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Abstract In this paper, dynamic analysis of an active
nonlinear vibration absorber using lead zirconate
titanate (PZT) stack actuator has been carried out con-
sidering time delay in the acceleration feedback. Here
the primary system is modelled as a harmonically base
excited system with a nonlinear spring, damper and
mass which is subjected to an external harmonic force.
The smart absorber consists of a nonlinear spring, mass
anddamper systemalongwith a linear spring connected
in series with the PZT stack actuator. In the proposed
model, the active control force is produced by the com-
bination of spring and the PZT stack actuator which
requires less voltage compared to that of the conven-
tional system where the actuator is directly connected
to the primary system and one can tune the frequency
ratio of the absorber actively. The nonlinear governing
equation of motion of the system is derived and solved
by using a modified harmonic balance method. The
steady-state response is obtained by using Newton’s
method, and the stability of the system is studied using
the reduced equations. It has been shown that the pro-
posed novel vibration absorber which has inbuilt fail-
safe design can absorb the vibration of the systemmore
effectively with negligible damping than the available
passive and active vibration absorbers. Also, the Den
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Hartog’s equal peaks are achieved when the primary
system is subjected to both harmonic force and base
excitation.
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1 Introduction

There are many physical vibrating systems such as
automobiles [1,2], railways [3], ships [4], space crafts
[5–7], machining systems like turning, milling, boring
or drilling system [8–11], buildings and bridges [12,13]
which undergo severe vibration and need reduction in
vibration by using passive or active vibration absorbers
or isolators. Generally, vibration absorber consists of
a spring and a mass system which is connected to the
primary vibrating system to absorb its vibration [14].
In the tuned vibration absorber, the complete vibra-
tion suppression of the primary system takes place only
at the resonating frequency when the external excita-
tion frequency matches with the natural frequency of
the primary system and that of the absorber [15,16].
It is observed that by the addition of a damper to the
tuned vibration absorber, it is impossible to completely
eliminate the steady-state response of the primary sys-
tem [17,18]. Due to this, many optimization techniques
such as fixed point and H-infinity optimization are
developed to reduce the amplitude of the resonating
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vibration [15] and H2 optimization is used to mini-
mize the total vibrational energy of the primary system
[17,18]. There aremany studies on the passive dynamic
vibration absorber, and a recent one includes the work
of Buki et al. [19] where a vib-bracelet is designed and
developed to attenuate 85% of the vibration of the fore-
arm tremor in a human hand. The mass ratio between
the absorber and the primary system plays a signifi-
cant role in the suppression of the vibration and most
of the researchers taken it as 1:20 [11–13]. The high
mass ratio increases the overall structural weight of the
system. But with the use of various optimization tech-
niques [20–22], model design [23–25] along with the
advanced materials such as piezoelectric actuator and
sensor [26], shape memory alloy [27], voice coil motor
[28], electrodynamic vibration absorber [29], magne-
tostrictive elastomers and dampers [30–32] and other
smart materials, one may go for lower mass ratio to
absorb the vibration of the system for a larger band of
operating frequencies [33,34].

The active control techniques use various feedback
methods such as displacement, velocity or acceler-
ation and/or combination of these to attenuate the
vibration of the primary mass [35,36]. Cheung et al.
[37] analytically designed a damped hybrid vibration
absorber (HVA) with a low mass ratio by obtaining
optimum parameters such as tuning frequency, con-
trol gain and damping ratio using fixed point theory
for of the absorber to suppress the vibration of an
SDOF primary system subjected to external harmonic
force excitation. They also showed the proposed opti-
mized HVA outshine in suppressing the vibration of a
beam under uniformly distributed load. The absorber
used for suppressing the vibration of the primary mass
vibrates itself at a higher amplitude which arises due to
the nonlinear behaviour of the system, which may be
evident from the frequency response of the absorber.
Also, many dynamical systems are inherently nonlin-
ear because of prolonged use and various applications
[4]. The nonlinear vibration absorber is more practical
in nature, but its limit of vibration suppression is not
adequate as a passive vibration absorber. So in such
systems, active vibration absorber is more useful than
the passive vibration absorber. Habib et al. [38] derived
the formulae for the optimal stiffness and damping ratio
of the nonlinear passive dynamic vibration absorber
(DVA) which shows two equal peaks in the frequency
response at the nonlinear resonating amplitude of the
primary system. Gatti [39] studied the efficacy of cubic

nonlinear stiffness in the tuned mass damper (TMD)
to suppress the vibration of an SDOF primary system
under harmonic excitation for a wider band of operat-
ing frequency than the linear TMD. They used the har-
monic balance method (HBM) and Floquet’s theory to
obtain the response of the system and study the effect
of hardening and softening nonlinear stiffness on the
frequency response and stability of the system. Rizos
et al. [40] designed and experimented pre-stressed leaf-
springs-based tuned mass damper with four PZT stack
actuators to mitigate vibration of the primary struc-
ture, which undergoes free, force and base excitation
for a wide band of operating frequencies. They also
observed and characterize various nonlinearity devel-
oped in the system in suppressing the vibration.Renault
et al. [41] investigated the enhanced performance of
nonlinear dynamic vibration absorber by tracking anti-
resonances in frequency response curve using cou-
pled numerical technique and HBM. Cirillo et al. [42]
explored the qualitative and structural behaviour of
a two-degree-of-freedom nonlinear system under har-
monic excitation by bifurcation and singularity the-
ory. They used a single harmonic term in HBM to
obtain the frequency response of the system. Kucera
et al. [43] analysed vibration suppression of an SDOF
system under harmonic disturbance for an extended
range of operating frequency by an active vibration
absorber using both delayed and non-delayed accel-
eration feedback. They verified the analytical results
with the experimental results and showed that with a
distributed delay, vibration suppression of the primary
systemwas achieved for the wider excitation frequency
range. Bonkhorst [44] analytically (HBM) and exper-
imentally studied to suppress the vibration of a cubic
nonlinear SDOF primary system by an optimal vis-
coelastic DVA for broadband operating frequency. Car-
bajal andNavarro [45] analysed an active vibration con-
trol scheme to suppress the multi-frequency harmonic
vibrations of a primaryDuffingoscillator by connecting
a passive damped vibration absorber. They proposed a
robust active vibration controller and used the method
of multiple scales for analytical study. Ji [46] designed
a nonlinear vibration absorber tuned under three to one
internal resonance to suppress primary resonance of an
SDOF nonlinear oscillator having cubic nonlinearity
using the method of multiple scales.

From the above literature review, it is observed that
most of the work on the dynamic vibration absorbers
is based on linear primary and secondary systems and
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very few researchers have studied the nonlinear vibra-
tion absorber to absorb the vibration of the nonlin-
ear primary system. Though several studies have been
made on PZT patch actuators for vibration suppres-
sion, in very few literature PZT stack actuators are
used [40,43,47–49]. Though accelerometers are com-
monly used for vibration measurement [7], most of the
studies considered displacement or velocity feedback
[5,11,21,28,33–37,45,47–52] instead of acceleration
feedback of the system which shows better vibration
suppression [53–56]. Hence, few studies have been
made on acceleration feedback. Further, in most cases,
the time delay in the feedback between sensing and
actuation is ignored. In few works, both the external
forcing and base excitation are considered to obtain
the Den Hartog’s equal peaks for the nonlinear primary
and secondary systems. Hence, in the present work, an
attempt has been made to develop a novel vibration
absorber for suppressing the vibration of the nonlinear
primary system with nonlinear absorber containing a
linear spring with PZT stack actuator and time delay
acceleration feedback system. In the next section, the
mathematical modelling of the proposed active nonlin-
ear vibration absorber (ANVA) is presented.

2 Mathematical modelling of the system

Figure 1 shows the PZT stack actuator-based active
nonlinear vibration absorber connected to a harmoni-
cally based excited single-degree-of-freedom primary
system with nonlinear spring, mass and a damper. In
this figure, mi , ci , ki , and ki3 denote mass, damping,
linear and nonlinear stiffness of the primary system
(i = 1) and the absorber (i = 2). The primary system
is subjected to an external harmonic force F11 cos(�1t)
and a base excitation Y0 cos(�2t). The active control
force Fc is produced by the combination of a PZT stack
actuator with stiffness kEP and a linear spring with stiff-
ness k3. The governing equations of motion of the sys-
tem in terms of the displacements of the primary system
(x1) and the secondary system (x2) are described by
two ordinary coupled nonlinear differential equations
of motion using Newton’s second law or d’Alembert’s
principle which are given follows.

m1 ẍ1 + c1 (ẋ1 − ẏ) + c2 (ẋ1 − ẋ2)

+ k1 (x1 − y) + k13 (x1 − y)3 + k2 (x1 − x2)

+ k23 (x1 − x2)
3 = F11 cos (�1t) − Fc (1)

( )11 1cosF tΩ

2x

2 23,  k k

1x

1 13,  k k

3k
P
Ek

2m

2c

( )0 2cosy Y t= Ω
1c

1m

Fig. 1 PZT stack actuator-based active nonlinear vibration
absorber

m2 ẍ2 + c2 (ẋ2 − ẋ1) + k2 (x2 − x1)

+ k23 (x2 − x1)
3 = Fc (2)

In the absence of controlling force Fc, spring stiff-
ness k3 and base excitation, Eqs. (1) and (2) can be
reduced to that of Cirillo et al. [42] and Habib et al.
[57]. The active control force produced by the PZT
stack actuator and the spring stiffness k3 in series may
be written as Fc = kr (x1 + δ0 − x2) where the equiv-

alent stiffness kr =
(
k3kEp

)
/
(
k3 + kEp

)
and δ0 is the

nominal displacement of the PZT stack actuator at the
juncture of the primary system. The nominal displace-
ment of the actuator can be written as δ0 = nd33V
[35], where n, d33 and V denote the number of wafers
in the PZT actuator, dielectric charge constant and the
voltage applied to the actuator, respectively. The PZT
actuator acts both as a sensor and as an actuator. First,
it senses the acceleration of the primarymass due to the
external disturbance and then provides actuation by a
counteracting force on the primary mass. During the
process, the time delay in the acceleration feedback is
considered as τ . The voltage applied to the PZT actu-
ator by the time delay τ in the acceleration feedback
can be written as V = kc (ẍ1 (t − τ)), where kc denote
controller gain in the acceleration feedback. Substitut-
ing the value of V in the active control force Fc, the
modified equation can be written as follows.

Fc = kr (x1 − x2 + nd33kc ẍ1 (t − τ)) (3)

Equations (1) and (2) are rewritten below in the non-
dimensional form by assuming non-dimensional time
τ1 = ω1t where ω1 = √

k1/m1.

ü1 + 2ξ1u̇1 − 2ξ2u̇2 + u1 + α13cu
3
1

− (α + αr) u2 − βu32
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= F1 cos�τ1 + Y cos (�τ1 − γ )

+α13c (Y cos (�τ1 − γ ))3

+ 3α13c

(
u21Y cos (�τ1 − γ ) −
u1 (Y cos (�τ1 − γ ))2

)

− Fc1ü1 (τ1 − τ) (4)

μü2 + 2ξ2u̇2 + (α + αr) u2 + βu32
= Fc1ü1 (τ1 − τ) − μü1 (5)

where

u1 = x1/x0, u2 = (x2 − x1) /x0,

μ = m2

m1
, ξ1 = c1

2m1ω1
,

ξ2 = c2
2m1ω1

, α = k2
k1

,

αr = kr
k1

,

Y = Y0/x0, α13 = k13x20
k1

,

β = k23x20
k1

, F1 = F11
m1ω

2
1x0

,

Fc1 = αrkcnd33,� = �1

ω1
,

�2

ω1
= � − γ, γ = phase, x0 = reference length

It may be noted that Eqs. (4) and (5) are written by
considering the relative displacement of the absorber,
i.e. u2 = (x2 − x1) /x0, by which the complexity
associated with the expansion of the nonlinear term
(x2 − x1)3 reduces and one can easily obtain the solu-
tion. The approximate solution of Eqs. (4) and (5) is
discussed in the following section.

2.1 Approximate solution by HBM

In this section, the steady-state solution of Eqs. (4) and
(5) are obtained by using the harmonic balancemethod.

u1 = A (τ1) cos (�τ1 − ϕ1 (τ1)) (6)

u1 (τ1 − τ) = A (τ1) cos (� (τ1 − τ) − ϕ1 (τ1 − τ))

(7)

u2 = B (τ1) cos (�τ1 − ϕ2 (τ1)) (8)

Unlike in the previous literature in this paper,
both the amplitudes (A (τ1) , B (τ1)) and the phases
(ϕ1 (τ1) , ϕ2 (τ1)) are considered to be slowly varying
function of time τ such that one can neglect the fol-
lowing terms: Ä, ϕ̈1, B̈, ϕ̈2, Ȧϕ̇1, Ḃϕ̇2, ϕ̇

2
1 , ϕ̇

2
2 . Substi-

tutingEqs. (6)–(8) inEqs. (4) and (5) and equating coef-
ficient of sin�τ1 and cos�τ1 terms, Eqs. (4) and (5)
can be written in the following compact matrix form:
⎡
⎢⎢⎣

a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Ȧ
ϕ̇1

Ḃ
ϕ̇2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

b1
b2
b3
b4

⎫⎪⎪⎬
⎪⎪⎭

(9)

where a1–a16 and b1–b4 are given in “Appendix-I”
From Eq. (9), the following amplitude and phase

equations are obtained.

Ȧ = f1 (A, B, ϕ1, ϕ2) , (10)

ϕ̇1 = f3 (A, B, ϕ1, ϕ2) , (11)

Ḃ = f2 (A, B, ϕ1, ϕ2) , (12)

ϕ̇2 = f4 (A, B, ϕ1, ϕ2) . (13)

The steady-state solutions of the slow-flow equa-
tions are obtained from Eq. (9) by taking Ȧ = ϕ̇1 =
Ḃ = ϕ̇2 = 0, and the corresponding equations are
given as follows.

N1 cosϕ1 + N2 sin ϕ1 + N3 cosϕ2

+ N4 sin ϕ2 + Nb1 = 0 (14)

− N1 sin ϕ1 + N2 cosϕ1 − N3 sin ϕ2

+ N4 cosϕ2 − F1 + Nb2 = 0 (15)

N5 cosϕ2 + N6 sin ϕ2

+ N7 sin ϕ1 + N8 = 0 (16)

− N5 sin ϕ2 + N6 cosϕ2

+ N7 cosϕ1 + N9 = 0 (17)

where N1–N9, Nb1 and Nb2 are given in “Appendix-I.”
It may be noted that in the conventional HBM one

has to do the stability analysis using the original equa-
tion after getting the response [58] but in the present
case, both the response and stability analysis can be
performed simultaneously by using the reduced Eqs.
(10)–(13). The stability of the steady-state equations
of the slow-flow equation thus obtained is ensured by
the negative real part of the eigenvalues of the Jacobian
matrixwhich is given in “Appendix-I.”The steady-state
solutions of the slow-flow Eqs. (14)–(17) are solved by
using Newton’s method and are discussed in the fol-
lowing section.

3 Results and discussions

In this section, the performance of the active nonlin-
ear vibration absorber (ANVA) is studied for a mass
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Fig. 2 Frequency response
of the a primary system and
the b absorber

ratio of 1:20 (i.e. μ = 0.05) by using the frequency
response curves (FRC), time responses phase portraits
and Poincare’ section for various system parameters
such as cubic nonlinear stiffness in the primary sys-
tem α13, cubic nonlinear stiffness of the absorber β,

controlling force Fc1, time delay τ, amplitude of base
excitation Y , amplitude of harmonic force excitation
F1 and stiffness of the spring k3 between the PZT
stack actuator and the absorber. The FRC for the pri-
mary system and the ANVA are found out by numer-
ically solving the four equations [Eqs. (14)–(17)] by
using the Newton’s method. It may be noted that these
equations are obtained by using HBM. These results
are initially compared with the developed SIMULINK
model (“Appendix-II”) by solvingEqs. (4) and (5). Fur-
ther, it is compared by studying Eqs. (4) and (5) using
the fourth-order Runge–Kutta method. The command
ode45 is used for the systemwithout delay, and dde23 is
used for the systemwith delay. These comparisons will
be discussed in the subsequent sections. The stiffness
and damping parameters for the ANVA are taken from
the work of Habib et al. [38], and Mallik and Chatter-
jee [35] have been referred for the properties of PZT
stack actuator. With reference to Eqs. (4) and (5), the
non-dimensional natural frequency of the primary sys-
tem isω1 = 1, the damping ratio of the primary system
ξ1 = 0.001 and for the absorber is ξ2 = 0.0064, linear
stiffness ratio between the absorber and the primary
system is α + αr = 0.0454, external forcing amplitude
F1 = 0.1 and x0 = 1. The amplitude of the external
forcing F1 is considered to be equal to 0.1 in Sects. 3.1–
3.5, 3.7 and 3.8, and in other subsections F1 values are
varied from 0.0005 to 1.5while all other system param-
eters are kept same in all sections as mentioned above.

In Sects. 3.1–3.6, 3.8 and 3.9, frequency responses,
time responses phase portraits, Poincare’ section and
basin of attractions of the system are studied by consid-
ering only the external harmonic excitation F1 cos�τ1,

and hence, the amplitude of harmonic base excitation
Y is considered to be zero. In other Sects. 3.7, 3.8 and
3.10, FRC of the system are studied for both exter-
nal harmonic and base excitation where Y is not equal
to zero. In the following subsection, the frequency
response of the passive linear system is found out.

3.1 Passive linear system

The FRC of the primary system and the ANVA in the
absence of any nonlinearity are shown in Fig. 2 with
the optimal system parameters taken from Habib et al.
[38]. The results obtained in the frequency responses
by HBM using Newton’s method (marked in dots) are
compared with the numerical simulations using the
SIMULINKmodel (marked using circles), and they are
found to be in good agreement as shown in Fig. 2a and
b. From Fig. 2a, it is observed that the amplitude of the
two resonating peaks is the same and equals to 0.62 at
a frequency, � = 0.89 and 1.05. The response ampli-
tude of the primary system at resonance (i.e. � = 1) is
0.54. The absorber response is shown in Fig. 2b where
the response amplitude at the peaks and the valley is
2.102 and 2.05, respectively. These results are simi-
lar to the earlier theoretical analysis [36,38,59] and
the experimental studies [60,61]. In the literature ([38],
Fig. 2a), the amplitude of external excitation is taken as
F1 = 0.001 and they observed linear behaviour with a
maximumamplitude of 6.2×10−3. In the presentwork,
the forcing amplitude F1 = 0.1, (100 times more) and
the corresponding response amplitude is found to be
0.62, which is also 100 times more than the response
amplitude in [38]. Hence, both results are consistent as
per the superposition rule for the linear system.

This validates the use of harmonic balance method
(HBM) formulation for the linear case, and validation
for the nonlinear cases is given subsequent sections.
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Fig. 3 Frequency response
curve of the system for
β = 0.001 and β = 0.01

Fig. 4 Frequency response
of the system for α13 = 0.1
and α13 = 1

In the next subsection, the effect of cubic nonlinear
stiffness in the absorber on the FRC is studied.

3.2 Effects of cubic nonlinear stiffness in the absorber
for the passive system

The FRC of the primary system and the passive
absorber are shown in Fig. 3 for two values of cubic
nonlinear stiffness β equals to 2.2% (0.001) and 22%
(0.01) of the linear stiffness of the absorber. It is
observed from Fig. 3a that for β = 0.001, the first
resonating peak is at 0.86 for � = 0.92 and the
second peak is at 0.53 for � = 1.1. Similarly, the
response amplitude of 2.49 and 1.732 is observed for
the absorber (Fig. 3b) at the same frequencies. From
Figs. 2 and 3a, b, it is observed that when the operating
frequency � is greater than 1, the response of the sys-
tem is better which reduces the second peak response
15% lower than the linear system. For β = 0.01 it
is observed from Fig. 3a that the response amplitude
of the primary system increases sharply from 0.9 to
15 for � in the range of 0.9–0.972. Similar frequency
response for the absorber is observed in Fig. 3d. The
second peak amplitude of the primary system and the
absorber is observed at � = 1.15 with amplitude

0.31 and 1.12, respectively. The unstable solution in
the frequency response is observed for � = 0.971. It
is inferred from Fig. 3 that for β equals to 2.2% or
0.001 the system amplitude reduces 15% in the sec-
ond peak, however, for an increase in β value to 22%
or 0.01 makes the system unstable and creates a larger
response in the system. Hence the cubic nonlinear stiff-
ness value in the absorber must be less than 2.2% of the
absorber linear stiffness. So onemay investigate the use
of active vibration absorber if the nonlinearity is more
than 2.2%. From these figures, one may observe that
the results obtained from HBM and Newton’s method
(marked in dots) also comparedwith the numerical sim-
ulations (marked circles) and are found to be in good
agreement.

3.3 Effects of cubic nonlinear stiffness in the primary
system

The FRC of the primary system and the passive
absorber are shown in Fig. 4 for cubic nonlinear stiff-
ness in the primary systemα13 equal to 10%, i.e. 0.1 and
100%, i.e. 1 of the linear stiffness of the primary system.
The FRC of the system obtained by Newton’s method
(marked in dots) are also compared numerically by
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fourth-order Runge–Kutta method (marked using cir-
cles) by solving Eqs. (4) and (5) showing a good match
with each other. For α13 = 0.1, it is observed from
Figs. 2a and 4a that the response amplitude in the first
resonant peak decreases from 0.62 to 0.57, and at the
second peak it increases from 0.62 to 0.66 than the lin-
ear primary system. The absorber frequency response
is shown in Fig. 4b which shows similar characteris-
tic as the primary system. For α13 = 1, in Fig. 4a
one can observe two saddle points at � = 1.18 and
� = 1.8 showing jump-up and jump-down phenom-
ena, respectively. The second peak in the frequency
response is at 1.7 due to the hardening effect in the
frequency response while the first peak amplitude is
0.39 at � = 0.89. The FRC of the passive absorber are
shown in Fig. 4b where the same nonlinear behaviour
is observed as the primary system and the maximum
response amplitude is found to be 2.32. The system
response is unstable from � = 1.18 to 1.8. Hence for
nonlinear stiffness in the primary system below 10%,
the system does not show any appreciable changes in
the FRC than the linear system, but when the primary
system is highly nonlinear, then the response amplitude
and unstable region increase as evident from Fig. 4.

It may be noted that the computational time required
to obtain the FRC by SIMULINK (Figs. 2 and 3) or
fourth-order Runge–Kutta method (Fig. 4) is more as
one has to get the response at each frequency point.
Time taken to obtain a single point on the response
curve takes 1min, so to obtain complete FRC which
consists of more than 100 points it takes more than
1h and 40min, and also unstable points are difficult to
obtain.Using theHBMmethod, the computational time
required to obtain the plot is only 6min, so one can use
the proposedHBMmethod to reduce the computational
time and study the stability of the response. Unlike
other perturbation methods where the small divisor
terms in the equation motion are required to obtain
the solution but in HBM, one can use the procedure
without ordering the equation. Further, in this modi-
fied HBM one can obtain the stability of the system
by using the Jacobian matrix of the reduced equations.
While the above-mentioned FRC show the response
of the system with passive vibration absorber, in the
next section the study has been carried out for active
vibration absorber by using PZT stack actuator with
acceleration feedback.

3.4 Active vibration absorber

In this section, the FRC of the proposed ANVA are
found out for four different cases, namely linear, non-
linear spring in the primary system, nonlinear spring
in the absorber and nonlinear spring in both the pri-
mary system and the absorber, with negative feedback
controlling force Fc1 = 0.1 and they are shown in
Fig. 5. For the linear case, it is observed from Fig. 5a
that with the active controlling force (blue colour) the
response amplitude decreases from 0.62 (Fig. 2a) to
0.49 in the first peak (21%) at� = 0.8, and for the sec-
ond peak, it decreases from 0.62 (Fig. 2a) to 0.34 (45%)
at � = 1.2. It may be observed that these peaks are
occurring at different frequencies due to the presence
of active force. The response amplitude at resonating
frequency (� = 1) decreases from 0.54 (i.e. in passive
case, Fig 2a) to 0.15 in the present active case which
is a 72% reduction. But the response amplitude of the
absorber increases from 2.4 to 3.6 (50%) for the first
peak and from the same value to 2.6 (8%) in the second
peak as shown in Figs. 2b and 5b. Further considering
a realistic system where the primary system is consid-
ered to be highly nonlinear (α13 = 1), the FRC are
shown in Fig. 5a (black colour). Unlike in Fig. 4a here,
the frequency response of the primary system shows no
unstable region and the amplitude of vibration reduces
from 0.39 to 0.36 (7.7%) in the first peak and from
1.8 to 0.42 (77%) in the second peak. The FRC for the
absorber (Fig. 5b) seem to be similar to the linear sys-
tem, and no unstable region is found unlike in the case
of Fig. 4b, but the amplitude of the response increases
from 1.5 to 2.7 in the first peak and 2.3 to 2.8 in the
second peak. Comparing the linear and the nonlinear
responses, it is observed that the response amplitude for
the linear system decreases 34% in the first peak, but
at second peak it increases 14% while, at the resonat-
ing frequency, the response amplitude remains same
as that of the nonlinear primary system. In Fig. 5c, d,
the FRC of the system are studied for β = 0.01. From
Fig. 5c, it is observed that by the applied controlling
force a small range of unstable zone is found when
0.962 < � < 0.965 with jump-up and jump-down
phenomena. In addition, the system shows an unsta-
ble region when 1.1195 < � < 1.733 showing Hopf
bifurcation points at � = 1.195 and 1.733.

The response amplitude of the active nonlinear
absorber (Fig. 5d) is higher than that of the passive case
(Fig. 3d). In Fig. 5e, f, nonlinear stiffness in both the pri-
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Fig. 5 Frequency response
of the system, a, b linear
and nonlinear stiffness
(α13 = 1) in the primary
system. c, d Nonlinear
stiffness (β = 0.01) in the
absorber (e, f) nonlinear
stiffness in both the primary
system (α13 = 1) and the
absorber (β = 0.0042)

mary system (α13c = 1) and the absorber (β = 0.0042)
are considered. It may be noted that here optimum
nonlinear stiffness coefficients are considered from the
work ofHabib et al. [38]. It is observed fromFig. 5e that
with the active force Fc1 = 0.1, the response ampli-
tude of the primary system reduces for � > 1.136 and
shows saddle-node bifurcation points at� = 0.982 and
1.136. Here, also it may be noted that at the resonant
frequency, i.e.� = 1, the nonlinear system has two sta-
ble and one unstable response out of which the lower
stable response has a valuewhich is less than that found
in [38], where the Fc1 = 0. From Fig. 5f, it is observed
that the response amplitude of the absorber increases
at the peaks than the passive vibration absorber.

From Fig. 5, it is observed that with the applied
controlling force there is much decrease in the unsta-

ble region of operating frequency and also the vibra-
tion of the primary system; however, the amplitude of
the absorber increases at the peaks. In the following
section, nonlinear stiffness is considered in both the
primary system and the absorber and the variation of
controlling force on the frequency response is stud-
ied.

3.5 Variation of controlling force on the frequency
response

The effect of four values of controlling force Fc1, viz. 0
(green colour), 0.1 (cyan colour), 0.2 (black colour) and
0.5 (blue colour) on the FRC of the system, is studied
in this section.
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Fig. 6 Frequency response
of the system for variation
in controlling force Fc1 for
(a, b) α13 = 0.1 and
β = 0.001. c, d Basin of
attraction of the primary
system at � = 0.82 and
0.889. Frequency response
of the system with different
Fc1 for e, f α13 = 1 and
β = 0.01

3.5.1 Nonlinear stiffness in both the primary system
and the absorber

In Fig. 6a, b and e, f, the FRC of the system are shown
by considering two values of nonlinear spring stiffness
in both the primary system and the absorber. In Fig. 6a,
b, the nonlinear stiffnesses α13c and β are considered
equal to 0.1 and 0.001, respectively. From Fig. 6a, it is
observed that with Fc1 = 0 the primary system shows
two peaks with amplitude 0.69 and 0.54 at � equals to
0.92 and 1.08, respectively, with no unstable zone. But
by increasing Fc1 values from 0 to 0.1, the amplitude of
the two peaks shift and occur at � equals to 0.908 and
1.24. A minimum of 55% reduction in the vibration of
the primary system is observed than for Fc1 = 0 when
0.91 < � < 2, but the system shows an unstable fre-
quency zone for a small rangewhen 0.906 < � < 0.91
and the system has multiple solutions. The jump-up
and jump-down phenomena are observed with saddle-
node bifurcation points at � = 0.906 and 0.911. Fur-

ther increasing Fc1 values from 0.1 to 0.2, the pri-
mary system amplitude reduces to 0.003 (96%) than
for Fc1 = 0 when � > 0.96, but at the same time more
hardening effect in the FRC is observed with instabil-
ity zone when 0.888 < � < 0.956. Two saddle points
are observed at � = 0.888 with the jump-up ampli-
tude height 0.7 and at � = 0.956 with the jump-down
amplitude height is 1.44 for Fc1 = 0.2. It is observed
from the FRC that with the increase in the Fc1 at first
peak the system amplitude increases, and for a very
small range of operating frequency, the system shows
unstable fixed point solution, but for a larger band the
amplitude response reduces significantly. In Fig. 6c, d,
basin of attraction for the primary system is plotted at
the pointsD (� = 0.82) and E (� = 0.889) of Fig. 6a.
From Fig. 6c at pointD, one can observe a single stable
point with response amplitude of 0.64. Also in Fig. 6d
at point E, two stable points with response amplitude
of 1.2 and 0.4, with a separatrics at response amplitude
of 0.62, can be observed which are evident from the
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FRC curve shown in Fig. 6a. In Fig. 6b, the amplitude
of the absorber for Fc1 = 0.1 shows marginal higher
amplitude for � >1, but for � < 0.9 the absorber
amplitude increases with the same unstable zone as
discussed above. In Fig. 6e, f, highly nonlinear sys-
tem is considered with α13 and β equals to 1 and 0.01,
respectively. In Fig. 6e, for Fc1 = 0, two high peaks
with amplitude equal to 0.87 and 0.35 at � = 1.16 and
1.18, respectively, with the stable and unstable solu-
tions appear when 1.062 < � < 1.162. The jump-up
amplitude of 0.32 and jump-down amplitude of 0.54
are observed at � = 1.062 and at 1.162, respectively.
The Hopf bifurcation points are observed at� = 1.103
and at 1.163. The response amplitude at the first peak
of the primary system that reduces from 0.87 to 0.56
with Fc1 = 0.1 compares to when Fc1 = 0 but cre-
ates a wider range of unstable zone with saddle-node
bifurcation points at � = 1.014 and 1.146 and Hopf
bifurcation points at � = 1.172 and 1.338. The same
effects are also observed for Fc1 = 0.2 and 0.5 with
more hardening effect and unstable region. The ampli-
tude of the primary system at first peak (� = 1.016)
decreases 80% with an increase in Fc1 from 0 to 0.5
but shows both stable and unstable fixed point solu-
tions. However, the jump-up and jump-down amplitude
height increases with more hardening effect. In Fig. 7a,
f for Fc1 = 0.2 (black line), the time responses, phase
portraits and Poincare’s section at point P (� = 1.15,
stable point), Q (� = 1.25, unstable point) and R
(� = 1.52, unstable point) of Fig. 6e are shown. From
Fig. 7a, b, time response and fixed point response are
observed at point P, and quasi-periodic responses are
observed at points Q and R. From the phases portraits
and Poincare’ section in Fig. 7a–h, existence of peri-
odic, quasi-periodic and chaotic responses in addition
to fixed point responses is clearly observed for differ-
ent system parameters. Hence, one must choose the
system parameters carefully to suppress the excessive
vibration.

3.5.2 Linear system

The FRCof the linear systemwith a variation of Fc1 are
shown in Fig. 8a, b. It is observed from Fig. 8a that with
higher Fc1 the amplitude of the primary system reduces
for all frequency of operationwith no unstable zone and
shows a significant decrease in the amplitude response
at the second peak. The system with Fc1 = 0.5 shows
around 90 % reduction in vibration than Fc1 = 0 for

� > 0.85, but at the same time the absorber amplitude
(Fig. 8b) at the peaks increases.

Hence from Fig. 8, it is observed that large vibration
reduction in the primary system is achievedwith higher
values of Fc1 when the system is linear. But when both
the primary system and absorber are nonlinear (Figs. 6,
7), then for a particular operating frequency higher con-
trolling force may not be effective. It is also observed
that a wider unstable range of frequency is obtained for
α13 > 10% and β >2.2% of the linear stiffness of the
system. So, one has to choose Fc1 values judiciously
to suppress the vibration of the system for a broader
range of operating frequency. In the following section,
the effects of variation in the amplitude of external force
excitation on the FRC are studied.

3.6 Effects of variation in the amplitude of external
excitation

In Fig. 9, the effect of three values of amplitude of exter-
nal excitation, viz. F1 equals to 0.1 (cyan colour), 0.5
(black colour) and 1 (green colour) on the FRC of the
system, is studiedwith zero control force and the results
are compared with those obtained by numerically solv-
ing Eqs. 4 and 5 (marked in circles). In Fig. 9a, b, the
FRC of the system are shown for α13 and β equal to 0.1
and 0.01, respectively. From these figures, it is observed
thatwith an increase in the amplitude of external excita-
tion the peak response amplitude of system increases.
For F1 = 0.1, the jump-up and jump-down phenom-
ena are observed with saddle-node bifurcation points
at � equals to 1.005 and 1.087, respectively. An iso-
lated stable and unstable branch are also observedwhen
1.25 < � < 1.356. Further increase in the F1 value
from 0.1 to 1, the system response amplitude increases
with a large increase in the jump-up and jump-down
height as shown in Fig. 9a, b. The primary system
shows only a single peak (Fig. 9a), but the absorber
shows two peaks (Fig. 9b). Near the supercritical Hopf
bifurcation (point S, � = 1.4), the time response of
the primary system is found to be periodic with many
harmonics, and for the absorber, it is found to be quasi-
periodic. For other point near Hopf bifurcation point R
(� = 1.552), both the primary system and the absorber
have a quasi-periodic response which is clearly evident
from Poincare’ section (Fig. 9c, d).

In Fig. 10, the response of the highly nonlinear sys-
tem is analysed for the variable amplitude of external
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Fig. 7 Time responses a, b, phase portraits and Poincare’s section (c–f) at the frequency points P (� = 1.15), Q (� = 1.25), and R
(� = 1.52) for Fc1 = 0.2. g, h Phase portraits and Poincare’ section for Fc1 = 0.2 at � = 1.08 and � = 1.32

Fig. 8 Frequency response
of the linear system for
variation in controlling
force Fc1

123



1476 S. Mohanty, S. K. Dwivedy

Fig. 9 Frequency response of the system for variation in the amplitude of external force F1, a, b α13 = 0.1 and β = 0.01. c–f Time
response and Poincare’ section at S (� = 1.4) and R (� = 1.552) for F1 = 0.5

excitation for three different frequencies, i.e. � = 1.2,
1 and 0.8. From Fig. 10a and c, it is observed that
with Fc1 = 0.1 and α13 = 1 the response amplitude
decreases and no unstable region is observed. TheHopf
bifurcation points without active force are observed at
� = 0.062 and � = 0.104 for � = 1.2. The effec-
tiveness of the active force in suppressing the vibration
is clearly observed for 0 < F1 < 0.1. In Fig. 10e–
h, optimal nonlinear stiffness parameters (α13 = 1,
β = 0.0042) from the work of Habib et al. [38] are
considered. From Fig. 10e and g, it is observed that
with Fc1 = 0.1 the response amplitude of the primary
system decreases for F1 in the range of 0–0.1. Hopf
bifurcation points are observed at F1 = 0.107, 0.2
and 0.274 for � = 1.2 without active force. But with
Fc1 = 0.1 the Hopf bifurcation points are observed
at F1 = 0.116, 0.124, 0.276 and 0.432 for � = 1.2
and F1 = 0.071 and 0.115 for � = 1. The response
amplitude of the absorber increases with Fc1 = 0.1

compared to Fc1 = 0. From Fig. 10, it is observed that
with Fc1 = 0.1 the response amplitude of the highly
nonlinear primary system decreases with active force
but for the higher amplitude of excitation, the effective-
ness of controlling force is not observed. However, one
can suppress the vibration for the higher amplitude of
external excitation by increasing the controlling force.
In the following section, the same system is studied
where the primary system is also subjected base exci-
tation.

3.7 Active vibration absorber with both harmonic
force and base excitation

Considering both external harmonic force and base
excitation, the FRC of the system are shown in Fig. 11.
In Fig. 11a–d, the amplitude of force F1 and base exci-
tation Y are considered to be equals to 0.1 and 0.01,
respectively, and the phase (γ ) is taken to be zero. In
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Fig. 10 Response of the
system for variation in the
amplitude of external force
F1, a, b α13 = 1 and
Fc1 = 0. c, d α13 = 1 and
Fc1 = 0.1. e, f α13 = 1,
β = 0.0042 and Fc1 = 0. g,
h α13 = 1, β = 0.0042 and
Fc1 = 0.1

Fig. 12, the amplitude of force F1 and base excitation
Y are both taken as 0.1 and γ = π/2.

3.7.1 Linear system

Initially, the response for the primary system and the
passive absorber is shown in Fig. 11a, b, where the
response amplitude of the primary system at the two
peaks is the same and equals to 0.69 and for the
absorber, it is 2.33 and 2.29, respectively. Now apply-
ing controlling force Fc1 equals to 0.1, i.e. for the active

system, the response amplitude of the primary system
decreases from 0.69 to 0.55 (21%) in the first peak
and from 0.69 to 0.41 (40%) in the second peak. Sim-
ilarly, at the resonating frequency (� = 1), the ampli-
tude of the primary system also decreases from 0.6
to 0.2 (67%). However, the response amplitude of the
absorber (Fig. 11b) at the peaks ismore in case of active
vibration absorber than in passive vibration absorber.
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Fig. 11 Frequency
response curve with
Y = 0.01 and F1 = 0.1.
Linear system (a, b) without
and with controlling force.
Nonlinear primary system
(c, d) with α13 = 0.1 and
α13 = 1

3.7.2 Nonlinear stiffness in the primary system

Now considering α13 = 0.1 in Fig. 11c, the response
amplitude of the two peaks is found to be 0.52 and
0.41 at � equals to 0.82 and 1.21, respectively. From
Fig. 11c, it can be observed that a reduction of 16% is
achieved in the first peak and 41% in the second peak in
the active vibration absorber than the passive vibration
absorber (Fig. 4a). It may be noted that in Fig. 4a the
primary system is subjected to only harmonic excita-
tion force. For absorber (Fig. 11d), the two peaks are
found to be 3.6 and 2.8, respectively. Now, consider-
ing the highly nonlinear primary system (α13 = 1)
in Fig. 11c, one can observe that the two resonating
peaks are 0.42 and 0.52. It may be noted that 80%
reduction in response amplitude in the second peak is
observed in the active case in comparison with the pas-
sive case (Fig. 4a). However, for the absorber (Fig. 11d)
the response amplitude at the peaks is found to be 3.14
and 3.16. From Fig. 10, it is clearly observed that the
suppression of vibration of the primary system under
harmonic force and base excitation can be achieved
by applying the appropriate controlling force using the
developed equations for the proposed absorber. Here
the nonlinear system behaves much like a linear sys-
tem by using the acceleration feedback-based control
force.

3.7.3 Nonlinear stiffness in both the primary system
and the absorber with a different nonzero phase
between external force and base excitation

Considering nonlinear stiffness in both the primary sys-
tem and the absorber with different phases between
the external forcing and base excitation, the FRC are
shown in Fig. 12. It is observed from these figures that
the response amplitude of the system is more for γ = 0
than γ = 90◦ when Fc1 = 0. Also, it is observed that the
response amplitude of the primary system reduces with
Fc1 = 0.1. The higher amplitude of the base excitation
force in these figures produces higher response ampli-
tude than that of Fig. 11. Here also similar nonlinear
effects as stated in the previous sections are observed.
In the following section, the effect of time delay in the
active vibration absorber is investigated.

3.8 Effects of time delay in active vibration absorber

The effects of four values of time delay τ = 0, 0.1, 1
and 10 on the FRC of the system are studied in this
section for various parameters of nonlinear stiffness.
In Sects. 3.8.1–3.8.4, FRC of the system are studied
by considering only external force excitation, and in
Sect. 3.8.5 both external force and base excitations are
considered.
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Fig. 12 Frequency
response curve with
Y = 0.01 and F1 = 0.1. a,
b α13 = 0.1 and β = 0.001

3.8.1 Linear system

In Fig. 13a, b, the FRC of the system are shown by con-
sidering a linear system. From Fig. 13a, it is observed
that for τ equals to 0 and 0.1, the system does not show
any unstable region but for τ equals to 1 and 10, a
broader range of unstable region appears. The response
amplitude at the first peak is 7% more at τ = 0 than at
τ = 0.1, while at second peak it is 1% less. For τ = 1,
the stable region is observed for 0.63 > � >2.16,
and for τ = 10, the system is completely unstable.
In Fig. 13b, similar characteristics are observed with
higher response amplitude. From Fig. 13a, b, it can be
inferred that for τ = 0.1 the system vibration suppres-
sion is better compared to higher or lower time delay.

3.8.2 Nonlinear stiffness in the absorber

In Fig. 14a, b, only the nonlinear stiffness in the
absorber is considered for β = 0.001. From Fig. 14a,
it is observed that for τ = 0 the primary system shows
high response amplitude at the first peak with jump-
up and jump-down phenomena at saddle-node bifurca-
tion points � = 0.902 and 0.916, respectively, but for
τ = 0.1 the response amplitude at the first peak reduces
to 65%with no unstable region. Further increasing τ to
1, it is observed that the system becomes more unsta-
ble with a stable region found for a narrow band of
1.112 < � < 1.228, while for τ = 10 no stable region
is observed. From Fig. 14a, b, it is inferred that for
β = 0.001 a time delay of τ = 0.1 shows better vibra-
tion suppression and the system is stable than other time
delays. In Fig. 14c, d, FRC of the system are shown by
increasing the nonlinear stiffness, i.e. β = 0.01. From
Fig. 14c, it is observed that for τ = 1 the response
amplitude near the first peak reduces to 90% than for

τ = 0 or 0.1 and shows a stable region for � < 1.164,
but for τ = 10 the system is completely unstable.

The Hopf bifurcation points are observed for τ = 1
at � = 1.165 and 1.515, where the system stability
changes from stable to unstable and vice versa respec-
tively, which is more clearly shown in Fig. 14d. From
Fig. 14a–d, it is concluded that for lower nonlinear stiff-
ness in the absorber (2.2% or 0.001) the time delay of
0.1 shows better vibration suppression with no unsta-
ble region. For higher nonlinear stiffness in the absorber
(22%or 0.01), the timedelayof 1 showsbetter vibration
suppressionwith no unstable regionwhen the operating
frequency � < 1.164.

3.8.3 Nonlinear stiffness in the primary system

In Fig. 15a, b, only the nonlinearity in the primary sys-
tem is considered, i.e. α13 = 0.1. From these figures, it
is observed that for τ = 0 and 0.1 the response ampli-
tude is stable. The response amplitude of the primary
system for τ = 0 is 6% more at the first peak and 12%
less at the second peak than for τ = 0.1. For τ = 1,
the system shows an unstable region for 0.62 < � <

2.162, and for τ = 10, the system shows broader
unstable region and an isolated stable and unstable
branch for 0.996 < � < 1.071. From these figures,
it can be inferred that for α13 = 0.1 the delay in the
range of 0–0.1 shows stable behaviour and less peaks
response amplitude. In Fig. 15c, d the nonlinear stiff-
ness is increased by considering α13 = 0.2. Here also
the same trend is observed as in Fig. 15a, b but for
τ = ′10 the isolated branch is merged with the stable
and unstable branch. Further increasing the nonlinear
stiffness, i.e. α13 = 1 in Fig. 15e, f, the close orbit
opens up for τ = ′10 and shows stable region for 0.931
< � < 1.04. The Hopf bifurcation points are observed
at frequency points � = 0.93 and 1.04. A comparison
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Fig. 13 Frequency
response of the active linear
system with variation in the
time delays. τ = 0 cyan
(stable), τ = 0.1 green
(stable), τ = 1 black
(stable) red (unstable),
τ = 10 magneta (unstable).
(Color figure online)

Fig. 14 Frequency
response of the system for
different time delays (a, b)
β = 0.001 (c, d) β = 0.01.
τ = 0 cyan (stable) magneta
(unstable), τ = 0.1 green
(stable) blue (unstable),
τ = 1 black (stable) red
(unstable), τ = 10 magneta
(unstable). (Color figure
online)

of time responses at frequency marked K (� = 0.92,
unstable) and L (� = 0.94, stable of the Fig. 15e, f)
is shown in Fig. 15g, h. From the time responses in
Fig. 15g, h, one can observe fixed point response at
L point and a higher periodic response amplitude at
K point which evident from the FRC of Fig. 15e, f.
From Fig. 15a–h, it can be inferred that for time delay
equals to 0 and 0.1 the system amplitude is less than
higher delay and no unstable region is observed for
nonlinear stiffness in the primary system equals to 0.1–
1. Also, the system amplitude at both peaks decreases
with increasing α13 from 0.1 to 1. For τ = 1 and 10,
the response amplitude and unstable region are more
pronounced and only for a limited range of frequency
the system is stable.

3.8.4 Nonlinear stiffness in both absorber and
primary system

In Fig. 16a, b, α13 and β are considered equals to 0.1
and 0.001, respectively, and the colour code is same as
in Fig. 14. From Fig. 16a, it is observed that for τ = 0
the response amplitude at first peak increases by 18%
while at the second peak it is decreased by 8% than for
τ = 0.1 and shows unstable solution at the first peak
with two saddle-node bifurcation points at � = 0.906
and0.911. For τ = 1, the unstable region broadenswith
Hopf bifurcation points are at � = 0.628, 1.123 and
1.479. The system becomes complete unstable for τ =
10 and shows a single peak. It is inferred from these
figures that for τ = 0.1 the system response amplitude
shows better vibration suppression for a broader range
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Fig. 15 Frequency
response of the system for
different time delays (a, b)
α13 = 0.1 (c, d) α13 = 0.2
(e, f) α13 = 1. g, h Time
responses at frequency K
(� = 0.92) and L
(� = 0.94). τ = 0 cyan
(stable), τ = 0.1 green
(stable), τ = 1 black
(stable) red (unstable),
τ = 10 yellow (stable)
magneta (unstable). (Color
figure online)

of operating frequency when α13 = 0.1 and β = 0.001
with no unstable region.

3.8.5 Nonlinear primary system with both external
force and base excitation

Considering both external harmonic force F1 = 0.1
and base excitation Y = 0.1, the FRC of the system
for the above four-time delays τ are shown in Fig. 17a,
b. From Fig. 17a, b, one can observe for τ = 0 and

0.1 the response amplitude of the system is less and
shows no unstable range of operating frequency than
for higher time delays τ = 1 or 10. For τ = 1, the Hopf
bifurcation points are observed at � = 0.62 where
the system stability changes from stable to unstable as
shown in red colour. For τ = 10, the system shows
Hopf bifurcation points at � = 0.964, 1.017, 1.018
and 1.073. It is observed from these figures that for time
delay τ = 0 and 0.1 the system is stable and response
amplitude is less than higher time delay 1 or 10. In
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Fig. 16 Frequency
response of the system with
different time delay for
α13 = 0.1 and β = 0.001.
τ = 0 cyan (stable) magneta
(unstable), τ = 0.1 green
(stable), τ = 1 black
(stable) τ = 1 red
(unstable), τ = 10 magneta
(unstable). (Color figure
online)

the following section, effects of the spring stiffness k3
attached to PZT stack actuator in the active vibration
absorber are investigated.

3.9 Effects of the spring stiffness attached to PZT
stack actuator

The displacement of the nonlinear primary system and
the active nonlinear absorber is shown in Fig. 18 when
the applied controlling force Fc1 = 0.005 and stiffness
k3 = 0.05N/kg. The parameters are kept same as in
the work of Habib et al. [38] which are m1 = 1kg,
c1 = 0.002Ns/m, k1 = 1N/m, k13 = 1N/m3, m2 =
0.05kg, c2 = 0.0128Ns/m, k2 = 0.0454 N/m and
k23 = 0.0042N/m3. In Fig. 18, a comparison of the
displacements of the primary system and the secondary
system for the present case of ANVA and that of the
Habib et al. [38] is shown. The response in both the
cases is quasi-periodic for external excitation F1 = 0.12.
It shows clearly that in this case, the response of the
primary system reduces 31% i.e. from 0.75 to 0.52.
The vibration suppression of the nonlinear absorber
is more noticeable in Fig. 18b where the amplitude
reduces from 2.4 to 0.32 (87%) with the active control
force.

In all the previous analysis, it is observed that with
the applied controlling force Fc1, the response ampli-
tude of the absorber at the peaks increases, but here it
is shown that with proper stiffness value of k3 one can
reduce the vibration of both the absorber and the pri-
mary system. Also, it is observed that with the applied
controlling force the system settles down more quickly
than the passive vibration absorber. The stiffness of
spring k3 can be increased to provide more blocking
force to the PZT stack actuator, and at the same time,
spring stiffness k2 can be decreased to maintain the
optimum tuning ratio required to suppress the vibration

of the primary system actively. The increase in spring
stiffness k3 suppresses the vibration of the absorber,
and by the combination of both active control force
and spring k3, the required vibration suppression of the
primary system and the absorber can be achieved. In
the following section, the effect of spring stiffness k3
is studied on FRC to obtain Den Hartog’s equal peaks
when the primary system is subjected to both external
harmonic and base excitation.

3.10 Effects of attached spring in the PZT stack
actuator

While in the previous sections attempts were made to
reduce the amplitude of the primary system, in this sec-
tion it is tried to achieve theDenHartog’s equal peaks in
both the nonlinear primary system and the active non-
linear absorber, when the primary system is subjected
to both external force and base excitation. While it is
absolutely required to have equal peaks in the primary
system to minimize its maximum response amplitude,
sometimes due to space/kinematic constraint, it is also
required to have equal peaks of the absorber to min-
imize its response amplitude. The equal peaks in the
FRC are tried to achieve by variation of spring stiff-
ness k3 and Fc1. It may be noted that the taken system
parameters are same as those in Habib et al. [38], where
they obtained equal peaks in the FRC of the primary
nonlinear system which is subjected to only external
excitation force by considering nonlinear passive vibra-
tion absorber.

3.10.1 External force excitation

In Fig. 19a, b, the spring stiffness k3 = 0.0005 N/kg,
active control force Fc1 = 0.0005 and external har-
monic force F1 = 0.001 are considered. FromFig. 18a,

123



Nonlinear dynamics of piezoelectric 1483

Fig. 17 Frequency
response of the system with
different time delay with
Y = 0.1 and α13 = 0.1.
τ = 0 cyan (stable) magneta
(unstable), τ = 0.1 green
(stable), τ = 1 black
(stable) τ = 1 red
(unstable), τ = 10 yellow
(stable) τ = 10 magneta
(unstable). (Color figure
online)

Fig. 18 Comparison of
time responses with passive
and active absorber for the
(a) primary system and the
(b) absorber with F1 = 0.12

the two resonating peaks in the FRC of the primary sys-
tem are observed to be 0.0042 and 0.0082 at � = 0.88
and 1.08, respectively. The resonating peaks amplitude
of the absorber (Fig. 19b) is at different amplitudes of
0.016 and 0.022 at � = 0.9 and 1.07, respectively. It
may be noted from Fig. 19a that with the applied con-
trolling force the primary system amplitude is lesser
at the first resonating peak than the passive nonlinear
vibration absorber by Habib et al. [38]. In Fig. 19c, d,
F1 and Fc1 are increased to 0.01 and 0.005, respec-
tively, keeping all other system parameters the same
as in Fig. 19a, b. The difference between the resonat-
ing peak amplitudes and valley amplitude of both the
primary system and the absorber reduces as shown in
Fig. 19c, d. The maximum amplitude for the primary
system is observed at the second peak with a value of
0.062 at � = 1.08. The maximum amplitude for the
absorber is found to be 1.194 (Fig. 19d) at � = 1.08.
The resonating peak and the valley amplitude in the
FRC for both the primary system and the absorber are
minimized by increasing the active controlling force as
observed from Fig. 19a–d, and also the Den Hartog’s
equal peaks in the FRC of the nonlinear primary sys-
tem and the active nonlinear vibration absorber can be
found.

3.10.2 Both harmonic external force and base
excitation

Now in Fig. 20a, b to obtain equal peaks in the FRC for
Y = 0.0012 and F1 = 0.001, Fc1 and k3 are increased
to 0.05 while keeping all other system parameters same
as in Fig. 19c, d. But it is found that with the increasing
Fc1 and k3, the primary system (Fig. 19a) shows a single
peak of amplitude 0.13 at � = 0.88, and for absorber
(Fig. 20b), the first resonant peak amplitude is 0.25 and
a small resonating peak is observedwith amplitude 0.34
at � = 1.4. So, in Fig. 20c, d the stiffness of k3 spring
is decreased to 0.005 from 0.05 while all other system
parameters are kept the same as in Fig. 20a, b. It is
observed from Fig. 20c, d that vibration suppression
by the absorber is significantly better than in Fig. 19a,
b in reducing the maximum amplitude for the primary
system to 0.037 and 0.052 at� = 0.93 and 1.09 respec-
tively. But the two resonating peaks are found at differ-
ent response amplitudes. In Fig. 20e, f, the comparison
between the responses of the system is shown when the
primary system is subjected to external harmonic exci-
tation F1 = 0.0012 and base excitation Y = 0.0012
for with and without using the attached spring k3 to the
PZT stack actuator. It is observed from Fig. 20e, f that
for the same spring stiffness k3 and Fc1 equals to 0.005
the vibration suppression is better for both the primary
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Fig. 19 Frequency
response of the system with
the external harmonic force
for (a, b) k3 = 0.0005,
Fc1 = 0.0005 and
F1 = 0.001 (c, d)
k3 = 0.0005, Fc1 = 0.005
and F1 = 0.01

system and the absorber and also the response ampli-
tude of the resonating peaks are same. From Fig. 20,
it is observed that with applied controlling force the
vibration suppression is better than the passive vibra-
tion absorber and also sensitiveness of the vibration for
the system reduces which shows two equal peaks in the
response curveswhen both external harmonic force and
base excitation are acting on the primary system. With
the proposed active nonlinear vibration absorber, the
two resonating peaks amplitudes of the primary sys-
tem are found to be 0.0062, which show better vibra-
tion suppression than the passive nonlinear vibration
absorber. In Fig. 20f, the FRC of the absorber show
the two resonating peaks amplitudes are slightly at a
different amplitude of 0.015 and 0.017, respectively.
From these curves, it is found that with the attached
spring and PZT stack actuator combination the vibra-
tion suppression of both the system is reduced for a
wider band of operating frequency when the primary
system undergoes both harmonic force and base excita-
tion. From Fig. 20 and Sect. 3.7, it is observed that the
vibration suppression of the primary system is better
than the work reported in [45,46] where the mass ratio
is considered to be 1:10.

3.11 Reliability and cost of the proposed active
nonlinear vibration absorber

In the proposed model, as both spring and actuator
provide the controlling force, one can obtain higher
controlling force by the PZT stack actuator due to the
blocking force produced by the springwhich is in series
connection with the PZT stack actuator. Also, when
the actuator, i.e. the active part, fails due to an elec-
tronic malfunction, then the passive optimal absorber
can still protect the primary system from severe vibra-
tion. Thus, the proposed vibration absorber ismore eco-
nomical and fail-safe design. Also, it can be observed
that the natural frequency of the primary system (ωn1 =√

(k1 + k2 + kr)/k1, kr = k3kEp /
(
k3 + kEp

)
) does not

change much with the variation of spring k3 attached
to the PZT stack actuator, but the natural frequency of
the absorber (ωn2 = √

(k2 + kr)/μk1, μ = m2/m1)

changes significantly as the absorber mass is 20 times
smaller than the mass of the primary system. So the
designer can tune the frequency of the absorber actively
in accordance with the forcing frequency of the pri-
mary system by the spring and actuator combination
for various other resonance conditions. The proposed
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Fig. 20 Frequency
response of the system for
Fc1 = 0.05, F1 = 0.01 and
Y = 0.0012, (a, b)
k3 = 0.05, (c, d)
k3 = 0.005. Frequency
response of the system for
Fc1 = 0.005, F1 = 0.0012
and Y = 0.0012 (e, f)
(black) for k3 = 0.005, and
(blue) for k3 = 0. (Color
figure online)

active nonlinear vibration absorber shows better vibra-
tion suppression at resonance than (Figs. 16 and 17)
from the work of Kučera et al. [43] where linear anal-
ysis is carried out experimentally considering delayed
resonator. The vibration suppression by the proposed
absorber is almost same (90%) of the vibration for the
highly nonlinear primary system as in the experimental
work of Bronkhorst et al. [44]. But in [44], the absorber
mass is 20%of the primarymass,whereas in the present
analysis the absorber mass is only 5% of the primary
system. Hence, the proposed absorber is very much
lighter than in [44]. The proposed absorber also gives
better performance than the work of Xiang et al. [60]
where absorber mass is similar to that in [44], i.e. 20%
of the primary systemwhere a higher damping ratio for
the absorber is used. It may be noted that in the present
case, very low damping ratio for the primary system
(ξ1 = 0.001) and the absorber (ξ2 = 0.0064) is used.
Hence, the present model is more reliable and cost-
effective as a lighter weight absorber is used. These

studies can find effective application in vibration sup-
pression of many small and large machinery used in
various industries.

4 Conclusions

In this work, the performance of the active nonlin-
ear vibration absorber is investigated for the primary
resonance condition by considering a new design in
the active part where the PZT stack actuator is con-
nected in series with a spring in the absorber configu-
ration. The analysis is carried out by considering time
delay in the acceleration feedback of the primary sys-
tem when it undergoes both external harmonic force
and base excitation. The steady-state response and its
stability are obtained by using a modified harmonic
balance method, where the amplitude and the phase
are considered as a slowly varying function of time.
Time responses, phase portraits, Poincare’ sections,
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basin of attractions, frequency responses with stable
and unstable branches are plotted to investigate the
effect of cubic nonlinear stiffness, controlling force,
time delay, attached spring stiffness, the amplitude and
frequency of external harmonic force and base excita-
tion on the suppression of vibration of the system. The
frequency response curves obtained by harmonic bal-
ance and Newton’s method are compared with those
obtained by fourth-order Runge–Kutta method and are
found to be in good agreement. Fundamentally based
on nonlinearity, the considered systems are divided into
four cases, viz. case-1: both the primary system and
the absorber are linear, case-2: the primary system lin-
ear and the absorber are nonlinear, case-3: the primary
system nonlinear and the absorber are linear, case-4:
both the primary system and the absorber are nonlin-
ear. Further considering the presence and absence of
PZT stack actuator (active force), delay and base exci-
tation, twenty different cases have been investigated in
this work.

From the analysis, it can be observed that in case-2
with cubic nonlinear stiffness in the absorber below
2.2% the system behaves similar to case-1 and the
response amplitude in case-2 is less at the second peak
than the case-1. However, higher nonlinearity in the
absorber stiffness (22%) increases the response ampli-
tude of the system. In case-3 considering nonlinear
stiffness of the primary system equals to 10% of the
linear spring, the response amplitude remains same as
that in case-1. But with higher nonlinear stiffness in the
primary system, jump-up and jump-down phenomena
are observed with higher amplitude in the second peak.

It is observed for the primary system that by suit-
ably applying the controlling force by the spring and
PZT stack actuator combination (30–90%) vibration
suppression is achieved for case-1 and case-3 when the
system undergoes both harmonic force and base exci-
tation. Moreover, the highly nonlinear primary system
in case-3 behaves like that of case-1 with no harden-
ing effect with the applied active force. In case-2 with
highly nonlinear absorber (22%) by applying active
force the response amplitude reduces significantly but
after the resonant frequency, supercritical Hopf bifur-
cation is observed. Comparing case-2 and case-4, it
is observed that with same control force the attenu-
ation in vibration in case-4 is more significant than
in case-2. Similar to the case-3 here in case-4, Hopf
bifurcation is observed which leads to periodic, quasi-
periodic and chaotic responses with a change in the

controlling force. It is also observed that with active
force the response amplitude of the absorber remains
almost same at the resonant frequency; however, at the
peaks its response amplitude increases in all cases.

Further considering time delay, it is observed that the
response amplitude is less for the time delay of 0.1 than
in the case of 0, 1 and 10 in case-1, 3 and 4.But in case-2
with higher nonlinearity in the absorber, a time delay of
1 shows better vibration suppression. Hence depending
on the actual system parameters, one should consider
the proper delay to suppress the vibration. Also, the
higher time delay of 10 makes the system completely
unstable formost of the cases. It is also observed that by
selecting the proper stiffness value of spring attached to
the PZT stack actuator, the vibration of the absorber and
the primary system can be attenuated. Further, it is also
observed that with variation of both k3 and Fc1, vibra-
tion of the primary system and the absorber are reduced
up to 30% and 80%, respectively, and the Den Hartog’s
equal peaks in the frequency response of the nonlin-
ear primary system and the active nonlinear vibration
absorber is achieved when the primary system under-
goes both harmonic and base excitation. With the sug-
gested parameters and the analysis on various coeffi-
cients of cubic nonlinear stiffness, active forces by the
PZT stack actuator, time delays in the feedback and
excitations amplitude on the system give a clear idea
for the designer to know the response amplitude of the
system and the operating frequency range to minimize
the vibration of the system.
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Appendix-I

a1 = − 2� cosϕ1 + 2ξ1 sin ϕ1

+ 2Fc1� sin ϕ1 sin�τ

− 2Fc1� cosϕ1 cos�τ

a2 = 2ξ1A cosϕ1 + 2�A sin ϕ1

+ 2Fc1A� sin ϕ1 cos�d

+ 2Fc1A� cosϕ1 sin�τ

a3 = − 2ξ2 sin ϕ2, a4 = −2ξ2B cosϕ2

a5 = 2� sin(ϕ1) + 2ξ1 cos(ϕ1)
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+ 2Fc1� sin ϕ1 cos�τ

+ 2Fc1� cosϕ1 sin�τ

a6 = − 2ξ1A sin ϕ1 + 2�A cosϕ1

− 2Fc1A� sin ϕ1 sin�τ

+ 2Fc1A� cosϕ1 cos�τ

a7 = − 2ξ2 cosϕ2, a8 = 2ξ2B sin ϕ2

a9 = − 2μ� cos ϕ1 − 2Fc1� sin ϕ1 sin�τ

+ 2Fc1� cosϕ1 cos�τ

a10 = 2μ�A sin ϕ1 − 2Fc1A� sin ϕ1 cos�τ

− 2Fc1A� cosϕ1 sin�τ

a11 = − 2μ� cos ϕ2 + 2ξ2 sin ϕ2

a12 = 2ξ2B cosϕ2 + 2μ�B sin ϕ2

a13 = 2μ� sin ϕ1 − 2Fc1� sin ϕ1 cos�τ

− 2Fc1� cosϕ1 sin�τ

a14 = 2�μA cosϕ1 + 2Fc1A� sin ϕ1 sin�τ

− 2Fc1A� cosϕ1 cos�τ

a15 = 2μ� sin ϕ2 + 2ξ2 cosϕ2

a16 = − 2ξ2B sin ϕ2 + 2μ�B cosϕ2

b1 = N1 cosϕ1 + N2 sin ϕ1

+ N3 cosϕ2 + N4 sin ϕ2 + Nb1

b2 = − N1 sin ϕ1 + N2 cosϕ1

− N3 sin ϕ2 + N4 cosϕ2 − F1 + Nb2

b3 = N5 cosϕ2 + N6 sin ϕ2

+ N7 sin ϕ1 + N8

b4 = − N5 sin ϕ2 + N6 cosϕ2

+ N7 cosϕ1 + N9

N1 = − 2ξ1A�, N2 =
(
−�2 + 1

)
A,

N3 = 2ξ2B�, N4 = −
(
αB + 0.75βB3

)
,

Nb1 = −αrB sin ϕ2 + 0.75α13A
3 sin ϕ1

− Fc1A�2 sin (ϕ1 + �τ)

− 0.75A2Y sin (2ϕ1) cos (γ )

+ 1.5α13AY
2 sin ϕ1

− 0.75α13AY
2 sin ϕ1 cos (2γ )

−Y sin (γ ) − 0.75α13Y
3 sin (γ )

− 1.5α13A
2Y sin (γ )

+ 0.75α13A
2Y cos (2ϕ1) sin (γ )

− 0.75α13AY
2 sin (2γ ) cos (ϕ1) ,

N5 = − 2ξ2B�, N6 = −μ�2B + αB + 0.75βB3,

N7 = −μ�2A,

Nb2 = αrB cosϕ2 + 0.75α13A
3 cosϕ1

− Fc1A�2 cos (ϕ1 + �τ) − Y cos (γ )

− 0.75α13Y
3 cos (γ ) − 1.5α13A

2Y cos (γ )

− 0.75α13A
2Y cos (γ ) cos (2ϕ1)

+ 1.5α13AY
2 cos (ϕ1)

+ 0.75α13AY
2 cos (ϕ1) cos (2γ )

+ 0.75α13A
2Y sin (2ϕ1) sin (γ )

+ 0.75α13AY
2 sin (2γ ) sin (ϕ1) ,

N8 = −αrB sin ϕ2 + Fc1A�2 sin (ϕ1 + �τ) ,

N9 = −αrB cosϕ2 + Fc1A�2 cos (ϕ1 + �τ)

Jacobian matrix obtained as

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂A

∂ f1
∂ϕ1

∂ f1
∂B

∂ f1
∂ϕ2

∂ f2
∂A

∂ f2
∂ϕ1

∂ f2
∂B

∂ f2
∂ϕ2

∂ f3
∂A

∂ f3
∂ϕ1

∂ f3
∂B

∂ f3
∂ϕ2

∂ f4
∂A

∂ f4
∂ϕ1

∂ f4
∂B

∂ f4
∂ϕ2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Appendix-II

The SIMULINK model for the passive and active
system are shown in Fig. 21
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Fig. 21 a MATLAB SIMULINK model of the system b sub-
systemmodel for passive nonlinear vibration absorber and linear
primary system with external harmonic excitation. c Subsystem

model for active nonlinear vibration absorber and nonlinear pri-
mary system under harmonic external force and base excitation
by time delay acceleration feedback
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