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Abstract In this paper, a design methodology of the
adaptive sliding mode controller was proposed for
a class of multi-input fractional-order nonlinear sys-
tems with matched and unmatched perturbations to
solve state regulation problems. The sliding surface is
firstly introduced, and then the controller is designed
with adaptive mechanisms and perturbation estimator
embedded. Due to the employed adaptive and pertur-
bation estimation mechanisms, the upper bounds of the
perturbations and perturbation estimation errors do not
need to be known in advance. The resultant control
scheme is capable of driving the controlled states into
the equilibrium point and stays thereafter within a finite
time. Finally, a numerical example is given for demon-
strating the feasibility of the proposed control scheme.

Keywords Sliding mode control · Fractional-order
nonlinear systems · Unmatched perturbations

1 Introduction

Owing to fractional derivatives and integrals provid-
ing a powerful tool in describing the memory and
hereditary properties of different substances, many
researchers have recently pointed out that fractional
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calculus is well suited for modeling and describing of
properties of many practical processes, such as thermal
systems [1], power systems [2], financial systems [3],
electromechanical systems [4], biological systems [5],
hyperchaotic systems [6] and viscoelasticmaterials [7].
As a result, fractional calculus has also been applied to
many practical applications by engineers and physicists
[7–11].

Sliding mode control (SMC) is a well-known non-
linear control design method because of its robustness
against matched perturbations encountered in the sys-
tems [12,13]. In the past few decades, SMC has been
used in many different integer order (IO) systems such
asmobile robots [14,15],DC–DCboost converters [16]
and vehicle systems [17].With the development of frac-
tional calculus, the controls of FO systems by using
SMC technique have also applied to various kinds of
nonlinear systems [18–36]. However, it is noted that the
designers have to know in advance the upper bounds of
the perturbations when utilizing the control schemes
proposed in [22–30], and in [19–36] designers only
considered matched perturbations.

In order to alleviate or eliminate the restrictions of
the researches mentioned above [18–36], in this paper,
we also designed an adaptive sliding mode controller
for a class of multi-input FO nonlinear systems with
matched and unmatched perturbations to solve the reg-
ulation problems. The novelties of this research are as
follows. (1) A fractional derivative estimator is pro-
posed in this research, which can be utilized to esti-
mate the perturbations encountered in the system, and
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adaptation mechanisms are embedded in the proposed
control scheme so that the designers do not need to
know in advance the upper bounds of the perturba-
tions as well as perturbation estimation errors. (2)
The dynamic equations of the plant considered in this
research are more generalized than those in [27–33]
since the control schemes in [27–33] do not allow the
input gain uncertainty to appear in the second differen-
tial equation, and we replaced the state x2 in the first
differential equation with function g(x2). The major
improvement in the proposed control scheme is that it
can be applied to a class of FO nonlinear systems with
unmatched perturbations and it is capable of driving
the state trajectory into the equilibrium point and stays
thereafter within a finite time as well, whichmay not be
achievable by using the control schemes developed in
[19–36]. Finally, a numerical example is illustrated by
using computer simulation for showing the feasibility
of the proposed control scheme.

2 System descriptions and problem formulations

Consider a class of multi-input nonlinear FO systems
with matched and unmatched perturbations governed
by

Dαx1 = f1(t, x1) + G1(t, x1)g(x2) + �p1(t, x),
Dαx2 = f2(t, x) + G2(t, x)u + �p2(t, x,u),

(1)

where α ∈ R and α ∈ (0, 1); x � [xT1 xT2 ]T ∈ Rn

is the measurable state vector, x2 ∈ Rm×1, g(x2) ∈
Rm×1, x1 � [x11, x12, . . . , x1(n−m)]T ∈ Rn−m , and
n ≤ 2m. The nonlinear vectors f1(t, x1), f2(t, x) and
g(x2) are known, and f1(t, x1) = 0 if x1 = 0. The
matrices G1 and G2 are also known. The vector u ∈
Rs×1 is the control input, and m ≤ s. The vectors
�pi (•), 1 ≤ i ≤ 2, are unknown uncertainties, param-
eter variations and/or external disturbances. The aim of
this paper is to design a sliding mode controller with
perturbation estimation scheme such that the state tra-
jectory x(t) of (1) can reach zero within a finite time.
In order to achieve this purpose, we assume that the
following assumptions are valid throughout this paper:
A1: The matrices G1(t, x1) and G2(t, x) have full row
rank for all x and t in the domain of interest; these
imply that the matrices G+

j � GT
j (G jG j

T )−1, j =
1, 2, exist.

A2: The vector f1(t, x1) and matrix G+
1 are continu-

ously differentiable with respect to x1.
A3: [37] The unmatched and matched perturbations
fulfill the following inequalities

‖�p1(t, x)‖ ≤ γ1β1(x), ‖�p2(t, x,u)‖ ≤ β2(x,u),

in the domain of interest for all t and x, where γ1 is an
unknown positive constant, β1(x) is a known positive
function, and β2(x,u) is an unknown positive function.
In addition, β1(x) = 0 if x = 0, and the function
β2(x,u) is bounded if x and u are bounded. In this
paper, the notation ‖ · ‖ stands for the Euclidean norm
of a vector or the induced two-norm of a matrix.
A4: g(x2) = 0 implies x2 = 0, and

(
∂g/∂x2

)−1 exists.

Remark 1 The vector g(x2) of plant (1) considered in
[27–33] is g(x2) = x2; however, the vector g(x2) con-
sidered in this paper may be a function of x2.

The following theorem will be utilized in the stabil-
ity analysis in Sect. 6.

Theorem 1 If there exists a continuous and positive
definite function V (x(t), t) satisfying the following dif-
ferential inequality:

DαV (x(t), t) ≤ − k, (2)

where k is a positive constant, and α ∈ (0, 1), then
V ≡ 0,∀t ≥ T . The finite time T is given by

T =
(Γ (α + 1)

k
V (x0, 0)

) 1
α
, (3)

where t0 = 0 is initial time and Γ (x) �
∫ ∞
0 e−t t x−1dt

is the Euler’s Gamma function [38].

Proof From (2), it is seen that

Dα
( ∫ t

0
V̇ (x(τ ), τ )dτ

)
≤ − k. (4)

Multiplying fractional integral operator D−α to both
side of (4), we obtain
∫ t

0
V̇ (x(τ ), τ )dτ ≤ D−α(− k). (5)

By using the following equation [38],

t0D
−α
t f (t) = 1

Γ (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ,
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From (5), we obtain

∫ t

0
V̇ (x(τ ), τ )dτ ≤ − k

1

Γ (α)

∫ t

0

1

(t − τ)1−α
dτ

= − ktα

αΓ (α)
. (6)

Then by using the reduction formula Γ (x + 1) =
xΓ (x) [39], from (6) one can obtain

V (x(t), t) − V (x0, 0) ≤ − ktα

Γ (α + 1)
.

The preceding equation also implies that the finite time
T is given by (3). 
�

3 Design of sliding surface

According to themethodology of slidingmode control,
one should design a sliding surface function σ and a
control function u such that once the controlled system
enters the sliding surface and remains on the surface
thereafter, the desired system’s performance and con-
trol’s objective can be realized. Hence in the first step,
we design the sliding surface function as

σ (x1) = x1. (7)

By using (1), one obtains the fractional derivative of σ

from (7) as

Dασ = Dαx1 = f1 + G1g(x2) + �p1. (8)

Design another function φ as

φ(t, x) = g(x2) − η(t, x1), (9)

where

η(t, x1)

=

⎧
⎪⎪⎨

⎪⎪⎩

−G+
1

[
f1(t, x1) + γ̂1(t)‖ζ 1(σ )‖σ + λ1

σ
‖σ‖

]
,

if σ �= 0

0, if σ = 0

(10)

The scalar λ1 is a designed positive constant, and the
adaptive gain γ̂1(t) ≥ 0, ∀t will be introduced later.
For obtaining the function ζ 1 in (10), one can utilize the
similar method as in [37] to compute the upper bound
of �p1 as

‖�p1(t, x)‖ ≤ γ1‖ζ 1(σ )‖‖σ‖
+ γ1‖ζ 2(σ ,φ)‖‖φ‖, (11)

where

ζ 1(σ ) =
∫ 1

0

∂β1(μ1, 0)
∂μ1

∣
∣∣
μ1=σω

dω ∈ R(n−m)×1,

ζ 2(σ ,φ) =
∫ 1

0

∂β1(σ ,μ2)

∂μ2

∣∣∣
μ2=φω

dω ∈ Rm×1.

Substituting (9) and (10) into (8), one can see that
the dynamic equation of σ for σ �= 0 is

Dασ = − λ1
σ

‖σ‖ − γ̂1(t)‖ζ 1(σ )‖σ + �p1 + G1φ.

(12)

Now define the first Lyapunov function candidate as

V1 = ‖σ‖ + 1

2
γ̃ 2
1 , (13)

where γ̃1(t) � γ̂1(t) − γ1 is the adaptive error of the
unknown constant γ1. By using (11), we can obtain the
fractional derivative of (13) along the trajectory of (12)
for σ �= 0 as

DαV1 ≤ σ T

‖σ‖
{

− λ1
σ

‖σ‖ − γ̂1(t)‖ζ 1(σ )‖σ + �p1

+ G1φ
}

+ γ̃1D
αγ̂1

≤ − λ1 − (
γ̂1(t) − γ1

)‖ζ 1(σ )‖‖σ‖
+ γ1‖ζ 2(σ ,φ)‖

× ‖φ‖ + σ T

‖σ‖G1φ + (
γ̂1(t) − γ1

)
Dαγ̂1.

(14)

According to (14), one may design the adaptive gain
γ̂1(t) for adapting the unknown constant γ1 as

Dαγ̂1(t) = ‖ζ 1(σ )‖‖σ‖, γ̂1(0) = 0. (15)

Substituting (15) into (14) for σ �= 0 yields

DαV1 ≤ −λ1 + γ1‖ζ 2(σ ,φ)‖‖φ‖ + σ T

‖σ‖G1φ. (16)

If σ = 0, then from (13) and (15), one can obtain
V1 = γ̃ 2

1 /2 and Dαγ̂1 = 0. Hence DαV1 ≤ γ̃1Dαγ̃ =
γ̃1Dαγ̂1 = 0. Therefore, it can be seen that, if state φ

reaches zero in a finite time and stays thereafter, i.e.,
φ = 0 and Dαφ = 0 (this will be shown in Sect. 6),
Eq. (16) becomes DαV1 ≤ −λ1. Hence the Lyapunov
function V1 will converge to zero within a finite time if
σ �= 0 in accordance with Theorem 1, and V1 will stop
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decreasing if σ = 0. Therefore, the sliding variable
σ will also reach zero within a finite time. Note that
γ̂1(t) will reach a finite nonzero limit in accordance
with (15), and this will be explained in Sect. 6.

On the other hand,when the controlled systementers
the sliding surface in a finite time, from (7) and (10)
one can see that the state x1 = 0 and η(t, x1) = 0
within a finite time too. According to (9), vector g(x2)
will tend to zero within a finite time. Hence the state x2
will also tend to zero in accordance with assumption
A4.

4 Design of fractional derivative estimator

In order to reduce the chattering phenomenon and save
control energy, we propose a design method of frac-
tional derivative estimator (FDE). The idea of design-
ing this FDE is quite similar to that of AIVSDE devel-
oped by Cheng and Chang [40]. The block diagram of
the proposed FDE is shown in Fig. 1, where r(t) is the
input signal, k̂r (t) is an adaptive gain, which will be
explained later. The notation D−α stands for the frac-
tional integral operator; k1, k2, and kb are adjustable
positive constant gains specified by the designer and
y(t) is output.

The idea of designing the FDE shown in Fig. 1 is
to force the magnitude of the error signal e(t) to be as
small as possible in a finite time. Then the signal x(t)
will approach the signal r(t), and the output signal y(t)
in Fig. 1 will approach the fractional derivative of the
input signal r(t) since y(t) = Dαx(t).

The following theorem proves that under certain
mild conditions the signal σ(t) depicted in Fig. 1 will
approach zero in a finite time, and the fractional deriva-
tive estimation error e(t) will be asymptotically stable.

Theorem 2 Consider the FDE shown in Fig. 1 with
k2 > 1. Suppose that |r(t)| ≤ k̄0 and |Dαr(t)| ≤

D α−

1 2/k k

1k

2k

( )x t

( )r t ( )e t
( )rk t

( )y t
( )sgn

bk

D α− ( )tσ

Fig. 1 Block diagram of fractional derivative estimator

k̄1 are fulfilled in a finite time, where k̄0 and k̄1 are
unknown constants. The adaptive gain k̂r (t) is given
by the adaptive law

Dα k̂r (t) =
{

βr , if σ(t) �= 0

0, if σ(t) = 0
, k̂r (0) = δ > 0

where βr is a designed positive constant. Then σ(t)
will approach zero within a finite time, the fractional
derivative estimation error e(t) will reach zero asymp-
totically, and the adaptive gain k̂r (t) is bounded.

Proof The proof of this theorem is very similar to that
in [40], and hence it is omitted in this paper. 
�

5 Design of controllers

In order to drive the state trajectories of the controlled
system into the designated sliding surface in a finite
time, we design the proposed controller as

u = −G+
2

[
u f + us], (17)

where

u f = f2 + ψ(t) +
( ∂g

∂x2

)−1(
c0φ + pest(t)

)
, (18)

us =

⎧
⎪⎪⎨

⎪⎪⎩

(
∂g
∂x2

)−1([ − c0‖φ‖ + λ2 + γ̂2(t)β3(x)
] φ(t)

‖φ(t)‖
)
,

if φ �= 0

0, if φ = 0
(19)

where c0 and λ2 are designed positive constants. In
addition, the adaptive laws γ̂2(t) andψ(t) are specified,
respectively, as

Dαγ̂2(t) =
{

β3(x), if φ �= 0

0, if φ = 0
, γ̂2(0) = 0 (20)

Dαψ(t) =
{

−
[
h1δ(u) + h2‖ψ‖

]
ψ(t)

‖ψ(t)‖ , if ψ(t) �= 0

− θ , if ψ(t) = 0
(21)

where θ is a designed vector with positive entries.
The other positive constants h1, h2 and functions
δ(u), β3(x) are introduced in the next section.
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The perturbation estimation signal pest(t) in (18) is
designed in a similar way as in [37]. By using (1), (9)
and (17), one can see that

Dαφ = ∂g
∂x2

(−ψ(t) − us + �p2)

− c0φ − pest − Dαη. (22)

Now design a nominal signal φ(nom)(t) as

Dαφ(nom) = − c0φ(nom) − pest − ∂g
∂x2

us, (23)

where c0 > απ/2. Then subtracting (23) from (22)
yields

Dα
(
φ − φ(nom)

) + c0
(
φ − φ(nom)

)

= ∂g
∂x2

(
− ψ(t) + Δp2

)
− Dαη. (24)

Let p̂(t) be the output of the FDE developed in
Sect. 4. This FDE is used to estimate the signal Dα

(
φ−

φ(nom)

)
since φ and φ(nom) are measurable and differ-

entiable. Hence one obtains that

p̂(t) = Dα
(
φ − φ(nom)

) + ω(t), (25)

where ω(t) is the fractional derivative estimation error.
If the FDE is designed properly, then ω(t) is small in
accordance with Theorem 2.

The perturbation estimation signal in this paper is
then designed as

pest = p̂(t) + c0
(
φ − φ(nom)

)
. (26)

The block diagram for implementing the signal pest is
depicted in Fig. 2. From (24), (25), and (26), one can
define the perturbation estimation error as

�p̃2(t) � ∂g
∂x2

[−ψ(t) + Δp2
]

− Dαη − pest = −ω(t). (27)

Fig. 2 Perturbation estimation mechanism for computing pest

6 Stability analysis

According to the analysis in Sect. 3, one can see that
the trajectory of x will reach zero within a finite time
once the state φ approaches zero and stays thereafter.
Therefore, the main purpose of this section is to show
that the designed controller (17) indeed has the ability
to drive the trajectory of φ to zero in a finite time. The
stability of the proposed control system is addressed in
the following theorem.

Theorem 3 Consider the dynamic system (1) with
assumptions A1 to A4. Suppose that there exist known
positive constants h1, h2,andanunknownpositive con-
stant γ2 satisfying the following inequality

‖ �p̃2(t)‖ ≤ γ2β3(x) + h1δ(u) + h2‖ψ(t)‖ (28)

∀ t, x in the domain of interest, where β3(x) and δ(u)

are known positive functions andψ(t) is the state vari-
able defined in (21).

If the controller (17) with adaptive laws (15), (20)
and (21) are employed, then
(a) the function φ and state variable x will approach
zero within a finite time;
(b) the adaptive gains γ̂1 and γ̂2 are all bounded, and
γ̂1, γ̂2 will reach a finite limit, respectively, as t → ∞;
(c) the nominal signal φ(nom) and the estimation signal
pest(t) are all bounded.

Proof (a) Define the second Lyapunov function candi-
date as

V2 = ‖φ‖ + 1

2
γ̃ 2
2 + ‖ψ‖, (29)

where γ̃2(t) � γ̂2(t) − γ2 is the adaptive error of the
unknown positive constant γ2. All the possible cases
that may occur in the derivative of (29) are analyzed as
follows.

Case 1 : φ �= 0 and ψ �= 0
By using (19), (27) and (28), one computes the frac-
tional derivative of (29) along the trajectories of (22)
and (20) as

DαV2 ≤ φT

‖φ‖D
αφ + γ̃2D

αγ̂2 + ψT (t)

‖ψ(t)‖D
αψ

= − λ2 − γ̂2β3(x) + φT

‖φ‖�p̃2(t) + γ̃2D
αγ̂2

+ ψT (t)

‖ψ(t)‖D
αψ
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≤ − λ2−γ̂2β3(x)+γ2β3(x)+h1δ(u)+h2‖ψ‖

+ (γ̂2 − γ2)D
αγ̂2 + ψT (t)

‖ψ(t)‖D
αψ

= − λ2 + h1δ(u) + h2‖ψ‖ + ψT (t)

‖ψ(t)‖D
αψ .

(30)

By using (21), one can further simplify (30) as

DαV2 ≤ − λ2 < 0. (31)

Equation (31) clearly indicates that the function V2 is
bounded, hence the trajectories of φ, γ̂2 and ψ are all
bounded, and the state φ will be driven toward zero
within a finite time in this case. Noted that the state ψ

is asymptotically stable due to ψT Dαψ < 0 in accor-
dance with (21), and it also means that the state ψ

will not reach zero and stay thereafter in a finite time.
The adaptive gain γ̂2 will not reach zero in a finite time
either, this is explained in part (b).Whenφ reaches zero
in a finite time, the stability of the controlled system is
analyzed in case 3 and case 4.

Case 2 : φ �= 0 and ψ = 0
From the fractional derivative of (30), it is seen that

DαV2 ≤ −λ2 + h1δ(u).

In this case, DαV2 may be greater or smaller than zero.
From (21), it is seen that ψ = 0 and Dαψ �= 0, it
means that the trajectory ofψ will not stay in the surface
ψ = 0 and will cross the surface ψ = 0 immediately
(that is, ψ �= 0 in the next time interval). Hence the
status of the system will switch to another case with
ψ �= 0. Noted that the states φ and γ̂2 are still bounded
in this case due to the continuity of these trajectories.

Case 3 : φ = 0 and ψ �= 0
From (29), it is seen V2 = 1

2 γ̃
2
2 + ‖ψ‖. By noting that

Dαγ̂2 = 0 in (20), and using (21) for ψ �= 0, one is
able to compute DαV2 as

DαV2 = ψT (t)

‖ψ(t)‖D
αψ = −h1δ(u) − h2‖ψ‖ < 0.

One can see that V2 is a bounded function and the mag-
nitude of V2 will still decrease in this case. Hence one
can conclude thatψ and γ̂2(t) are bounded in this case.

Case 4 : φ = 0 and ψ = 0
In this case, it is seen that V2 = 1

2 γ̃
2
2 . Hence D

αV2 = 0
in accordance with (20). Therefore, the value of V2 will
not decrease and both V2 and γ̂2(t) are bounded in this
case.

According to the previous stability analysis from
case 1 to case 4 and Theorem 1, it can be seen that
variable φ(t) will approach zero and stay thereafter in
a finite time. According to (16), the Lyapunov function
V1 will also converge to zero in a finite time onceφ = 0.
Therefore, the controlled state variable x will tend to
zerowithin a finite time in accordance with the analysis
of Sect. 3.
(b) From (15) and (20), it is seen that adaptive gains
γ̂ j (t), j = 1, 2, are monotonically increasing and are
all bounded above in accordance with the analysis of
part (a). Therefore, there exist finite constants γ j∞,
j = 1, 2, such that lim

t→∞γ̂ j (t) = γ j∞, j = 1, 2 [41]

(Proposition 2.14, page 83).
(c) According to (10), one can see that the function
η depends on state x1 and t , and hence the fractional
derivative of η is given by

Dαη = ∂η

∂x1
Dαx1 + ∂η

∂t

= ∂η

∂x1

[
f1 + G1g(x2) + �p1(t, x)

] + ∂η

∂t
. (32)

According to the previous stability analysis, the states
x1, x2 and η are all bounded and will approach zero
within a finite time, which also implies that Dαη is
bounded in accordance with (32). Since ψT Dαψ < 0
in (21), the signal ψ is bounded. Hence the right-hand
side of (24) is bounded in accordance with the assump-
tion A3 and the analysis of part (a). Hence according
to Theorem 4.3 in [42], one can see that φ − φ(nom) is

bounded since ∂g
∂x2

( − ψ(t) + Δp2
) − Dαη is bounded

and c0 > απ/2. Therefore, φ(nom) must be bounded,
and from (26) the signal pest must be bounded due to
p̂(t) is bounded. 
�
Note that: The function β3(x) may be a non-vanishing
function.

7 Numerical example

Consider a multi-input perturbed nonlinear FO sys-
tem described by (1), where the fractional order is
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α = 0.65, and g(x) = [x21 + x22 x22 x21 +
x23]T . The state variables are x1 � [x11 x12]T ,
x2 � [x21 x22 x23]T . The known nonlinear vec-
tors and matrices fi , Gi , 1 ≤ i ≤ 2, are given by
f1(t, x1) = [sin(t)x211 x212]T , f2(t, x) = [x11x21 cos(t)
cos(x12)x22 x223x22 + sin(t)]T ,

G1(t, x1) =
[
x12 sin(t) x211 1

0 1 cos(x11)

]
,

G2(t, x) =
⎡

⎣
5 cos(t) x22x12
1 2 0

sin(t) sin(x11x22) 3

⎤

⎦ .

The vector u � [u1 u2 u3]T represents the control
input. For demonstrating the robustness of the proposed
control scheme and computer simulation, we assume
that the unknown perturbations �pi , 1 ≤ i ≤ 2, are

�p1(t, x) =
[
0.5x21 cos(x11t)

− x21x222

]
,

�p2(t, x,u) =
⎡

⎣
− x212u2
sin(t)u3

x12x223 + sin(t)

⎤

⎦ .

The controller and sliding surface function are
designed in accordance with (17) and (7), respec-
tively. The designed parameters are chosen to be
(λ1, λ2, c0, h1, h2, k1, k2, kb) = (0.1, 3, 25, 1, 1, 1, 5,
2), θ = [0.1 0.1 0.1]T . The nonlinear positive van-
ishing functions β1 in assumption A3, β3 and δ(u) in
(28) are given by

δ(u) � ‖u‖, β1(x) � ‖x1‖‖x2‖ + ‖x2‖2,
β3(x) � 0.2‖x1‖‖x2‖ + 0.25‖x1‖‖x2‖2 + 0.3.

Fig. 3 The trajectory of function φ

Fig. 4 The trajectory of sliding surface σ

Fig. 5 The trajectory of state variable x1

Fig. 6 The trajectory of state variable x2

The initial condition x(0) is assumed to be x(0) =
[2 − 1 1.5 − 2 0.7]T . The results of computer simu-
lation with step time 0.0001 s are shown from Figs. 3,
4, 5, 6, 7, 8 and 9. Figure 3 shows that the function
φ tends to zero within 8.32 s, and the controlled sys-
tem enters the sliding surface in 11.19 s, as displayed
in Fig. 4. The state variables xi , 1 ≤ i ≤ 2, as illus-
trated in Figs. 5 and 6, all reach zero within 11.21 s.
The functions φ(nom), adaptive gains γ̂1, γ̂2 and control
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Fig. 7 The trajectory of function φ(nom)

Fig. 8 The trajectories of adaptive gains
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60−

Fig. 9 The trajectory of control input u

input u are all bounded, as depicted from Figs. 7, 8 and
9, respectively.

8 Conclusion

In this paper, an adaptive SMC scheme is successfully
proposed for a class of perturbed FO nonlinear systems
with matched and unmatched perturbations to solve

regulation problems. The advantages of the proposed
control system are as follows. (1) The proposed control
scheme can be applied to systems with unmatched per-
turbations. (2) There is no need to know in advance the
upper bounds of perturbations and perturbation estima-
tion errors due to the embedded perturbation estimator
and adaptivemechanisms. (3)The resultant control sys-
tem is able to drive the controlled state trajectories into
equilibrium point within a finite time. For future study,
solving the tracking problems is worth considering.
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