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Abstract This paper reveals some new and rich
dynamics of a two-dimensional prey–predator sys-
tem and to anticontrol the extinction of one of the
species. For a particular value of the bifurcation param-
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eter, one of the system variable dynamics is going to
extinct, while another remains chaotic. To prevent the
extinction, a simple anticontrol algorithm is applied
so that the system or bits can escape from the vanish-
ing trap. As the bifurcation parameter increases, the
system presents quasiperiodic, stable, chaotic and also
hyperchaotic orbits. Some of the chaotic attractors are
Kaplan–Yorke type, in the sense that the sum of its
Lyapunov exponents is positive. Also, atypically for
undriven discrete systems, it is numerically found that,
for some small parameter ranges, the system seemingly
presents strange nonchaotic attractors. It is shown both
analytically and by numerical simulations that the orig-
inal system and the anticontrolled system undergo sev-
eral Neimark–Sacker bifurcations. Beside the classical
numerical tools for analyzing chaotic systems, such as
phase portraits, time series and power spectral density,
the ‘0–1’ test is used to differentiate regular attractors
from chaotic attractors.

Keywords Prey–predator system · Anticontrol ·
Neimark–Sacker bifurcation · ‘0–1’ test · Strange
nonchaotic attractor

1 Introduction

During the last few decades, prey–predator systems
have received a renewal of attention (see, e.g., [1–
11]). This paper considers the discrete variant of a
continuous-time Lotka–Volterra prey–predator system
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[7,8], in which the competition between two species x
and y is modeled by the following iterative equations:

xn+1 = axn(1 − xn) − bxn yn,

yn+1 = dxn yn,
(1)

where a, b, d are positive parameters and xn and yn

denote the prey and the predator densities, respectively,
in year (generation) n, bx represents the number of
prey individuals consumed per unit area per unit time
by an individual predator, and dxn yn is the predator
response [1].

Some of the complex dynamical behaviors and sta-
bility aspects of system (1) are presented in [7]. In
this paper, more rich dynamics are revealed, such as
hyperchaotic attractors, chaotic attractors in the sense
of Kaplan–Yorke, and strange nonchaotic attractors
(SNAs). Also, an anticontrol algorithm is designed and
utilized for preventing the extinction dynamics of the
predator variable yn .

The paper is structured as follows: Sect. 2 presents
the systemdynamics, includingNeimark–Sacker bifur-
cation, quasiperiodic attractors, stable attractors,
chaotic attractors and hyperchaotic attractors. Section 3
presents a particular chaotic attractor at a = 4 when
the variable yn vanishes after a few thousands of iter-
ations. Also, an anticontrol algorithm is designed and
used to prevent yn from extinction. Some comments are
given in Conclusion section, where SNAs are briefly
discussed.

2 System dynamics

From the biology standpoint, assume that the system
is defined on the first closed quadrant R

2+ = {(x, y) :
x ≥ 0, y ≥ 0}, with initial conditions satisfy x0 :=
x(0) > 0 and y0 := y(0) > 0.

A numerical approximation of the boundedness
domain D ⊂ R

2+ in the parameter space (a, d), on
which the system is defined, is colored yellow in the
lattice [0, 8] × [0, 10] ⊂ R

2+ in Fig. 1a. Outside the
yellow domain, i.e., for a /∈ [0, 8] and d /∈ [0, 10],
the system might be divergent (gray region). As can be
seen, the frontier of the boundedness domain presents
some zones whose structures are rather complex, with
fractal characteristics (zoomed zone D1) and rectilin-
ear zones (zoomed zone D2).

Figure 2 reveals the extremely rich and complex sys-
temdynamics: regular dynamics, such asmode-locking

(or stable periodic orbits), quasiperiodicity (or invariant
circles), and chaotic and hyperchaotic dynamics. Gen-
erally, relatively small periodic windows are immersed
in larger quasiperiodic windows.

The parameter b does not influence the system
dynamics. Therefore, hereafter in all numerical exper-
iments, set b = 0.2 and, unless specified, d = 3.5.

Local (finite-time) Lyapunov exponents (LEs) are
determined numerically from the system equations.
Except for two different attraction basins, which appear
for some range of the bifurcation parameter a within
the existence domain, the values of the local LEs are
approximatively the same. Hereafter, the local LEs
are simply called LEs and the spectrum is denoted
� = {λ1, λ2}, with λ1 > λ2.

Unless specified, the iteration number, necessarily to
obtain meaningful numerical results, is set to n = 5e5.
Denote by Pi , i = 1, 2, . . ., somemost important points
in the partition of the parameter range a ∈ [2, 4] and
by NS the point corresponding to the Neimark–Sacker
bifurcation. Zero LEs are considered having at least 4
zero decimals, i.e., with error less than 1e − 5.

In order to analyze the qualitative changes of the sys-
tem and to follow the changes in the system dynamics,
consider the bifurcation diagram on the plane (a, x),
together with Lyapunov spectrum �, for a ∈ [2, 4],
where themost important dynamics are shown in Fig. 2.
Note that the particular shape of the maximal LE
beginning from P1 and P2 resembles the existence of
SNAs, a notion described first by Grebogi et al. in
1984 [12]. Supplementarily, the binary ‘0–1’ test (see
“Appendix D”) is utilized to distinguish clearly regular
attractors from chaotic attractors. This test indicates a
value close to 0 for regular dynamics, and a value that
tends to 1 for chaos.

To study the nature of the attractors, phase plots, time
series, LEs, normalized power spectral density (PSD)
and ‘0–1’ test are utilized. As the time series are real,
PSD is two-sided symmetric and, therefore, only the
left-side is discussed here.

The PSD is used to unveil the birth of new frequen-
cies, one of the presumably paths to chaos for this sys-
tem. From the evolution of the asymptotic growth rate
K as function of a (Fig. 2c), one can see that, except the
range a ∈ (3.2, 3.25), where the transition from regular
motion to chaotic motion is completed gradually. This
fact suggests the existence of SNAs (see Sect. 4). For
the other intervals of a, K changes abruptly between
values 0 and 1.
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Fig. 1 a Boundedness parametric domain of the system (1). Yel-
low presents the boundedness domain and gray the divergency
domain. b Stability domains of the fixed points X∗

1,2,3. The sta-
bility domain of the fixed point X∗

1 is plotted in red, of the fixed
point X∗

2 in blue, while the fixed point X∗
3 in green. Curves 2© and

3© represent the stability domains of fixed point X∗
3 (region 2©

represents complex eigenvalues, 3© real eigenvalues). Regions

6© and 8© represent the instability domains. c The Neimark–
Sacker curve AB with A(1.41, 6.88) and B(4, 2.67), and the
N–S bifurcation points NS a = 2.3333 and d = 3.5, NS1, with
a = 2.507 . . ., and b = 3.327 . . ., and HS2 with a = 3 and
d = 3. d The Neimark–Sacker surface of the anticontrolled sys-
tem (6). (Color figure online)
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Fig. 2 a Bifurcation
diagram of the component
xn . b Lyapunov spectrum
�. c Asymptotic growth
rate K of the 0–1 test.
Detailed zone d presents a
multistability window in the
bifurcation diagram, while e
presents a zoomed detail of
window (P6, P7). In detail,
f presents a zoomed area
around the point P8

Attractors with: (a) λ1,2 < 0, a single frequency in
PSD (with potential harmonics) and K = 0, are con-
sidered to be stable periodic orbits; (b) λ1 > 0, λ2 < 0,
a broadband in PSD and K = 1, are considered to be
chaotic attractors; (c) λ1 = 0, λ2 < 0, several discrete
peaks in PSD and K = 0, whose orbit points in the
phase space never repeat itself, are called quasiperiodic
orbits (or invariant circles); (d) λ1,2 > 0, broadband
in PSD and K ≈ 1, are considered to be hyperchaotic
attractors; (e) λ1 > 0 > λ2, for which

∑
λi > 0,

are called Kaplan–Yorke (K–Y) chaotic attractors [13],

and (f) λ2 ≤ λ1 ≤ 0 and 0 < K < 1, are called
strange nonchaotic attractors. Stable periodic orbits
and quasiperiodic orbits are regular orbits.

The system reveals a lot of interesting qualitative
changes in its dynamics. In this paper the interest is
mainly on the Neimark–Sacker (N–S) bifurcation, one
of the main phenomenon of this system, and on its
chaotic dynamics.

An important characteristic of the system is themul-
tistability, or coexistence of attractors (see the zoomed
portion in the bifurcation diagram Fig. 2d, and also
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Fig. 3a). Thus, for the same value of the parameter a,
i.e., a = 3.381 (with d = 3.5) and different initial con-
ditions (0.5, 1.2) and (0.006, 3.65), one obtains two
different attractors: a quasiperiodic orbit (red plot) and
a stable periodic orbit (blue plot), respectively (Fig. 3b).
Also, for a = 3.3815 and initial conditions (0.5, 1.2)
and (0.006, 3.65), other two different attractors emerge
(Fig. 3c). For clarity, the attractive points of the sta-
ble orbit are represented by filled circles. Comparing
Fig. 3b, c, one can see that the quasiperiodic orbit (red
plot), composedof 6 incomplete island-like sets, degen-
erates for a passing through a crisis value a∗ (slightly
lower than a = 3.3815), where the attractor begins
to break. Thus, from the triangular shape, they trans-
form to 6 sets of triplets (points), marking the corner
of the former island-like set scenario and forming the
attractive periodic points of a period-18 stable orbit.
This trifurcation-like scenario resembles the birth of
chaos via the Period Three Theorem. Contrarily, the 12
blue points of the stable orbit transform to 12 closed
quasiperiodic island-like sets.

Regarding the coexistence of different attraction
basins, determined by the coexisting attractors Fig. 2
is obtained with the initial condition (0.006, 3.65).
Unspecified initial conditions mean that they do not
influence the numerical results.

Denote the three fixed points of the system by

X∗
1(0, 0), X∗

2

(
1 − 1

a
, 0

)
, X∗

3

( 1

d
,

a

b

(
1 − 1

d

)
− 1

b

))
,

Consider, next, a and d as bifurcation parameters in the
plane (a, d).

Proposition 1 For all b ∈ R+:

(i) If a < 1 X∗
1 is stable for all d ∈ R+;

(ii) If d −a/(a −1) < 0, with a ∈ (1, 3), X∗
2 is stable

for all d ∈ R+;
(iii) Ifmax{3a/(a+3), a/(a−1)} < d < 2a/(a−1),

a > 1, X∗
3 is stable.

Proof See the proof in “Appendix A”. 	


The stability domains are presented in Fig. 1b over
the boundedness domain (Fig. 1a). Color red represents
the stability domain of the fixed point X∗

1 , blue for the
fixed point X∗

2 and green for X∗
3 . On the remaining

domain, fixed points are unstable.

2.1 Quasiperiodic regime

Because the quasiperiodic windows are prevalent, the
N–S bifurcation, which generates quasiperiodicity, is
now studied both analytically and numerically. Denote
its complex eigenvalues by ec

1,2 (see “Appendix A”).
The N–S bifurcation occurs when the fixed point X∗

3
changes stability, for which the following conditions
are satisfied [14]1:

(i) |ec
1,2(a, d)| = 1;

(ii) ∂
∂d (|ec

1,2(a, d)|) = k �= 0 (transversality condi-
tion);

(iii) (ec
1,2(a, d)) j �= 1 for j = 1, 2, 3, 4.

The stability of X∗
3 changes as a and d are varied.

Therefore, the following theorem can be established

Theorem 1 For

a = d

d − 2
, (2)

with d > 2, the system (1) undergoes a N–S bifurcation.

Proof See “Appendix B”. 	

In the parametric plane (a, d), the relation (2) rep-

resents the N–S curve, denoted as AB in Fig. 1c (red
plot). Thus, N–S bifurcations appear at points NS(a, d)

situated along the curve AB, for a ∈ (1.41, 4) and
d ∈ (2.67, 6.88).

Hereafter, the parameter d is set to d = 3.5 (see the
dotted line in Fig. 1b, c). According to the relation (2),
the bifurcation occurs at the point NS in Fig. 2, with
a = aNS = 2.3333 . . ., in perfect agreement with the
numerical results.

The N–S bifurcation is supercritical because, at the
fixed point X∗

3 , it loses its stability, giving birth to a
closed invariant curve (topologically equivalent to a
circle). Once a crosses the point NS along the line
d = 3.5, the system passes from the stable fixed point
X∗
3 to an unstable fixed point, and an one-frequency

invariant closed curve is born, whose size in the phase
plane grows as the parameter a increases. To under-
stand better this phenomenon, consider Fig. 4. Fig-
ure 4a represents the phase portraits, while Fig. 4b, the
PSD. In Fig. 4(i), the case of a = 2.33 < aNS (before
bifurcation) is considered: the phase portrait shows that
the orbits are attracted by X∗

3 . The PSD indicates that

1 The formula for the first Lyapunov coefficient (genericity con-
dition), which indicates the type of N–S bifurcation, is not con-
sidered here.
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Fig. 3 Coexisting stable orbits and quasiperiodic orbits for a ∈
(3.380, 3.3816). a Bifurcation diagram showing two coexisting
attractors generated from two different attraction basins (red and
blue, respectively). b Phase overplot of the orbits starting from
(x0, y0) = (0.5, 1.2) (red plot) and (x0, y0) = (0.006, 3.65)
(blue plot), for a = 3.381. The stable period-12 orbit is drawn
by filled blue circles, while the quasiperiodic orbit is plotted in

red. c Phase overplot of the stable period-18 orbit starting from
(0.5, 1.2) (red plot) and the 12 islands-like of the quasiperiodic
orbit starting from (0.006, 3.65) (blue plot), for a = 3.3815.
Rectangular zones underline the transformation from quasiperi-
odic motion to stable periodic orbit, and vice versa. (Color figure
online)
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Fig. 4 Neimark–Sacker bifurcation: a present the phase por-
traits and b PSD. (i) a = 2.33 (a < aH ); the phase portrait
in Fig. 4a(i) shows that X∗

3 is still attractive. In Fig. 4b(i), the
PSD reveals that for a < aH the orbits have no frequencies.
(ii) a = 2.3334 (slightly after aH ): The three-dimensional view
shows that orbits from outside of the quasiperiodic curve � are

attracted by the invariant circle born after N–S bifurcation. PSD
reveals the birth of the frequency f0 and the place of the future
harmonic. (iii) a = 2.3545. Once a is incremented, next harmon-
ics of f0, f1 and f2 are born equidistantly with offset δ1, and the
second main frequency f21 appears with distance δ2 from f2
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there are no frequencies yet. In Fig. 4(ii), the case of
a slightly bigger value of a, a = 2.3334 > aNS, is
considered. The three-dimensional simulative result in
the space (a, x, y) shows that X∗

3 loses its stability and
the orbits from outside (and inside) are the born invari-
ant circle �, which are attracted by the quasiperiodic
orbit. PSD reveals the birth of the first fundamental fre-
quency (first harmonic)2 f0 ≈ 0.1339 and the place of
the first harmonic f1. Figure 4(iii) presents the case of
a = 2.3545, at a relatively larger distance fromaNS. For
this value of a, the size of� still increases and other two
harmonics (modulation frequencies) of f0 ≈ 0.1343
are born, being distributed in the PSD as follows: fk =
f0+kδ1 = (k+1) f0, k = 1, 2, equidistant at a constant
offset of δ1 ≈ 0.1343 to each other. Also, the second
main frequency f21 ≈ 0.4628 appears, to the right of
f2, at the distance of δ2 ≈ 0.0599. The quasiperiodic
oscillations are non-resonant, f0/ f21, which is an irra-
tional number.

If one considers the complex eigenvalues ec
1,2(a, d)

of X∗
3 for d > a/(a − 1) in the exponential form:

ec
1(a, b) = A(a, d)eiα (see “Appendix A”), and

ec
2(a, b) = ec

1 = A(a, d)e−iα , then the argument α

can be obtained via the relation

α = arctan
I m(ec

1)

Re(ec
1)

= arctan

(
1

2

√
4(a − 1)d2 − 4ad − a2

2d − a

)

.

Calculations show that a simpler form of α, determined
at the bifurcation points d∗ = 2a/(a − 1) and situated
on the curve N–S, can be expressed as

α(d∗) = arccos
5 − a

4
. (3)

(i) If α(d∗)/2π is a rational number, i.e.,

α(d∗)/2π = m/n, (4)

with m, n being some positive relative-prime integers,
then one has a periodic regime, mode-locked state, or
stable periodic orbit, and the iterated points repeat
(after relatively long transients). In this case n is the
period of the orbit, while m represents its multiplicity.

(ii) If α(d∗)/2π is an irrational number, the orbit
points tend to fill an invariant (dense) closed orbit,
which never repeats itself. The orbit is called quasiperi-
odic, or an invariant circle, though the orbit may never
exactly repeat itself, and the motion remains regular.

2 It is known that a physical mark of the N–S bifurcation is the
apparition of a new additional frequency in the time series.

Because of the sudden appearance or disappearances
of certain dynamics in the system (1) (such as transi-
tions between quasiperiodicity, mode-locking, chaos
and hyperchaos) as the parameter a is varied, this
resembles the crisis in strange chaotic attractors (as
introduced by Grebogi et al. [15]). Similarly, this phe-
nomenon will be called crisis.

At point P1(2.718), after the N–S bifurcation, the
quasiperiodicity continues till amajor periodicwindow
appears, which starts at a = aP1 , and the quasiperiodic
attractor is suddenly destroyed, allowing the forma-
tion of a stable window. In Fig. 5, few cases around
a = aP1 are presented. Figure 5a represents the bifur-
cation diagram embedding the periodic widow, and
Fig. 5b presents LEs which, within the periodic win-
dow, are both negative. A boundary crisis opens a
window, when the quasiperiodic attractor is suddenly
destroyed in favor of the stable window, and a reverse
crisis appears at the end of the stable window, when
the stable period-7 orbit suddenly disappears making
room for the new quasiperiodic attractor. To under-
line the differences in the system dynamics around this
point, Fig. 5(i), (ii) presents two representative orbits:
a = 2.6 (quasiperiodic orbit) situated at about the mid-
dle of the interval (aH , aP1), and a = 2.72, slightly
after P1 (stable periodic orbit), respectively. For each
case, Fig. 5c–e presents the phase portraits, partial time
series, and PSD. The quasiperiodic orbit in Fig. 5c(i)
contains 7 points (all unstable at this value of a), plot-
ted with filled circles. For the quasiperiodic orbit, the
time series in Fig. 5d(i) reveals that the orbit never
repeats. Figure 5e(i) shows the two main frequencies,
f0 ≈ 0.1398 and f21 ≈ 0.4409, and their harmonics
(offsets are δ1 ≈ 0.1398 and δ2 ≈ 0.0215). The two
main frequencies (and their harmonics) are incommen-
surate, so the oscillations are quasiperiodic and non-
resonant. Figure 5c(ii) plots the stable period-7 orbit.
In this case, points position is slightly different from
the case of a = 2.6, because of the slight increment of
the parameter a. Now, only the frequencies f0,1,2 are
clearly visible. The second frequencies fk1, k = 0, 1, 2,
collide with the first frequency and its harmonics lead-
ing to the disappearance of the quasiperiodic orbit. The
obtained oscillations are resonant (mode-locking).

Point P2(3.1) presents similar characteristics with
P1 and, therefore, is omitted.

Fora ∈ (aNS, aP3), withaP3 = 3.194, the quasiperi-
odicity undergoes crisis at points P1 and P3. Thus, at
these points, the maximal LE, λ1, leaves suddenly the
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Fig. 5 Bifurcation point P1(2.718). a Bifurcation diagram for
a ∈ [2.715, 2.745], containing the point P1. b Lyapunov spec-
trum for a ∈ [2.715, 2.745]. (i) a = 2.6 < aP1 . (ii) a = 2.72 >

aP1 . c Phase portraits; d time series; e PSD. For a = 2.6, at about
the middle interval (aH , aP1 ), the motion is a quasiperiodic orbit
with basic frequency f0 and its modulation frequencies (har-
monics), multiple of f0, satisfying fk = f0 + kδ1 = (k + 1) f0,
k = 1, 2, with offset δ1 > 0. Also, the second frequency has har-

monics fk1 = fk + δ2, k = 0, 1. The quasiperiodic oscillations
are non-resonant and contains 7 unstable fixed points (circled
points). For a = 2.72, the motion became a stable periodic orbit
and only frequencies f0,1,2 are visible. The oscillations are reso-
nant (mode-locking). The 7 fixed points are stable now and com-
pose a stable period-7 orbit. Point position is slightly different
because of the parameter a slight increases

zero value, becoming negative, and opens periodicwin-
dows for small parameter ranges.

Note that, for a ∈ [2, 4] and d = 3.5, only two
independent frequencies have been found. Also, the
invariant orbits suggest that the discrete predator–prey

system follows dynamical behaviors that are homoge-
neous in space and quasiperiodically oscillating in time
[3].
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Fig. 6 Phase portraits of
two near points, NS1 and
NS2, along the
Neimark–Sacker curve AB.
(i) (a, d) taken near
(a, d)NS1 . (ii) (a, d) taken
near (a, d)NS2 . a Values of
a and d are slightly smaller
than aNSi , dNSi , i = 1, 2,
respectively. a, b Values of
a and d are slightly bigger
than aNSi , and dNSi ,
i = 1, 2, respectively

2.2 Finding stable periodic orbits and the periods

(i) Stable cycle
1. Suppose one intends to obtain a stable periodic

orbit, e.g., of period 7. From the relations (3)–(4), with
m = 1 and n = 7, one obtains a = 2.507040792 from
arccos ((5− a)/4)−2π/7 = 0 and d = 3.327985277
from (2). This new N–S bifurcation point, NS1, can
be viewed in Fig. 1c. Figure 6(i) presents the phase
portraits of two values of (a, d) slightly near (a, d)NS1 .

2. To obtain a stable orbit of period 6 (m = 1 and
n = 6) from the equation arccos ((5−a)/4)−2π/6 =
0, one has a = 3 and the corresponding d = 3 (point
NS2 in Fig. 1c). Figure 6(ii) shows two values of (a, d),
slightly near (a, d)NS2 .

Note that, at all N–S bifurcation points, both LEs
are zero.

(ii) Period
To find the period of a stable orbit (which implicitly

has a single main frequency) with a relatively small
error (order of 1e − 3), the PSD can be used as follows

where the period of a stable orbit, T , is defined as T =
1/ f , which is the fundamental frequency.

1. For example, to find the period of the stable orbit
for a = 2.72 [see Fig. 5(ii)], from the PSD one obtains
f0 ≈ 0.1429 and, therefore, T = 1/ f0 ≈ 6.9979 ≈ 7,
as obtained numerically. Similarly, the harmonics f1,2
indicate the repetitions after 14 steps and 21 steps.

2. For a = aP5 = 3.36 (see Fig. 8a), f0 ≈ 0.1667
and T = 1/ f0 ≈ 5.9988 ≈ 6.

3. Consider a = 3.575 [Fig. 9(i)]. Denoting the
first frequency by fI ≈ 0.0714, one can see the pre-
vious second frequency and its harmonics moved in
the frequency space which, together with the first fre-
quency and its harmonics, form a new single frequency
series peeks, k fI, k = 1, 2, 3 . . . , 7, with offset of
δ3 ≈ 0.0357 [Fig. 9c(i)]. Therefore, T = 1/ fI ≈
13.9997 ≈ 14. In this case, the second main frequency
and its harmonics suggest a bifurcation, when the sec-
ondmain frequency (and its harmonics) are born as half
of the main frequency (and its harmonics).
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Fig. 7 Point P3(3.194). The small stable periodic window (yel-
low plot), centered at about P3. a Bifurcation diagram of xn
variable for a ∈ [3.19, 3.196]. b Phase plot of a quasiperi-
odic orbit for a = 3.193 < aP3 . c Lyapunov spectrum �

for a ∈ [3.19, 3.196]; d phase plot of a chaotic orbit for

a = 3.1945 > aP3 . e Phase plot of a quasiperiodic attrac-
tor for a = 3.1999, composed by 45 invariant circles. f For
a = 3.3 < aP4 , because

∑
λi = 0.064 − 0.015 > 0, the attrac-

tor is K–Y chaotic. (Color figure online)

2.3 Chaotic regime

Point P3(3.194) represents the center of an extremely
narrow window, which enhances the first chaotic

behavior. The window begins with a boundary crisis,
where the quasiperiodic oscillations suddenly disap-
pear and a stable periodic orbit with an extremely large
period (see the periodic window in Fig. 7a, yellow
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1432 M.-F. Danca et al.

Fig. 8 Phase portraits for
points P5−8. a Stable orbit
for a = 3.36. b
Quasiperiodic orbit for
a = 3.368. c Chaotic
attractor for a = 3.39. d
Hyperchaotic attractor for
a = 3.394. Because in this
case λ2 = 3e − 3, the
attractor is weak
hyperchaotic. While the
chaotic orbit c consists of 6
islands-like sets, the
hyperchaotic attractor d is
composed of 12 islands-like
sets, each of them with
different shape (see the
enlarge detail). For
a = 3.36, the attractor is
reached after long chaotic
transient, which presents the
shape of the K–Y chaotic
attractor at a = 3.3 (Fig. 7f)

plot), and ends with a reverse crisis, where the stable
periodic orbit vanishes and chaotic oscillations appear.
Figure 7b presents the phase portrait of a quasiperi-
odic orbit for a = 3.193 < aP3 . The zero maximal
LE and the fact that the orbit is continuously filled,
never repeats, indicates that the orbit is quasiperiodic
(see also the Lyapunov spectrum � in Fig. 7c). For
a slightly larger value of a = 3.1945 > aP3 , the
system behaves chaotically (see Fig. 7d). The tran-
sient (dotted plot) of the quasiperiodic attractor for
a = 3.1999 (Fig. 7e) indicates the transformation (cri-
sis) of the previous chaotic attractor in Fig. 7d, and
then the chaotic orbit is broken into 45 quasiperiodic
island-like sets. The period-45 small-amplitude invari-
ant circles, which compose the attractor, surrounding
unstable points. In Fig. 7f, another chaotic attractor, in
a different shape, appears for a = 3.3 < aP4 . Since∑

λi = 0.065 − 0.018 > 0, this attractor is K–Y
chaotic. Note that, for a = 3.24533, the system evolves
along a stable multi-period orbit (similar to the orbit in

Fig. 8a, but with a higher period). Right after this value,
a = 3.3 (Fig. 7f), the system has chaotic behavior.

In the window located between the points P4(3.325)
and P9(3.425), beside the above-mentioned bistability,
the system presents a plethora of attractors (Fig. 8): sta-
ble periodic orbits (point P5(3.36), Fig. 8a), quasiperi-
odic orbits (point P6(3.368), Fig. 8b), chaotic orbits
(point P7(3.39), Fig. 8c) and hyperchaotic orbits (point
P8(3.394), Fig. 8d). After a chaos doubling process, the
previous chaotic attractor shown inFig. 8c gives birth to
12 small chaotic attractors composing the hyperchaotic
attractor. The attractor is considered “weak” because
λ2 is slightly larger than 0 (λ2 ≈ 3e − 3). This win-
dow (between P4(3.325) and P9(3.425)) begins with
a stable period-6 orbit, which was born after a sud-
den extinction of the chaotic orbit at P4, indicating
a boundary crisis, and it ends with the chaotic orbit
at P9(3.425). The transients, shown for clarity only in
Fig. 8a, are chaotic, resembling the shape of the chaotic
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orbit before P4 (see the chaotic orbit for a = 3.3 < aP4
in Fig. 7e).

The parameter interval [P9(3.425), P10(3.57)] cor-
responds to a stable period-7 window (see Fig. 2).

The window [P10(3.57), P13(3.58)] is predomi-
nantly periodic beginningwith a boundary crisis,which
generates a stable period-7 orbit (see Fig. 2e and the
detail D, which indicates two nearby double branches).
Note that, for a ∈ (aP10 , aP13), λ1 < 0, and at
P11(3.571), its modulus is apparently small (of order
1e−3) but is still negative. Therefore, there exists a sta-
ble periodic orbit with a single main frequency f I and
6 other harmonics, k f I = (k − 1)δ3, k = 2, 3, . . . , 7,
with δ3 ≈ 0.0357 being the offset between two con-
secutive peeks [see Fig. 9(i)]. Actually, the second
main frequency and its harmonics still exist, but they
are commensurate with the first frequencies. Between
P11(3.571) and P12(3.578), for a = 3.575, because of
a period-doubling process, one obtains a stable period-
14 orbit (see also Sect. 2.2 ii). Between P12(3.578)
and P13(3.58), the system presents quasiperiodic oscil-
lations (see Fig. 9(ii), where the case of a = 3.579 is
considered). Because of the trifurcation of the firstmain
frequency [16] and of its harmonics (two new peeks at
the left and right sides, Fig. 9c(ii), red plot), the second
frequency is born. Therefore, the stability of the previ-
ous period-14 orbit is destroyed and 14 invariant small-
amplitude circles surround the period-14 points, which
are now unstable. The difference between the period-
14 stable orbit in Fig. 9(i) and the quasiperiodic orbit
in Fig. 9(ii) is clearly unveiled beside the PSD, by the
partial time series [Fig. 9b(i), b(ii)]. Next, via a reverse
boundary crisis, at P13, the quasiperiodic orbits trans-
form into chaotic orbits. For a = 3.581, a K–Y chaotic
attractor is shown in Fig. 9(iii). The several discrete
peaks of the quasiperiodic orbit in Fig. 9c(ii) transform
now into a broadband [Fig. 9c(iii)], where the former
frequencies f I and its harmonics still can be seen.

Thewindowbetween P13(3.58) and P14(3.965) (see
the detail in Fig. 2e), starts with an interior crisis, when
the quasiperiodicity suddenly vanishes, making room
for to hyperchaotic windows, which alternate with nar-
row quasiperiodic windows. The shapes of the hyper-
chaotic attractors are similar with the shapes of the
chaotic attractors, for a < aP13 [see, e.g., Fig. 9c(iii)].
Therefore, they are not presented here. A quasiperiodic
orbit fora within a small neighborhoodof 3.5826 is pre-
sented in Fig. 10. The zoomed bifurcation diagram in
Fig. 10a, for a ∈ [3.5824, 3.5829], reveals the fact that

within the first narrow window there exist quasiperi-
odic orbits (see the horizontal bifurcation branches
with a relative thickness indicating the quasiperiodic-
ity). After that, in the next window, there appear stable
orbits, similarly with the case in Fig. 3a. Figure 10b
indicates 14 spots (numbered in an aleatory order),
which reveal quasiperiodic islands-like sets.

The last window [P14(3.965), P17(3.9999)] (see the
detail in Fig. 2f) is a hyperchaotic one, which begins
with an interior crisis after a window composed by a
stable period-4 window followed by a quasiperiodic
one: [P14(3.965), P15(3.968)]. At P16(3.975), through
an attractor-merging crisis, the size of the hyper-
chaotic attractor suddenly increases. Such a hyper-
chaotic attractor is presented in Fig. 11 at P16(3.975).

At a = aP17 = 3.9999, the hyperchaotic window
ends and a narrow chaotic window starts.

3 Sustaining non-extinction of system dynamics

3.1 An unusual chaotic attractor

Previously it was assumed that, in the absence of prey,
the predators become extinct in one generation (see,
e.g., [8]). It is now found numerically that, for some
parameter values, yn might vanish while xn remains
chaotic. Actually, for a = 4 and d = 3.5, the system
behavior is K–Y chaotic (Fig. 12). Counterintuitively,
after a long chaotic transient (of length n∗(x0, y0) of
generally thousands or dozens of thousands of iter-
ations, depending on initial conditions (x0, y0)), the
component yn vanishes and is trappedby the line y = 0.
The component xn remains chaotic and fills the line
x ∈ [0, 1] (see Fig. 12a, b), with chaotic character
becoming stronger (see Fig. 12d). The chaotic charac-
ter is verified here with phase portrait, time series and
the ‘0–1’ test. For, n > n∗, the attractor is considered
a chaotic attractor embedded in the set [0, 1] × {0}.
Denote this chaotic attractor by A. For n < n∗, the
shape of A resembles the shape of the hyperchaotic
attractors for a ∈ [P14, P17] (see Fig. 11). Actually,
for n < n∗, A is hyperchaotic, while for n > n∗,
A becomes K–Y chaotic. The attraction basin of A is
drawn in Fig. 12c. Numerically, the points on the basin
boundary are disposed along the line y = −20x + 20.
Moreover, it can be proved analytically3 that the orbits

3 For simplicity, the proof is not presented here.
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Fig. 9 Attractors in the narrow window [P10, P13]. a Phase
portraits, b time series and c power spectral density. (i) a ∈
(aP11 , aP12 ). For a = 3.575 the orbit is a stable period-14
orbit. Now, the previous two main frequencies f0 and f01,
where their harmonics have unified, generate the main frequency
f I ≈ 0.07143 and its harmonics k f I , for k = 2, . . . 7 with
offset δ3 ≈ 0.0357. (ii) a ∈ (aP12 , aP13 ). For a = 3.579

the orbit is quasiperiodic (see the zoomed detail); two sym-
metric series of new peaks appear in PSD (red plot), reveal-
ing the birth of the second main frequency f I I . However, new
frequencies tend to appear, indicating the proximity of chaos.
(iii) a > aP13 . For a = 3.581, the attractor is K==Y chaotic:∑

λi = 0.065 − 0.060 > 0. In the broadband of PSD, former
frequencies are still visible. (Color figure online)

of (1) are located in the domain of a ≥ ax + by. If
a ≥ d, the last inequality can be easily improved:
ad/4 ≥ dx + by. Therefore, if a = 4, d = 3.5,

one gets 20 ≥ 20x + y, the line at the attraction
basin of A. Moreover, for all attractors with a > d,
such as A, one obtains a relation for the upper-right
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Fig. 10 a Bifurcation
diagram for
a ∈ [3.5824, 3.5829]. b
Phase portrait of a
quasiperiodic orbit for a
close to 3.5826. The
enlarged views unveil that
there are 14 islands-like sets

Fig. 11 Hyperchaotic attractor in the window [P14(3.965),
P17(3.9999)], for a = aP16 (3.975)

boundary: y = −17.5x + 17.5 (Fig. 12a). The bound-
ary line can be found similarly for all attractors with
d < a.

3.2 Anticontrol of the chaotic attractor A

Under certain circumstances, for the case of A, when
yn becomes zero, nonchaotic (i.e., regular nonzero or
quasiperiodic) or even chaotic behavior can be desir-
able. Therefore, if one wants to prevent population yn

from extinction, the following anticontrol (chaoticiza-

tion)4 algorithm can be used: one or both variables, are
modified as follows
{

xn =(1 − γ1)xn if mod (n, 
1) = 0
yn =(1−γ2)yn if mod (n, 
2)=0, n =0, 1, 2, . . .

(5)

with γ1,2 being some small positive real parameters.
Recall that an important aspect of control theory is to

“force” the system dynamics to any arbitrary targeted
regular behavior. Contrarily, here anticontrol is used to
enhance chaos of the system, so that it escapes from
the “trap” y = 0, without changing the dynamics of
the variable x .

Remark 1 Since the perturbations in (5) are periodic:
xn → xn(1 − γ1) at every 
1 steps, and yn →
yn(1− γ2) at every 
2 steps, after some 
 steps, cho-
sen as the least common multiple of 
1 and 
2, one
gets back to the initial stage, so the impulses are 
-
periodic. Therefore, the anticontrolled system repre-
sents a discrete system. For example, with 
1 = 2
and 
2 = 3, one has 
 = 6. So, after 6 itera-
tions, the procedure is repeating. This means a map
F : (x0, y0) → (x6, y6), which determines the dynam-
ics of the system where the n-periodic orbits of F give
6n-periodic orbits of the anticontrolled system. In gen-
eral, F : (x0, y0) → (x
, y
) represents the discrete
version of the anticontrolled system.

4 Anticontrol, or chaoticization, represents a concept that one
can make a given system chaotic or enhance the existing chaos
of a chaotic system (see, e.g., [17]).
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Fig. 12 The K==Y chaotic
attractor A, for a = 4:∑

λi = 0.693 − 0.147 > 0.
For n > n∗(x0, y0), with
n∗(x0, y0) being some
positive integer, the attractor
is trapped by the horizontal
line [0, 1]. a Phase portrait
(the arrow shows the
attractor tendency). b Time
series of the component yn
(for clarity, only the first
5000 iterations are plotted).
c Attraction basin (red plot)
of the chaotic transient
attractor. The numerically
found frontier of the
attraction basin coincides
with the line
y = −20x + 20. d Time
series of the component xn .
Dotted vertical line in b, d
indicates the moment when
the algorithm applied (at
n = n∗); e dynamics of the
translation components
(p, q) in terms of 0–1 test; f
mean-square displacement
M as a function of n. (Color
figure online)

Rather than chaotic dynamics, regular motions can
also be obtained (when the algorithm is a chaos control
algorithm).

The algorithm is called here the anticontrol algo-
rithm, which was introduced by Güémez and Matìas
in [18] (see also [19]), but to control chaotic behavior
in discrete and continuous systems. In this paper, the

algorithm is used to anticontrol the variable yn only
(see also [20]).

Now consider the simplest case, easily to implement
numerically, when only the variable yn is perturbed at
each iteration, i.e., 
2 = 1

y(n) → (1 − γ )y(n), n = 0, 1, 2, . . .
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Fig. 13 Variation of the
anticontrolled system (6)
with d = 3.5 and a = 4,
versus γ . a, b components
xn and yn , respectively. c
Lyapunov spectrum �. d
Variation of the asymptotic
growth rate K from the
‘0–1’ test
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Fig. 14 Anticontrolled
attractors, phase portraits. a
Anticontrolled hyperchaotic
attractor for γ = 0.075;
both LEs are positive,
λ1,2 > 0. b Anticontrolled
period-20 stable periodic
orbit for γ = 0.0958;
λ1 < 0, λ2 < 0. The
(hyper)chaotic transients to
the orbit points (blue dots)
are reminiscences for the
former hyperchaotic
attractor. c Anticontrolled
chaotic attractor for
γ = 0.107; λ1 > 0, λ2 < 0.
d Anticontrolled stable
period-10 orbit for
γ = 0.125; λ1 < 0, λ2 < 0.
e Anticontrolled
quasiperiodic attractor even
after the beginning of the
quasiperiodic window
(P ′

8,NS
′). f Anticontrolled

stable fixed point for
γ = 0.25 > γNS′ . (Color
figure online)

The perturbed system has the following initial value
problem:
⎧
⎨

⎩

xn+1 = axn(1 − xn) − b(1 − γ )xn yn,

(x0, y0) = (0.5, 1.2),
yn+1 = d(1 − γ )xn yn,

(6)

with n ∈ N and nonnegative constants a, b, d, and γ

being a small positive parameter.

The fixed points are

X̄∗
1 = (0, 0), X̄∗

2 =
(

1 − 1

a
, 0

)

and

X̄∗
3 =

(
1

d(1 − γ )
,

ad(1 − γ ) − a − d(1 − γ )

bd(1 − γ )2

)

.

The stability of the fixed points X̄∗
1,2,3 is analyzed sim-

ilarly to the case of the fixed points X∗
1,2,3.
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Fig. 15 Anticontrol of system (6) for d = 3.5 and a = 4, with
perturbations of xn variable at every 
1 = 2 steps and of yn
variable at every 
2 = 3 steps. a Bifurcation diagram of the xn
variable. b Bifurcation diagram of the second variable yn

X̄∗
2 is stable if and only if

a ∈ (1, 3), d(1 − γ ) < a/a − 1,

and X̄∗
3 is stable if and only if

max

{
3a

3 + a
,

a

a − 1

}

< d(1 − γ ) <
2a

a − 1
.

To find the values of γ for which the anticontrol algo-
rithm enhances either regular or chaotic motion, the
bifurcation diagram, with γ as the bifurcation param-
eter, provides a useful tool.

Next, the dynamics of the anticontrolled system (6)
is analyzed numerically for γ ∈ [0.05, 0.35], one of
the most interesting ranges for γ .

The bifurcation diagram in Fig. 13 shows a reverse
scenario compared to the direct bifurcation scenario
of uncontrolled system (1) with a as the bifurcation
parameter. Let P ′

1, P ′
2, . . ., and SN

′ be some of themost

important points in the parameter space. Several reverse
cascades of period-doubling bifurcation take place for
γ between (P ′

4, P ′
7). The spectrum of LEs, �, and the

K value of the ‘0–1’ test, are used to check the results
of the anticontrol algorithm.

Between (P ′
1, P ′

3) = (0.05, 0.104), the anticon-
trolled system is hyperchaotic (see the case of γ =
0.075 in Fig. 14a). The hyperchaotic window con-
tains the stable window located at P ′

2 with γP ′
2

≈
0.0958 (see Fig. 14b, where for γ = 0.0958 a sta-
ble period-20 orbit is generated after a long hyper-
chaotic transient, which resembles the former hyper-
chaotic attractor). A chaotic window, containing sev-
eral narrow periodic windows, begins right after the
hyperchaotic one at P ′

3(0.104) and ends at P ′
5(0.1128).

A representative case is obtained for γ = 0.107 (see
Fig. 14c). Note that at P ′

4(1086) an abruptly tran-
sition to chaos appears, via (presumably) attractor-
merging crisis, without changes in the attractor shapes.
For γ ∈ (P ′

5(0.1128), P ′
8(0.1771)), the anticontrolled

system has regular orbits (see Fig. 14d, where a sta-
ble period-10 orbit is obtained for γ = 0.125). For
γ decreasing from P ′

8(0.1771), a reverse cascade of
period-doubling bifurcation starts and continues, with
a period-doubling bifurcation at P ′

7(0.1369). Then, at
P ′
6(0.1194), and so on, it continues till to P ′

5(0.1128)
where the stable windowmeets, via a reverse boundary
crisis, the chaotic window (P ′

3(0.104), P ′
5(0.1128)).

Between P ′
8(0.1771) and NS

′, the system is quasiperi-
odic. The point SN′ is the point where the anticon-
trolled system undergoes the N–S bifurcation, for γ

given analytically by Theorem 2. The large window
(P ′

8(0.1771),NS
′) contains several narrow periodic

windows. A quasiperiodic orbit, with γ = 0.1771, is
presented in Fig. 14e. Note that this attractor resembles
the two-tori of two linearly coupled logistic maps (at a
larger scale) [21]. Numerically, the obtainedN–S bifur-
cation parameter value γ = 0.2381 corresponds to the
analytical value given by the following N–S theorem
for the anticontrolled system (6).

Theorem 2 For

γ = ad − 2a − d

(a − 1)d
,

the fixed point X̄∗
3 of the anticontrolled system (6)

undergoes an N–S bifurcation.

Proof See the proof in “Appendix C”. 	
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Fig. 16 SNA of the
prey–predator system (1)
for a = 3.2096852. a, b
LEs and K value within a
small neighborhood of
a = 3.2096852,
respectively. c Plot of q
versus p. d Mean-square
displacement M as a
function of n

Comparing to the case of the uncontrolled system,
the N–S bifurcation is subcritical and also a single one.
Thus, for γ > γNS′ , the system behaves regularly and
the orbits are attracted by the fixed point X̄∗

3 (see the
case of γ = 0.25 in Fig. 14f where with γ = 0.25,
X̄∗
3 = (0.381, 9.841)).
Summarizing, the anticontrol algorithm can be used

successfully to obtain all kinds of motions, from stable
periodic orbits to chaotic orbits.

Results about more general case of the anticontrol
algorithm, with 
1 = 2, 
2 = 3 and γ1 = γ2, are
presented in Fig. 15.

4 Conclusion and discussion

In this paper, by extensive numerical calculations and
some analysis, extremely rich dynamics of a prey–
predator system are revealed. The system presents reg-
ular motions (stable periodic orbits and quasiperiodic
orbits) and chaotic and hyperchaotic dynamics. Some
chaotic attractors are in the sense of Kaplan–Yorke
(with positive sum of LEs).

Moreover, with a = 4, d = 3.5 and b = 0.2, a par-
ticular chaotic attractor, A, is found for which the yn

component vanishes after a relatively large number of
iterations. If this kind of extinction should be prevented,
an anticontrol algorithm, used before to control chaos,
can be utilized to either enhance chaos (or hyperchaos)
existing in the system, or to a reach some regular orbit.
To verify the accuracy of the numerical results, beside
the analytically studied on the Neimark–Sacker bifur-
cation, several numerical tools have been applied: time
series, phase portraits, power spectral density and the
‘0–1’ test.

The ‘0–1’ test, utilized to unveil the chaotic of the
attractor A, indicates, for the first time in the litera-
ture according to the authors’ knowledge, an interest-
ing behavior of K at the N–S bifurcation point (green
circles at points O and O ′ in Figs. 1, 13, respectively).
Thus, usually at this N–S point, K should be (or very
close to) zero since right before the bifurcation (super-
critical bifurcation) or after the bifurcation (subcriti-
cal bifurcation), the system orbit is regular with K=0.
Therefore, this phenomenon deserves further analytical
and numerical investigations in the future.

123



Rich dynamics and anticontrol of extinction in a prey–predator system 1441

Fig. 17 Bifurcation
diagram for
a ∈ (3.199, 3.215). Within
this parameter a range, the
system undergoes two
presumably N–S
bifurcations at points NS3
and NS4

Another interesting discovery, revealed by LEs and
the ‘0–1’ test, is that for the uncontrolled system, with
a ∈ (3.2, 3.25), the largest LE is nonpositive and
K takes intermediate values between 0 and 1. This
result indicates the presence of SNAs, which usually
appear in systems externally driven by two incom-
mensurate frequencies (see, e.g., [22], and references
therein, where it is shown how the ‘0–1’ test can be
used to detect SNAs). These attractors, “intermediate”
between strange chaotic attractors and nonchaotic reg-
ular dynamics, are geometrically strange because they

can be properly described by some fractal dimensions.
It is well known that mathematically proving the exis-
tence of such attractors is a nontrivial task. Even for a
relatively large range of the parameter γ , the anticon-
trolled system presents K values intermediate between
0 and 1, because the corresponding LEs are positive
(see Fig. 13) hence there are no SNAs. This suggests
that the anticontrol algorithm would destroy the SNAs
of the uncontrolled system, which could be useful in
practical applications when these kind of attractors are
not desirable.
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Fig. 18 The ‘0–1’ test. a
Plot of q versus p. b
Mean-square displacement
M as a function of n. (i)
Regular dynamics of the
logistic map
xn+1 = r xn(1 − xn) for
r = 3.55. (ii) Chaotic
dynamics of the logistic
map, for r = 4. (iii) SNA of
the GOPY model xn+1 =
2a tanh(xn) cos(2πθn),
θn+1 = θn + ω, for a = 1.5,
and ω = (

√
5 − 1)/2 [12]

SNAs are generic in quasiperiodically driven non-
linear systems, which have the largest LE being zero
or negative. Therefore, trajectories (i.e., orbits) do not
show exponential sensitivity to initial conditions and
they are not chaotic (see also [22,23] and related ref-
erences). Their geometric structure is fractal. Usually,
SNAs connect, for a relatively large parameter range,
quasiperiodic attractors to chaotic attractors and can
be detected using the sign of the largest LE and the K
values.

Compared with the classical studies on discrete sys-
tems with SNAs (such as the quasiperiodically forced
logistic map), where the existence of these attractors
is defined for relatively large parameter ranges, in the
non-quasiperiodically driven prey–predator system (6),
this phenomenon appears only on very short param-
eter ranges, or possibly just at some isolated points.
Therefore, without a deeper analytical or numerical
study, one can only presumably conclude that the sys-
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tem admits SNAs. However, by considering the state-
ments in [12],5 a further study is in order.

For aSNA = 3.2096852, within a very small param-
eter range, the largest LE is negative and K ≈ 0.5.
Figures 16a, b present the variations of LEs and K
within a small interval around aSNA. Figures 16c, d
show the plots of p versus q and the mean-square dis-
placement M as a function of n, which are typical for
SNAs (compare with Fig. 18c, where the SNA of the
famous GOPYmodel introduced by Grebogi et al. [12]
is considered). There are several other small parameter
ranges, where SNAs could appear.

Note that, with a = 3.3 (Fig. 7f), the shape of
the attractor in the phase space resembles some SNAs
(see, e.g., [23]). Therefore, a subtle investigation for a,
slightly different from a = 3.3, could reveal SNAs.

Beside the bifurcations at points NS, NS1 and
NS2, determined both analytically and numerically (see
Sect. 2.2(i) and Fig. 2c), other presumably N–S bifur-
cations have been found numerically. At points SN3

and SN4, a subcritical and supercritical N–S bifurca-
tions, respectively, have been found in the window
a ∈ (3.2, 3.215), where multilayered branches of
quasiperiodic orbits can be seen (Fig. 17). Note that
in the middle and at the end of this window, direct and
reverse period-doubling bifurcations take place. Also,
beside the attractors coexistence shown in Fig. 2d, three
other N–S supercritical bifurcations can be seen (points
NS5, NS6 and NS7). If one denotes by F the map asso-
ciated with system (6), then these dynamics could be
interpreted as N–S bifurcations of some fixed points of
Fn , which generates a family of invariant circles.

As is well known, the N–S bifurcation induces
a route to chaos. Thus, via dynamic transition from
the fixed point X∗

3 to quasiperiodic windows, and
to periodic windows of mode-locked orbits, occur-
ring in between, the system becomes chaotic through
quasiperiodicity [see, e.g., Figs. 7b, d, 9(ii), (iii)]. This
route to chaos could also be explained by the birth of
new frequencies in the PSD or via the crisis scenario
(crisis route).

Another interesting, new and active topic research
is, as well known, spatial effects are important for
predator–prey systems. Thus, in terrestrial or macro-

5 “We conjecture that, in general, continuous-time systems
(“flows”) which are not externally driven at two incommensu-
rate frequencies should not be expected to have SNAs except
possibly on a set of measure zero in the parameter space.”

scopicmarine predator–prey systems the predators typ-
ically dispersemore rapidly than their prey [24–26] (see
also [27,28]). This fact seems to be strongly related
with the vanishing of the predator y in the considered
system. Therefore, a future study on how the proposed
anticontrol algorithm could be used to other systems,
could be useful and important.
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Appendix

A. Stability of X∗
1,23

Denote by e the eigenvalues. As is well known, a fixed
point X∗ of a discrete system is stable if and only if its
eigenvalues, e, satisfy the condition of |e| < 1.

(i) For X∗
1 , eigenvalues are e1 = 0 and e2(a) = a.

Therefore, X∗
1 is stable for a < 1.

(ii) For X∗
2 , eigenvalues are e1(a) = 2 − a and

e2(a, d) = (a − 1)d/a. Therefore, for a ∈ (1, 3) and
d < a/(a − 1), the fixed point X∗

2 is stable.
(iii) For X∗

3 with a > 1, the graphs considered
next are obtained by representing d as a function of a:
d = d(a) (Fig. 1b). Denote
(a, d) = (a/d +2)2−4a
(see the graph 4© in Fig. 1b). If 
(a, b) ≥ 0 (regions
3©, 5© and 8©, including the blue region), the eigenval-

ues are real: er
1,2(a, d) =

(
1 − a

2d

)
± 1

2

√

(a, d). If


(a, d) < 0 (regions 2©, 1© and 6©), the eigenvalues
ec
1,2 are complex conjugated, ec

1 = ec
2: ec

1,2(a, d) =
(
1 − a

2d

)
± ı 12

√−
(a, d). Modulus of the complex

(and also of the real) eigenvalue is

A(a, d) =
√

a − 2a

d
. (A.1)

Finally, after some simple calculations, omitted here,
the stability parametric domain is found (regions 2©,
3© and 4©, with boarders 1© and 5©, respectively):

max

{
3a

3 + a
,

a

a − 1

}

< d <
2a

a − 1
.

In the remaining regions, 6© and 8©, fixed points are
unstable.
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B. Proof of Theorem 1

(i) The bifurcation condition, |ec
1,2(a, d)| = 1, i.e.,

A(a, d) = 1 [see (A.1)], leads to d − 2a/(a − 1) = 0;
(ii) The derivative of ec

1,2 with respect to d, determined
along AB, is

∂

∂d

∣
∣
∣ ec

1,2(a, d)

∣
∣
∣
d=2a/(a−1)

= a

d2
√

a − 2a/d

∣
∣
∣
∣
d=2a/(a−1)

= (a − 1)2

4a
:= k > 0 for all a > 1;

(iii) On the curve AB, the equation (ec
1,2(a, d)) j = 1,

for d = 2a/(a − 1), has the following solutions: for
j = 1, a = 1; for j = 2, a ∈ {1, 9}; for j = 3,
a ∈ {1, 7}, and for j = 4, a ∈ {1, 5, 9}. Therefore, on
the considered domain a ∈ (1, 4] and d = 2a/(a − 1)
(see Fig. 1a), the condition (iii) is satisfied.

C. Neimark–Sacker (N − S) bifurcation of the anti-
controlled system

(i) A(γ ) = 1 if and only if

γ = ad − 2a − d

(a − 1)d
.

The graph of γ in the space (a, d, γ ), S, is the N–S
surface (Fig. 1d).

Note that the intersection with the plane γ = 0
(Fig. 1d) represents the N–S curve for the uncontrolled
system (1), at the fixed point X∗

3 .
(ii) Next, one has

∂

∂γ

∣
∣
∣ec

1,2(γ )

∣
∣
∣
γ

= − (a − 1)2d

2a
:= k < 0.

(iii) To ensure γ ∈ (0, 1), suppose d > 2a/(a − 1).
For a ∈ (1, 9), the eigenvalues ec

1,2(γ ) are: ec
1,2(γ ) =

5−a
4 ± ı 14

√
(9 − a)(a − 1). Note that the image of the

fixed point ec
1(γ ) = 5−a

4 +ı 14
√

(9 − a)(a − 1) is in the
half upper complex-plane, hence [compare with (3)]

arg(ec
1,2(γ )) = arccos

5 − a

4
.

Since arccos 5−a
4 is increasing from 0 to π for a ∈

(1, 9), the equation (e1,2(γ )) j = 1 has only the fol-
lowing solutions: j = 3, a = 7, j = 4, a = 5.

D. The ‘0–1’ test

The ‘0–1’ test, proposed in [29], is designed to distin-
guish chaotic behavior from regular behavior in deter-

ministic systems. Consider a discrete or continuous-
time dynamical system and a one-dimensional observ-
able data set φ( j), j = 1, 2, . . . , N , of the underlying
system, constructed from time series. The 0–1 test has
a theorem [30], which states that a nonchaotic motion
is bounded, while a chaotic dynamic behaves like a
Brownian motion.
(1) First, compute the translation variables (for some
c ∈ (0, π), [29])

p(n) =
n∑

j=1

φ( j) cos( jc), q(n) =
n∑

j=1

φ( j) sin( jc),

for n = 1, 2, . . . , N .
(2) To determine the growths of p and q, the mean-
square displacement is determined:

M(n) = lim
N→∞

1

N

N∑

j=1

[p( j + n) − p( j)]2

+[q( j + n) − q( j)]2.
where n � N (in practice, n = N/10 gives good
results).
(3) The asymptotic growth rate is defined as

K = lim
n→∞ log M(n)/ log n.

Because of occurrence of resonances for isolated values
of c (where K is larger), the median of the computed
values of K is used, since the median is robust against
outliers associatedwith resonances [29]. If the underly-
ing dynamics is regular (i.e., periodic or quasiperiodic),
then K = 0; if the underlying dynamics is chaotic, then
K = 1. Improved variants can be found in [29,31].

In Fig. 18, the GOPY model are presented. Fig-
ure 18a represents the plot of q versus p and in Fig. 18b
the mean-square displacement M as a function of n.
Figure 18(i) represents the regular orbit of the logis-
tic map xn+1 = r xn(1 − xn) for r = 3.55; Fig. 18(ii)
presents the chaotic orbit of the logistic map for r = 4,
while Fig. 18(iii) the SNA of the GOPY map xn+1 =
2a tanh(xn) cos(2πθn), θn+1 = θn + ω, with a = 1.5,
and ω = (

√
5 − 1)/2 [12].
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