih1t
2

− 12 ih1x
2 − 8 i f1 − 16 h1

√
3 − 16 g1√

3 + 228 ig1
√
3tγ + 984 ih1γ

√
3t + 684 iγ t xh1

+ 3249 ih1t
2γ 2 + 684 ih1t

2γ + 24 ig1
√
3t

+ 96 ih1
√
3t − 8 ig1

√
3x − 8 ih1

√
3x + 72 i t xh1

− 12 h1
√
3x2 − 228 h1

√
3xtγ − 24 h1xt

√
3

+ 684 h1t
2
√
3γ + 3249 h1t

2

√
3γ 2 − 8 f1

√
3 + 36 h1t

2
√
3),

χ2[0] = χ
[0]
2 = −1/16 e

457
32 i tγ−i t+1/2 i x−1/4

√
3x

(− 228 g1tγ − 528 h1tγ − 24 g1t − 48 h1t

+ 24 xg1 + 72 xh1 + 36 ih1t
2 − 12 ih1x

2
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Fig. 4 The first-order rogue
wave pairs with
γ = 1

50 , g1 = 0, h1 = 1
2 : a,

b the fundamental RW pairs
with f1 = 0; c, d the RW
pairs consisted of two
traditional first-order RWs
with f1 = 100

− 8 i f1 + 16 h1
√
3 + 16 g1

√
3

+ 3249 ih1t
2γ 2 + 684 ih1t

2γ − 8 ig1
√
3x

− 8 ih1
√
3x + 12 h1

√
3x2

− 228 h1
√
3xtγ − 24 h1xt

√
3

− 984 ih1γ
√
3t − 684 iγ t xh1 − 228 ig1

√
3tγ

− 24 ig1
√
3t − 96 ih1

√
3t − 72 i t xh1

− 684 h1t
2
√
3γ − 3249 h1t

2
√
3γ 2

+ 8 f1
√
3 − 36 h1t

2
√
3).

From Fig. 4 a, b, it is shown that the first-order fun-
damental RW pairs exist in the two components, and
this kind of fundamental RW includes more than one
peak above the background plane. Choosing f1 �= 0,
the first-order fundamental RW pairs can split into two
traditional first-order RWs, see Fig. 4c, d. Here, we give
the density plot of the first-order RWpairs in q1 compo-
nent with different γ to discuss the higher-order disper-

sive and nonlinear effects, see Fig. 5. When γ > 0, the
two RWs are stretched and close together with increas-
ing the absolute value of γ , see Fig. 5a, c. Choosing
γ = 0, the RWs without the effects of the higher-order
terms are given in Fig. 5d. When γ < 0, the two RWs
separate with each other with increasing the absolute
value of γ , see Fig. 5e, g.

Choosing N = 2 in Eq. (7), the expressions of the
second-order RW pairs can be similarly constructed.
Here, we omit the concrete expressions and only give
the related figures. There exist six free parameters
f j , g j , h j ( j = 1, 2) in the expressions for the second-
order RW pairs. Based on the above facts, the second-
order RW pairs are expected to have more distribution
patterns.

If g1 �= 0, the second-order RW pairs including
four traditional first-order RWs are given, see Fig. 6.
In Fig. 6a, b, we can find that one fundamental first-
order RW pairs are located on the middle site and two
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Fig. 5 The density plot of the RW pairs in Fig. (4): a γ = 1
50 ; b γ = 1

30 ; c γ = 1
5 ; d γ = 0; e γ = − 1

50 ; f γ = − 1
30 ; and g γ = − 1

5

traditional first-order RWs stand on two sides; these
three RWs form an obtuse triangle pattern. In Fig. 6c,
d, the first-order RW pairs in Fig. 6a, b all split into two
traditional first-order RWs, which form a quadrilateral

pattern. If g1 = 0, the second-order RWpairs consisted
of six traditional first-order RWs are demonstrated in
Fig. 7. It is shown that four traditional first-order RWs
distribute around one fundamental first-order RW pairs
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Fig. 6 The second-order
RW pairs with f1 = 0, g1 =
1, g2 = 0, h1 = 0, γ = 1

50 :
a, b the triangular pattern
with f2 = 0, h2 = 100; c, d
the quadrilateral pattern
with f2 = 10000, h2 = 0

in Fig. 7a, b, and these five RWs form the ring pattern 1.
Changing these parameters, the fundamental first-order
RW pairs in the ring pattern 1 can split into two tradi-
tional first-order RWs, which form the ring pattern 2,
see Fig. 7c, d. Utilizing Theorem 1, other higher-order
RW pairs can be constructed and we omit them here.

5 Conclusion

Utilizing the Darboux transformation and the limiting
technique, we construct the higher-order interactional
solutions and the higher-order RW pairs for the cou-
pled LPD equations (1). We mainly consider the two
situations of the roots for the spectral characteristic
equation (11): the double-root and the triple-root. If the
spectral characteristic equation owns a double-root, the
higher-order interactional (semirational) solutions can
be derived,which aremainly classified as twokinds: (1)
One component is higher-order RWs interacting with
multi-bright solitons, and the other one is higher-order

RWs interacting with multi-dark solitons; (2) two com-
ponents are all higher-orderRWscoexistingwithmulti-
breather. Considering the triple-root situation of the
spectral characteristic equation, we can construct the
higher-order RW pairs for the system (1), which are
absolutely different from the traditional higher-order
RWs. For the first-order RW pairs, it can split into two
traditional first-order RWs, see Fig. 4c, d. Besides, the
higher-order nonlinear and dispersive terms can affect
the dynamics of the RW pairs, see Fig. 5. Choosing
g1 = 0 or g1 �= 0, the second-order RW pairs can split
into four or six traditional first-order RWs. It is shown
that the four traditional first-order RWs can form the
triangular pattern and the quadrilateral pattern in Fig. 6.
Similarly, the six traditional first-order RWs form the
ring pattern 1 and 2 in Fig. 7.

These results further reveal the dynamic structures
of RWs in the multi-component coupled system, and
we hope these kinds of solutions could be verified in
physical experiments in the future.
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Fig. 7 The second-order
RW pairs with
f1 = 0, g1 = 0, h1 =
1

100 , h2 = 0, γ = 1
50 : a, b

the ring pattern 1 with
f2 = 0, g2 = 1000; c, d the
ring pattern 2 with
f2 = 10000, g2 = 0
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