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Abstract This paper is devoted to the problem of
observer design for synchronization of nonlinear fract-
ional-order chaotic systems described by the Takagi–
Sugeno fuzzy model. We propose a new method of
designing an observer that converges in finite time. The
novelty of the proposed observer compared to those
developed in the literature is that the estimated state
exactly converges to the true state in a finite time which
can be chosen beforehand. This is made possible by
updating the estimated state at a defined time instant.
The abrupt update shows up an impulsive behavior of
the observer’s dynamics. Two cases are considered. In
the first case, the system is not affected by an unknown
input. The second case considers the system subjected
to the action of an unknown input. Finite-time conver-
gence of the two proposed observers for both cases is
established using linear matrix inequality formulation.
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Simulation results on the synchronization of fractional-
order chaotic systems clearly illustrate the impulsive
behavior of the proposed observer and the predefined
finite-time synchronization. The advantage of prede-
fined finite-time synchronization is highlighted by the
ability of recovering an encryptedmessagewithout loss
of information in a fractional-order chaos-based secure
communication application.
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1 Introduction

Fractional-order systems have gained more and more
attention in various application fields in several
branches of science and engineering [1–3]. It is rec-
ognized that fractional calculus is a powerful mathe-
matical tool for modeling with more accuracy some
complex physical phenomena such as dielectric polar-
ization [4], heat conduction [5], viscoelasticity mate-
rial [6] and electrical circuits [7]. On the other hand,
the introduction of fractional-order controllers, instead
of conventional PID controllers [3,8], has greatly
improved the robustness of the control system.

The phenomenon of chaos in fractional-order non-
linear systems has also been an exciting topic [9,10].
Fractional-order chaotic systems improve the secu-
rity level of cryptosystems because of their complex
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dynamics and by the fact that fractional orders of
derivatives are used as additional parameters to the
security key space [11–13]. Indeed, the encryption of
a secret message by a fractional-order chaotic sys-
tem complicates the recovering of the message by a
possible intruder. In secure communication systems
based on fractional-order chaos, the transmitter is a
chaotic system of fractional order. The secret informa-
tion is masked by modulation in the incomprehensi-
ble fractional-order chaotic signal that is sent to the
receiver via the public channel. At the receiver, the
secret message is retrieved by the demodulation opera-
tion. The recovery of the secret message is only possi-
ble after synchronization of the receiver and the emit-
ter is achieved. So, in the design of chaos-based cryp-
tographic systems, the problem of synchronization is
crucial. Thanks to the remarkable work of Caroll and
Pecora [14], two chaotic systems can be synchronized
despite their sensitivity to the initial conditions and
their unpredictable behavior.

Synchronization methods for two fractional-order
chaotic systems developed in the literature are numer-
ous and very varied such as projective synchroniza-
tion [15,16], adaptive schemes [17], cascade synchro-
nizationmethod [18], optimal approach [19], impulsive
methods [20,21] and active control strategy [22]. In the
same spirit, the synchronization problem has also been
addressed for complex neural network fractional-order
systems [23,24].

Among the many methods of synchronization of
fractional-order chaotic systems, observer-basedmeth-
ods, highlighted by the work of Niejemeejer and
Mareels [25], have led to a large number of con-
tributions. A proportional integral observer is pro-
posed in [26] for synchronization of two fractional-
order chaotic systems. A fractional-order high-gain
observer is designed for fractional-order nonlinear sys-
tems subject to delayed measurements [27]. Nonlinear
observer has been addressed in [28] to achieve pro-
jective synchronization. Sliding mode observers have
been widely applied to nonlinear fractional-order sys-
tems; for instance, see recent published works [29–34]
and references cited therein.

As rightly pointed out recently in [35], it should
be noted that many observer design techniques dedi-
cated to chaotic synchronization converge asymptot-
ically. Although approaches based on sliding modes
and homogeneous functions guarantee convergence in
finite time [36], the convergence time is not known and

remains dependent on the system initial conditions; this
is usually an unbounded function of the initial condi-
tions. Increasing the speed of convergence with this
type of observer requires high-gain output injection.
Unfortunately, the use of discontinuous high-gain out-
put injection induces severe drawbacks such as chatter-
ing phenomenon, transient peaks with high amplitude
and high sensitivity to measurement noise [37].

In secure transmission scheme design, asymptotic
convergence is undesirable because significant delays
for synchronization render the recovering of the confi-
dential message a very hard task. A loss of information
can corrupt the transmission of the message especially
if the first samples of the information constitute con-
fidential signaling data. In such application, the use
of finite-time synchronization methods is essential. We
must therefore design state observers that converge in a
finite time. For the best synchronization, the ideal solu-
tion is to design state estimators that exactly converge
without estimation error and in a time preselected in
advance. Knowing exactly the synchronization delay,
it is then possible to carry out the transmission without
any loss of information either by delaying the sending
of the message until the synchronization is established
or by adding to the beginning of the confidential mes-
sage another information without any meaning.

In [35], the authors considered this important point
in the case of synchronization of integer-order chaotic
systems. Even if the convergence time is fixed arbi-
trary, however, its predetermined value must be greater
than a lower limit depending on the system initial con-
ditions. To the best of our knowledge, the finite-time
synchronization with a predefined time of convergence
has never been addressed for fractional-order chaotic
systems.

Motivated by the above discussion, the objective of
our work is twofold. On the one hand, considering the
importance of fractional-order chaotic systems in the
design of secure communication schemes, we propose
an innovative solution for finite-time synchronization
of fractional-order chaotic systems. On the other hand,
the solution thatwe propose allows to arbitrarily choose
in advance the convergence time independently on the
system initial conditions.

The key idea of the solution we propose is based
on the impulsive observer developed by Raff and All-
gower [38,39] for integer-order linear continuous-time
systems. The principle of the Raff’s continuous-time
deadbeat observer consists in a abrupt update of the
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estimated state at a definite time instant chosen in
advance.Anexact convergence is thenobtained infinite
time thanks to an update gain computed from the tran-
sition matrix of the system. Recently, the Raff’s idea
has been extended to fractional-order linear systems
in [40]. However, the extension of the Raff’s observer
to nonlinear systems of both integer order and frac-
tional order is not obvious. Indeed, it remains difficult
to determine the update gain which is the key element
of the Raff’s observer since, for general nonlinear sys-
tems, the notion of transition matrix is not defined. In
order to solve this problem, we propose to represent
the nonlinear system in the form of a fuzzy Takagi–
Sugeno (T–S) model consisting of a weighted superpo-
sition of several linear local sub-models. The fuzzy T–S
model was introduced first by Takagi and Sugeno [41].
It is therefore possible to use the tools of linear sys-
tems to design local observers corresponding to each
linear subsystem. There exist many methods that can
be used in order to obtain the fuzzy T–S model for a
given nonlinear system. The linearization method con-
sists of summing linear models obtained around some
operating points with judicious weighting functions.
The black box identification-based method imposes, in
advance, the T–S structure and then proceeds to the
estimation of the T–S structure parameters [42]. The
third method makes it possible to obtain an exact rep-
resentation T–S for any nonlinear system at least in a
compact state space. This method is based on the non-
linear sector transformations [43,44]. The T–S fuzzy
representation of integer-order nonlinear systems had a
considerable impact on observers design [45,46]. Simi-
larly, someworks have been devoted to controllers’ and
observers’ design for nonlinear fractional-order sys-
tems using T–S fuzzymodels including observer-based
synchronization of fractional-order chaotic systems;
for instance, see some recent published papers [47–
52].

Our contribution is based on two guiding ideas. The
first one is to use the T–S representation for fractional-
order nonlinear systems. The second one is to develop
an extension of the Raff’s impulsive observer with a
predetermined convergence time to the synchroniza-
tion of fractional-order chaotic systems described by
T–Smodels.We consider two cases. In the first case, the
system is not affected by an unknown input. The second
case considers the system subjected to the action of an
unknown input. This second case is part of the design of
fractional-order chaotic system-based secure commu-

nication schemes. The unknown input represents the
secret message to be transmitted. In both cases, we
show that the estimated state exactly converges to the
true state in a finite time which can be chosen almost
arbitrarily. This ismadepossible by an impulsive updat-
ing process of the estimated state, at a desired time. This
advantage is efficiently illustrated in the synchroniza-
tion of two fractional-order chaotic systems used in a
secure data communication scheme.

The rest of the paper is organized as follows. In
Sect. 2, definitions on fractional-order systems are
given. The problem statement and the aim goal of the
present work are presented. Moreover, preliminary sta-
bility results on T–S fuzzy fractional-order systems are
derived. InSect. 3, the proposedfinite convergence time
impulsive observer for T–S fuzzy fractional-order sys-
tems is designed. First, we consider that the system is
not subjected to an unknown input, while in the sec-
ond step, the presence of an unknown input is taken
into account. This second case reflects the application
of the proposed observer to secure communication in
which the unknown input represents the secret mes-
sage to be confidentially sent from the emitter to the
receiver. For both cases, the finite-time convergence is
established by using linearmatrix inequality (LMI) sta-
bility results of fractional-order systems [53–56]. Sec-
tion 4 is devoted to numerical application of the pro-
posedobserver to the synchronizationof two fractional-
order chaotic systems in a secure data communication
scheme.

Notations

Throughout this paper, the following standard nota-
tions are used.Rn andRn×m denote the n-dimensional
Euclidean space and the set of n × m real matrices,
respectively. R∗+, R+ and N represent the strictly pos-
itive real numbers set, the nonnegative real numbers
set and the integer numbers set, respectively. For a real
matrix M , the notation MT represents the transpose of
M . In and 0n×m denote the n × n identity matrix and
the n × m null matrix, respectively. For a given real
symmetric matrix X , the inequalities X < 0 (X ≤ 0)
and X > 0 (X ≥ 0) indicate that X is negative (semi)
definite and positive (semi) definite, respectively. The
symbol Sym(M)means M +MT and the conventional
notation A⊗B denotes the Kronecker product between
the twomatrices A and B. The symbol (∗) in the follow-
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ing partitioned symmetric matrix

[
A B

(∗) C

]
denotes

the symmetric item, i.e., (∗) = BT.

2 Problem formulation and preliminary results

In the field of fractional-order systems modeling and
control, several fractional derivative definitions have
been introduced. Among these, the Caputo’s definition
is advantageous because the solution of the correspond-
ing differential equations depends on the initial condi-
tions defined in classical ways that makes it applicable
to physical systems [57,58]. Throughout this paper, we
adopt the Caputo’s fractional derivative defined as fol-
lows.

Definition 1 [57] TheCaputo derivative of a given real
order α ∈ R

∗+, � − 1 < α < �, � ∈ N on a real-valued
function f (t)with respect to the variable t ∈ R+ which
represents the time is defined as

Dα f (t) = 1

Γ (� − α)

∫ t

t0

1

(t − τ)α+1−�

d� f (τ )

dτ �
dτ (1)

where t0 denotes the initial time and the Euler’s gamma
function Γ (α) is defined as

Γ (α) =
∫ ∞

0
να−1e−νdν (2)

In the present work, we focus mainly on the case of
0 < α < 1. Nevertheless, we also give some results for
the case 1 ≤ α < 2.

Definition 2 [57,58]. The α-order Riemann–Liouville
integral operator on a real-valued function f (t) is
expressed as follows.

I α f (t) = 1

Γ (α)

∫ t

t0

1

(t − τ)1−α
f (τ )dτ (3)

Let us recall below some useful results related to the
stability and observability of commensurate fractional-
order linear systems described by

Dαx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (4)

where x(t) = [x1(t) x2(t) . . . xn(t)]T ∈ R
n is the

n-dimensional state vector, u(t) ∈ R
m the input control

vector and y(t) ∈ R
p the output vector. A, B andC are

constant real matrices with appropriate dimensions and
0 < α < 1. Let t0 be the initial time and x0 = x(t0)

the initial condition. The solution of (4) is given by
[57,58].

x(t) = Eα

(
A(t − t0)

α
)
x0

+
∫ t

t0
(t − τ)α−1Eα,α

(
A(t − τ)α

)
Bu(τ )dτ

(5)

where Eα (A(t − t0)α) represents the Mittag–Leffler
function defined as [57],

Eα(Atα) =
∞∑
k=0

Aktkα

Γ (1 + kα)
(6)

and Eα,β (Atα) denotes the two parameters Mittag–
Leffler function defined as

Eα,β(Atα) =
∞∑
k=0

Ak tkα

Γ (kα + β)
(7)

For integer-order systems, asymptotic stability is char-
acterized by an exponential decay of its solution, i.e.,
the asymptotically stable system is said to be exponen-
tially stable. However, for fractional-order systems, the
asymptotically stability is characterized by theMittag–
Leffler stability defined as follows [56].

Definition 3 The solution of the fractional-order sys-
tem Dαx(t) = f (t, x) is said to be Mittag–Leffler
asymptotically stable if for any initial condition x0 =
x(t0), there exist positive constants λ ≥ 0, ρ > 0 such
that ‖x(t)‖ ≤ {ν(x0)Eα (−λ (t − t0)α)}ρ , for all t ≥ t0
with ν(0) = 0, ν(x) ≥ 0 and ν(x) is locally Lipschitz
on x ∈ D ⊂ R

n .

A special case of the Mittag–Leffler stability is the
power-law stability defined as follows [54,59].

Definition 4 The solution of the fractional-order sys-
tem Dαx(t) = f (t, x) is said to be t−β asymptotically
stable if for any initial condition x0 = x(t0), there exists
a positive real β such that

∀ ‖x(t)‖ , t ≤ t0, ∃ϑ (x(t), t ≤ t0) , t1 (x(t), t ≤ t0)

such that

∀t > t0, ‖x(t)‖ ≤ ϑ(t − t1)
−β

Remark 1 For fractional-order systems, the trajecto-
ries slowly decay toward 0 following t−β which reflects
the long memory phenomenon of fractional-order sys-
tems.
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One of the first stability results for fractional-order lin-
ear systems is due to D. Matignon and is stated in the
following lemma.

Lemma 1 [59] The fractional-order linear system (4)
with 0 < α < 2 is asymptotically stable if and only if

|Arg(spec(A))| > α
π

2
(8)

where spec(A) denotes the set of all eigenvalues,
including repeated eigenvalues of A and Arg, which
denote the argument of a complex number.

The Lyapunov-based stability result of fractional-order
linear systems is formulated by the following lemma.

Lemma 2 [53] The fractional-order linear system (4)
with 0 < α < 1 is asymptotically stable if and only if
there exist two real symmetric positive definitematrices
Pk1 ∈ R

n×n, (k = 1, 2) and two real skew symmetric
matrices Pk2 ∈ R

n×n, (k = 1, 2), such that

2∑
k=1

2∑
�=1

Sym
{
Θk� ⊗

(
ATPk�

)}
< 0 (9)

[
P11 P12

− P12 P11

]
> 0,

[
P21 P22

− P22 P21

]
> 0, (10)

where

Θ11 =
[
sin(θ) − cos(θ)

cos(θ) sin(θ)

]
,

Θ12 =
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]
(11)

Θ21 =
[

sin(θ) cos(θ)

− cos(θ) sin(θ)

]
,

Θ12 =
[− cos(θ) sin(θ)

− sin(θ) − cos(θ)

]
(12)

with θ = α π
2 .

Analog result is established for the case of 1 ≤ α < 2
and is given below.

Lemma 3 [54] The fractional-order linear system (4)
with 1 ≤ α < 2 is asymptotically stable if and only
if there exists a real symmetric positive definite matrix
P ∈ R

n×n such that[
(ATP + PA)sin(θ̃) (ATP − PA)cos(θ̃)

(∗) (ATP + PA)sin(θ̃)

]
< 0

(13)

or equivalently

Sym
(
Θ̃ ⊗ (ATP)

)
< 0 (14)

where θ̃ = π − α π
2 and

Θ̃ =
[

sin(θ̃) cos(θ̃)

− cos(θ̃) sin(θ̃)

]
(15)

The observability condition of the fractional-order
system (4) is stated in the following theorem.

Theorem 1 [60] System (4) is observable if and only
if the following Kalman’s rank condition

rank

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦

= n (16)

is fulfilled.

Another useful result for the statement of our main
contribution concerns the solution of time-varying
fractional-order systems [61,62].

Definition 5 The transition matrix Φ(t, t0) of the fol-
lowing time-varying fractional-order system

Dαx(t) = A(t)x(t) (17)

is defined as the unique solution of the fractional-order
differential equation

DαΦ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In (18)

The solution of (17) for a initial condition x0 = x(t0)
is given by

x(t) = Φ(t, t0)x0 (19)

Lemma 4 The state transition Φ(t, t0) of (17) with
0 < α < 1 is expressed by [61,62]

Φ(t, t0) =
∞∑
k=0

I k◦α
t0,t A(t) (20)

where

I 0◦α
t0,t A(t) = I 0t0,t A(t) = In

I 1◦α
t0,t A(t) = I α

t0,t A(t) = 1

Γ (α)

∫ t

t0

A(τ )

(t − τ)1−α
dτ

I (k+1)◦α
t0,t A(t) = I α

t0,t

(
I k◦α
t0,t A(t)

)

= 1

Γ (α)

∫ t

t0

A(τ )I k◦α
t0,τ A(τ )

(t − τ)1−α
dτ, k ≥ 1

(21)
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Let us consider now a fractional-order commensurate
nonlinear chaotic system described by

Dαx(t) = f (x(t), u(t), d(t))

y(t) = Cx(t) + Vd(t) (22)

where x(t) = [x1(t) x2(t) . . . xn(t)]T ∈ R
n is the

n-dimensional state vector, u(t) ∈ R
m the input control

vector, y(t) ∈ R
p the output vector and d(t) ∈ R

nd the
disturbance vector. Using the nonlinear sector transfor-
mation [43,44], an exact T–S representation for (22) is
obtained as follows [41]

Dαx(t) =
s∑

i=1

μi (ξ) (Ai x(t) + Biu(t) + Wid(t))

y(t) = Cx(t) + Vd(t) (23)

where s denotes the number of linear models and the
nonnegative functionsμi (ξ) called the weighting func-
tions or the membership functions satisfy the convex
sum constraint formulated as
s∑

i=1

μi (ξ) = 1

μi (ξ) ≥ 0, i = 1, 2, . . . , s (24)

These weighted functions depend on the variables
ξ(t) ∈ R

q defined as the premise variables or the
decision variables. We consider in this paper that the
premise variables are available from measurements,
i.e., ξ(t) depends only on the outputs y(t). In the most
general second case, ξ(t) depends on the unavailable
state vector x(t).

Themain objective of the present paper is to propose
an impulsive finite convergence time observer for the
T–S fuzzy system (23). This will be the goal of the next
section. First, we need some stability results that will
be used to demonstrate the main results. Stability of
uncertain T–S fuzzy fractional-order systems is inves-
tigated in [50] by using the linear matrix inequality
(LMI) techniques. The following result is a particular
case of those established in [50] when the uncertainties
are absent. Indeed, using Lemmas 2 and 3, asymptotic
stability of the following fractional-order T–S system

Dαx(t) =
s∑

i=1

μi (ξ) (Ai x(t)) (25)

is stated in the two following theorems.

Theorem 2 The fractional-order T–S system given by
(25) with 0 < α < 1 is asymptotically stable if there

exists a positive definite matrix X > 0 such that the
following LMIs

AT
i X + X Ai < 0 (26)

are satisfied for all i = 1, 2, . . . , s.

Proof From Lemma 2 and by setting P11 = P21 = X
and P12 = P22 = 0, (25) is asymptotically stable if

Sym

(
Θ11 ⊗

(
s∑

i=1

μi (ξ)AT
i X

)

+Θ21 ⊗
(

s∑
i=1

μi (ξ)Ai X

))
< 0

Using the following properties of the Kronecker prod-
uct

A ⊗ C + B ⊗ C = (A + B) ⊗ C

(A ⊗ B)T = AT ⊗ BT

(r A) ⊗ B = r(A ⊗ B),∀r ∈ R (27)

and by the associativity property of the operator Sym,
then the above stability condition is equivalent to

Sym

(
2Θ ⊗

s∑
i=1

μi (ξ)AT
i X

)
< 0

where

Θ =
[
sin(θ) 0
0 sin(θ)

]

and θ = α π
2 . Then, it sufficient that the following con-

dition
s∑

i=1

μi (ξ)sin(θ)
(
AT
i X + X Ai

)
< 0

is satisfied. Since sin(θ) > 0 for 0 < α < 1 and since
the membership functions μi (ξ) are all nonnegative, it
follows that the sufficient stability condition becomes

AT
i X + X Ai < 0, i = 1, 2, . . . , s

This completes the proof. 
�
Similar result for the case 1 ≤ α < 2 is established
below.

Theorem 3 The fractional-order T–S system given by
(25) with 1 ≤ α < 2 is asymptotically stable if there
exists a real symmetric positive definite matrix X > 0
such that the following LMIs[ (

AT
i X + X Ai

)
sin(θ̃)

(
AT
i X − X Ai

)
cos(θ̃)

(∗)
(
AT
i X + X Ai

)
sin(θ̃)

]
< 0

(28)

with θ̃ = π − α π
2 are satisfied for all i = 1, 2, . . . , s.
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Proof From Lemma 3 and by setting P = X , (25) is
asymptotically stable if there exists a real symmetric
positive definite matrix X > 0, such that(

Θ̃ ⊗
s∑

i=1

μi (ξ)AT
i X

)

+
(

Θ̃ ⊗
s∑

i=1

μi (ξ)AT
i X

)T

< 0, i = 1, 2, . . . , s

where Θ̃ is given by (15). Using properties (27) of the
Kronecker product, it follows that the above inequality
is equivalent to

s∑
i=1

μi (ξ)
(
Θ̃ ⊗ AT

i X + Θ̃T ⊗ X Ai

)
< 0, i = 1, 2, . . . , s

Since the membership function μi (ξ), i = 1, 2, . . . , s,
is positive, a sufficient asymptotic stability condition is
given by

Θ̃ ⊗ AT
i X + Θ̃T ⊗ X Ai < 0, i = 1, 2, . . . , s

Substituting Θ̃ by its expression given by (15) and
expanding the Kronecker product, we conclude that the
fractional-order T–S system (25), with 1 ≤ α < 2, is
asymptotically stable if LMIs (28) are satisfied. This
completes the proof. 
�
Remark 2 Identical results for Theorems 2 and 3 are
proposed in [50,55], concerning uncertain fractional-
order systems (see, for example, Corollary 1 in [55]).

3 Main results

In this section, an impulsive state observer with a pre-
defined convergence time is designed on the basis of
the T–S fuzzy representation (23). The original idea
was proposed for integer-order linear systems in [38]
and then has been recently extended to fractional-order
linear systems in [40]. In the first case, we consider
the system without unknown input d(t), and in the
second case, we consider that the system is subject to
the unknown input d(t). In both cases, we assume that
the premise variables ξ(t) are available from measure-
ment.

3.1 Case without unknown input

Let us rewrite the T–S fuzzy fractional-order system
without unknown input as follows

Dαx(t) =
s∑

i=1

μi (ξ) (Ai x(t) + Biu(t))

y(t) = Cx(t) (29)

Let us consider the following assumption.

Assumption 1 The couples (Ai ,C), i = 1, 2, . . . , s
are observable.

Define updates time instants tk such that 0 < t1 < t2 <

· · · < tk < · · · , with limk→∞ tk = ∞. Denotes by
t+k = limh→0(tk + h) and t−k = limh→0(tk − h) where
h ∈ R+. For system (29), the T–S observer is described
by

Dαz(t) =
∑s

i=1
μi (ξ) (Fi z(t)

+Giu(t) + Li y(t)) , t �= tk

z(t+k ) = Kkz(t
−
k ), t = tk, k = 1, 2, . . . ,

z(t0) = Mx̂(t0) = Mx̂0

x̂(t) = Nz(t)

(30)

with

Fi =
[

Fi1 0n×n

0n×n Fi2

]
, Gi =

[
Bi
Bi

]
(31)

Li =
[
Li1

Li2

]
, M =

[
In
In

]
, N = [In 0n×n] (32)

The augmented state vector z(t) ∈ R
2n is partitioned as

z(t) = [zT1 (t) zT2 (t)]T, respectively, with z1(t) ∈ R
n

and z2(t) ∈ R
n . z(t+k ) and z(t−k ) denote the right- and

left-limit operators, respectively, defined as z(t+k ) =
limh→0 z(tk+h), z(t−k ) = limh→0 z(tk−h) and by def-
inition we take z(t−k ) = z(tk). Li j , i = 1, 2, . . . , s, j =
1, 2, represent the classical Luenberger-type observer
gains, i.e., with a linear output injection, while Kk ,
k = 1, 2, . . . , represent the update gains with impul-
sive action. The time instants tk , k = 1, 2, . . . , of the
observer state updates can be arbitrarily chosen. The
design parameters of the T–S observer (30) include
the matrices Fi j , Gi and the gains Li j and Kk . These
parameters are designed such that theT–Sobserver (30)
converges in finite time δ = t1 − t0 as stated by the fol-
lowing theorem.

Theorem 4 Consider the fractional-order T–S system
(29) with 0 < α < 1 and the corresponding T–S
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1338 S. Djennoune et al.

observer (30). Let Assumption 1 be satisfied. If there
exist symmetric positive definite matrices X j > 0 and
Yi j such that the following LMI conditions

AT
i X j + X j Ai

−Yi jC − CTY T
i j < 0; j = 1, 2; i = 1, 2, . . . , s

(33)

hold and if the update gains Kk are given as follows

K1 = M
[
In − Φ2(t1, t0)Φ

−1
1 (t1, t0)

]−1

[
Φ2(t1, t0)Φ

−1
1 (t1, t0) In

]
Kk = I2n, k = 2, 3, . . . (34)

whereΦ j (t, t0), j = 1, 2 are solutions of the following
fractional-order time-varying differential equations

DαΦ j (t, t0)

=
s∑

i=1

μ(ξ(t))Fi jΦ j (t, t0), Φ j (t0, t0) = In, j = 1, 2

(35)

then the estimate x̂(t) provided by the proposed impul-
sive T–S observer (30) with the following matrices

Li j = X−1
j Yi j (36)

Fi j = Ai − Li jC (37)

converges to the true state x(t) in the predefined time
δ = t1 − t0, i.e., e(t) = x(t) − x̂(t) = 0 for all t ≥ t1.

Proof Define the error ezj = x(t) − z j (t), j = 1, 2.
Let us write the fractional-order dynamical equation of
ezj over the interval time [t0 t1]. In this time interval,
according to (31) and (32), we have

Dαz j (t) =
s∑

i=1

μi (ξ)
(
Fi j z j (t) + Biu(t) + Li j y(t)

)

(38)

Then,

Dαezj (t) =
s∑

i=1

μi (ξ)
(
Ai x(t) − Fi j z j (t) − Li jCx(t)

)

(39)

Since Fi j = Ai − Li jC , then

Dαezj (t) =
s∑

i=1

μi (ξ)
(
Fi j ez j (t)

)
(40)

The observer gains Li j are designed so that the esti-
mation error dynamic equation (40) is asymptotically

stable. Thanks to Theorem 2, the asymptotic stabil-
ity is guaranteed if there exists two matrices X j > 0,
j = 1, 2 such that the LMIs

FT
i j X j + X j Fi j < 0, i = 1, 2, . . . , s; j = 1, 2

(41)

are satisfied. This is always possible by Assumption 1.
By introducing the variables (36) and (37) in (41), we
can check that the LMIs (41) are equivalent to those
of (33). Then, for any initial value ezj0 = ezj (t0), the
error ezj (t) evolves in convergent manner. Moreover,
we have

ezj (t) = Φ j (t, t0)ezj0 (42)

where Φ j (t, t0) is the state transition matrix, solution
of (35). Consider now the first update instant t1. At this
time, we have from (42)

z j (t1) = x(t1) − Φ j (t1, t0)(x0 − x̂0) (43)

At t = t+1 , the evolution of z j (t), j = 1, 2 is forced as

z(t+1 ) = K1z(t
−
1 ) = K1z(t1) (44)

Substituting (43) in (44) yields to[
z1(t

+
1 )

z2(t
+
1 )

]
= K1Mx(t1)

− K1

[
Φ1(t1, t0) 0n×n

0n×n Φ1(t1, t0)

]
M(x0 − x̂0)

(45)

Substituting (34) in (45), one can easily check that

z1(t
+
1 ) = z2(t

+
1 ) = x(t1) (46)

This amounts to saying that after the jump instant t1,
the Luenberger-type observer (30) is initialized by the
exact value of the true state x(t1). It follows that x̂(t) =
x(t) for all t ≥ t1. Then the observer exactly converges
in finite time δ = t1 − t0. This completes the proof. 
�
Remark 3 The design problem of the proposed
observer focuses on solving the LMIs (33). Numerical
tools are available in the literature such as the YALMIP
toolbox in MATLAB [63]. Moreover, we must avoid
the singularity that can appear in the calculation of the
gain K1 for t1 > 0. For this purpose, the two tran-
sition matrices Φ1(t, t0) and Φ2(t, t0) should be dif-
ferent. To achieve this, the LMIs (33) may be solved
by pole placement. It is sufficient to locate the poles
in a LMI region of the complex left half plane [64].
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Let Ω j (ρ j ), ρ j > 0, j = 1, 2 be a subregion of the
complex left half plane limited, at the right side, by
a vertical straight of coordinate in the real axis equal
to − ρ j with ρ1 �= ρ2. The LMIs with the prescribed
region Ω j (ρ j ) are expressed as follows [64]

AT
i X j + X j Ai − Yi jC − CTY T

i j

+ 2ρ j X j < 0; j = 1, 2; i = 1, 2, . . . , s (47)

The fact that ρ1 �= ρ2 avoids the singularity of K1.
The state transition matrices Φ1(t, t0) and Φ2(t, t0)
are numerically determined by solving the fractional-
order differential equation (35) using, for example,
the numerical Grunwald–Letnikov formulae of the
fractional-order derivative defined as follows. The
Grunwald–Letnikov derivative of a function f (t) is
given by [58]

GL
t0 Dα f (t) |t=kh

≈ 1

hα

j=[(t−t0)/h]∑
j=0

(−1) j
(

α

j

)
· f (kh − jh)

where the binomial term is given by(
α

j

)
· = α(α − 1)(α − 2) . . . (α − j + 1)

j !
h is the sampling step and [s] denotes the integer part
of s.

Remark 4 Assumption 1 of observability of local sub-
systems (Ai ,C), i = 1, 2, . . . , s is necessary to the
existence of the observer gains Li j , i = 1, 2, . . . , s,
j = 1, 2 [65].

Next, the result of Theorem 4 is extended to the case
of 1 ≤ α < 2. The same structure (30) is kept. Only
the conditions of convergence of the estimation error
formulated by relation (41) are modified. This leads to
the corollary below.

Corollary 1 Consider the fractional-order T–S system
(29) with 1 ≤ α < 2 and the corresponding T–S
observer (30). Let Assumption 1 be satisfied. If there
exist matrices X j > 0, Yi j such that the following LMI
conditions[
Fi j sin(θ̃) F̄i jcos(θ̃)

F̄i jcos(θ̃) Fi j sin(θ̃)

]

< 0, j = 1, 2; i = 1, 2, . . . , s

(48)

with

Fi j = AT
i X j + X j Ai − Yi jC − CTY T

i j (49)

F̄i j = AT
i X j − X j Ai + Yi jC − CTY T

i j (50)

are satisfied, then the estimate state x̂(t) provided by
the impulsive observer (30) with 1 ≤ α < 2 and with
the design parameters are given, as in Theorem 4, by
relations (34)–37), converges to the true state x(t) in
the predefined time δ = t1 − t0, i.e., e(t) = x(t) −
x̂(t) = 0 for all t ≥ t1.

Proof According to same developments given in the
proof of Theorem4, the dynamic of the estimation error
ezj = x(t) − z j (t) j = 1, 2 is governed by Equation
(40). Thanks to Theorem 3, the estimation error ezj
is asymptotically stable if there exist real symmetric
positive definite matrices X j > 0, j = 1, 2 such that⎡
⎣
(
FT
i j X j + X j Fi j

)
sin(θ̃ )

(
FT
i j X j − X j Fi j

)
cos(θ̃)

(∗)
(
FT
i j X j + X j Fi j

)
sin(θ̃)

⎤
⎦

< 0, j = 1, 2; i = 1, 2, . . . s (51)

where θ̃ = π − α π
2 . Using relations (36) and (37), it

easy to check that the above LMIs are equivalent to
LMIs given by (48) with (49) and (50). The rest of the
proof is similar to the proof of Theorem 4. 
�

3.2 Case with unknown input

Now, we consider that the fractional-order system
is subject to the unknown input vector d(t) and is
described by the T–S model (23). Consider the follow-
ing assumptions.

Assumption 2 Thedisturbancevectord(t) is unknown
and bounded.

Assumption 3 The matrices Wi , i = 1, 2, . . . , s, V
and C are full rank, i.e., rank(Wi ) = rank(V ) = nd ,
i = 1, 2, . . . , s and rank(C) = p.

The proposed impulsive observer with predetermined
finite-time convergence is given by

Dαη(t) =
s∑

i=1

μi (ξ)(Fiη(t)

+Giu(t) + Li y(t)), t �= tk

z(t) = η(t) − Ey(t), t �= tk

z(t+k ) = Kkz(t
−
k ), η(t+k )
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= z(t+k ) + Ey(tk)
+, t = tk, k = 1, 2, . . . ,

z(t0) = Mx̂(t0) = Mx̂0

x̂(t) = Nz(t) (52)

Li =
[
Li1

Li2

]
, E =

[
E1

E2

]
, Gi =

[
Gi1

Gi2

]
(53)

The matrices M and N are given in relation (32). The
augmented state vectors η(t) ∈ R

2n and z(t) ∈ R
2n

are partitioned as η(t) = [ηT1 (t) ηT2 (t)]T and z(t) =
[zT1 (t) zT2 (t)]T, respectively, with η1(t) ∈ R

n , η2(t) ∈
R
n , z1(t) ∈ R

n and z2(t) ∈ R
n . The following theorem

states the result on the finite-time convergence of the
proposed impulsive T–S fuzzy observer (52).

Theorem 5 Consider the fractional-order T–S fuzzy
system (23) with 0 < α < 1 and the correspond-
ing T–S observer (52). Let Assumptions 2–3 be sat-
isfied. If, there exist matrices X j > 0, S j and Yi j ,
i = 1, 2, . . . , s, j = 1, 2 such that the following LMI
conditions

AT
i X j + X j Ai + AT

i C
TSTj

+ S jC Ai − CTY T
i j − Yi jC < 0 (54)

hold with the equality constraints(
X j + S jC

)
Wi = Yi j V (55)

S j V = 0 (56)

and if the update gains Kk are designed as

K1 = M
[
In − Φ2(t1, t0)Φ

−1
1 (t1, t0)

]−1

[
Φ2(t1, t0)Φ

−1
1 (t1, t0) In

]
Kk = I2n, k = 2, 3, . . . (57)

where Φ j (t, t0), j = 1, 2 are solutions of the
fractional-order differential equations

DαΦ j (t, t0) =
s∑

i=1

μ(ξ(t))Fi jΦ j (t, t0),

Φ j (t0, t0) = In, j = 1, 2 (58)

then, for any unknown bounded input d(t), the state
estimate vector x̂(t) provided by the impulse functional
T–S observer (52) with the following matrices

E j = X−1
j S j

Gi j =
(
In + X−1

j S jC
)
Bi

Fi j =
(
In + X−1

j S jC
)
Ai − X−1

j Yi jC

Li j = X−1
j Yi j − Fi j E j (59)

converges to the true state vector x(t) in the predefined
time δ = t1 − t0, i.e.,

e(t) = x(t) − x̂(t) = 0, ∀t ≥ t1 (60)

Proof Define the estimation error ezj (t) = x(t) −
z j (t), j = 1, 2. Then

Dαezj = Dαx(t) − Dαz j (t)

= Dαx(t) − Dαη j (t) + E jCDαx(t) + E j V Dαd(t)

(61)

Taking the fact that

Dαη j (t) =
s∑

i=1

μi (ξ)(Fi jη j (t)

+Gi ju(t) + Li jCx(t) + Li j V d(t)) (62)

and using the convexity property of the membership
function μi (ξ), we obtain

Dαezj (t) =
s∑

i=1

μi (ξ)
{
Fi j ez j (t)

+ (Pj Ai − Fi j Ai − Li jC)x(t)

+ (Pj Bi − Gi j )u(t)

+ (PjWi − E j V − Li j V )d(t) + E j V d(t)
}
(63)

where

Pj = (In + E jC) (64)

If the observer matrices Fi j , Gi j , Li j and E j are
designed such that the relations

Pj Ai − Fi j Pj − Li jC = 0

Gi j = Pj Bi

PjWi − Fi j E j V − Li j V = 0

E jV = 0 (65)

are satisfied for i = 1, 2, . . . , s and j = 1, 2, the esti-
mation error ezj obeys the following equation

Dαezj (t) =
s∑

i=1

μi (ξ)
(
Fi j ez j (t)

)
(66)

According to Theorem 2, the above system is asymp-
totically stable if there exist symmetric positive definite
matrices X j , j = 1, 2, such that the following LMIs

FT
i j X j + X j Fi j < 0; i = 1, 2, . . . , s; j = 1, 2

(67)
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hold. Introduce the following change of variables

E j = X−1
j S j

Li j = X−1
j Yi j − Fi j E j (68)

Then, we can show, after some straightforward alge-
braic calculations, that relations (65) are equivalent to

Fi j = (In + X−1
j S jC)Ai − X j S jC

Gi j = (In + X−1
j S j )Bi

(In + X−1
j S j )Wi − Yi j V = 0

S j V = 0 (69)

and theLMIs (67) are equivalent to theLMIs (54).Now,
if the above conditions are satisfied, then at the time t1,
we have exactly the same situation as inTheorem4.The
rest of the proof is identical to Theorem 4. Therefore,
the injection of the update gain K1 forces the state x̂(t1)
to be equal to the true state x(t1).We conclude then that
x̂(t) = x(t) for all t ≥ t1. This completes the proof. 
�
Remark 5 Assumption 3 is necessary for the possible
existence of the proposed observer. Indeed, the exis-
tence of this observer depends on the feasibility of the
LMIs (54) and also the equality constraints (55), (56).
These equalities are satisfied under Assumption 3.

Remark 6 Assumption 2 allows us to avoid the diver-
gence of the solutions of the system subject to an
unbounded input. In addition, in the application to
chaotic synchronization, the amplitude of the input d(t)
must be small enough to preserve the chaotic behavior
of the system.

Remark 7 As in the case of the observer without
unknown input developed above, the design of the
unknown input observer (52) requires that the update
gain K1 exists. Therefore, the two transition matrices
Φ1(t, t0) andΦ2(t, t0) should be different. For this pur-
pose, consider the LMI regions Ω̃J (ρJ , σJ ), j = 1, 2
defined in the complex plan as the intersection between
the circle of center (0, 0) and of radius σ j and the left
half plane limited by a vertical straight line of abscissa
equal to −ρ j , ρ j > 0. The LMI conditions (54) with
the above regions are equivalent to[ − σ j X j X j Ai + S jC Ai − Yi jC

(∗) −σ j X j

]

< 0, j = 1, 2 (70)

AT
i X j + X j Ai + AT

i C
TSTj

+ S jC Ai − CTYi j − Yi jC + 2ρ j < 0, j = 1, 2

(71)

with the equality constraints (55) and (56). LMIs (70),
(71) can be solved with the YALMIP/MATLAB pack-
age.

The extension of Theorem 5 results to the case of
1 ≤ α < 2 is derived in the following corollary.

Corollary 2 In Theorem 5, if 1 ≤ α < 2 and if the
LMI (54) is replaced by the following LMIs[

Hi j sin(θ̃) H̄i jcos(θ̃)

(∗) Hi j sin(θ̃)

]
< 0,

j = 1, 2; i = 1, 2, . . . , s (72)

with

Hi j = AT
i X j + X j Ai − AT

i C
TSTj

+ S jC Ai − CTY T
i j − Yi jC (73)

H̄i j = AT
i X j − X j Ai − AT

i C
TSTj

− S jC Ai − CTY T
i j + Yi jC (74)

and θ̃ = π −α π
2 , then the estimate state x̂(t) provided

by the impulsive functional T–S observer (52), (53)with
relations (54)–(59) exactly converges to the true state
x(t) in the predefined time δ = t1 − t0.

Proof The proof is similar to that of Theorem 5. Only
conditions of convergence of the error ezj (t), j = 1, 2
governed by Eq. (66) are modified. Indeed, for 1 ≤
α < 2, according to Theorem 4, the estimation error
dynamic equation (66) is asymptotically stable, if there
exist two symmetric positive definite matrices X j , j =
1, 2 such that the following LMIs⎡
⎣
(
FT
i j X j + X j Fi j

)
sin(θ̃ )

(
FT
i j X j − X j Fi j

)
cos(θ̃)

(∗)
(
FT
i j X j + X j Fi j

)
sin(θ̃)

⎤
⎦ < 0,

j = 1, 2; i = 1, 2, . . . s (75)

are satisfied. Introducing the change of variables (69),
it easy to check that the LMIs (75) is equivalent to the
LMIs (72) with (73) and (74). The rest of the proof
follows from the proof of Theorem 5. 
�

4 Numerical application to synchronization of
fractional-order chaotic systems

This section is dedicated to illustrate the efficiency
of proposed impulsive observers to fractional-order
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chaotic synchronization. Consider the fractional-order
Lorenz chaotic system with commensurate derivative
orders described by [9]

Dαx1(t) = −ax1(t) + ax2(t)

Dαx2(t) = cx1(t) − x2(t) − x1(t)x3(t)

Dαx3(t) = x1(t)x2(t) − bx3(t) (76)

It has been shown that the system exhibits a chaotic
behavior with the following values of the system
parameters a = 10; c = 28, b = 8/3 and α > 0.9941
[9]. Hereafter, the fractional derivative order is taken as
α = 0.995. Suppose that x1(t) ∈ [− 30 + 30]. Then,
we can write

x1(t) = μ1(x1)X1min + μ2(x1)X1max (77)

where X1min = −30 and X1max = −X1min = 30. The
membership functions are given by

μ1(x1) = X1max − x1
2X1max

; μ2(x1) = X1max + x1
2X1max

μ1(x1) + μ2(x1) = 1 (78)

with μ1(x1) > 0 and μ2(x1) > 0. Then the fractional-
order chaotic Lorenz system can be exactly represented
by the following T–S model

Dαx(t) = μ1(x1)A1x(t) + μ2(x1)A2x(t) (79)

with

A1 =
⎡
⎣− 10 10 0

28 − 1 30
0 − 30 − 8

3

⎤
⎦ , A2 =

⎡
⎣− 10 10 0

28 − 1 − 30
0 30 − 8

3

⎤
⎦

(80)

Note that in the sequel, for this example, we consider
that B1 = B2 = [0 0 0]T. All simulations are per-
formedbyusing theGrunwald–Letnikov formula of the
fractional-order derivative (see Remark 3) with a step
calculation equal to h = 0.001. The state variable tra-
jectories for both original nonlinear system and its T–S
fuzzy representation are provided in Fig. 1. As can be
seen, the trajectories for the two systems are strictly the
same for the three state variables. Curves are practically
confused. This is also illustrated in Fig. 2 where error
curves are plotted. This confirms that the T–S repre-
sentation of the nonlinear system is exact. We can also
observe this fact in Fig. 3 which plots strange attractors
for the original system (Fig. 3a in (x1 − x2)-plan and
Fig. 3c in (x1−x3)-plan) and for the corresponding T–S
representation [Fig. 3b in (x1 − x2)-plan and Fig. 3d in
(x1 − x3)-plan]. Strange attractors are correctly repro-
duced with the T–S model.

4.1 Observer without unknown input

The observer design problem given by (30) consists on
resolving the LMIs (47). The output equation is taken
as

y(t) = Cx(t) =
[
1 0 0
0 1 0

]
x(t) (81)

We can check that (A1,C) and (A2,C) are observable.
ThenAssumption 1 used in Theorem 4 is well satisfied.
The decision variable x1 is measurable since y1 = x1

Fig. 1 State variable
trajectories a x1, b x2, c x3
for the original nonlinear
system (in black color) and
for the T–S model (in red
color). (Color figure online)

(a)

(c)

(b)
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Fig. 2 Errors trajectories
between the original system
and the T–S model: a first
state variable, b second state
variable, c third state
variable

(a)

(c)

(b)

Fig. 3 Strange attractor in
(x1 − x2)-plan a for original
nonlinear system and b for
T–S model. Strange
attractor in (x1 − x3)-plan, c
for original nonlinear
system and d for T–S model

(a) (b)

(c) (d)

Using theYALMIP/MATLAB toolbox, we find that the
linear matrix inequalities are feasible for j = 1, 2. The
two transition matrices Φ1 and Φ2 should be different
to avoid the singularity in the calculation of the update
gain K1. So, the LMIs are solved for j = 1 and j = 2
by using the pole placement strategy as discussed in
Remark 3. The solutions X1 and X2 for ρ1 = 0.5 and
ρ2 = 0.7 are given by

X1 =
⎡
⎣ 0.6794 0.0000 0.0000
0.0000 0.6794 − 0.0000
0.0000 − 0.0000 2.5723

⎤
⎦ ,

X2 =
⎡
⎣ 0.6588 0.0000 0.0000
0.0000 0.6588 0.0000
0.0000 0.0000 2.2993

⎤
⎦ (82)

and the observer gains K1, Li j , i = 1, 2, j = 1, 2 are
given as

123



1344 S. Djennoune et al.

L11 =
⎡
⎣− 9.3301 − 12.5026

50.5026 − 0.3301
0.0000 − 83.5799

⎤
⎦ , L12 =

⎡
⎣− 9.3301 11.8311

26.1689 − 0.3301
− 0.0000 83.5799

⎤
⎦ (83)

L21 =
⎡
⎣− 9.2694 − 11.5447

49.5447 − 0.2694
0.0000 − 74.7102

⎤
⎦ , L22 =

⎡
⎣− 9.2694 12.0491

25.9509 − 0.2694
− 0.0000 74.7102

⎤
⎦ (84)

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

12.6463 31.2072 0.0568 − 11.6463 − 31.2072 − 0.0568
29.4517 74.7156 3.8480 − 29.4517 − 73.7156 − 3.8480

− 10.4505 − 35.1791 − 1.2752 10.4505 35.1791 2.2752
12.6463 31.2072 0.0568 − 11.6463 − 31.2072 − 0.0568
29.4517 74.7156 3.8480 − 29.4517 − 73.7156 − 3.8480

− 10.4505 − 35.1791 − 1.2752 10.4505 35.1791 2.2752

⎤
⎥⎥⎥⎥⎥⎥⎦

(85)

The initial conditions are taken as x0 = [6 5 1]T
and t0 = 0, while those of the observer are fixed to
zero. Figures 4, 5 and 6 plot the trajectories of the
true state variables xi (t) and their corresponding esti-
mates x̂i (t), i = 1, 2, 3, for δ = t1 = 0.5s, and in
Fig. 7 are reported the trajectories of the estimation
errors ei (t) = xi (t) − x̂i (t), i = 1, 2, 3. As can be
depicted from these figures, the estimated state vari-
ables converge exactly toward the true state variables
in the predetermined time t1, i.e., for all t ≥ t1, we
have x̂i (t) = xi (t). In the zoomed parts of these fig-
ures, the impulsive behavior of the proposed observer
is showed at the time t1. This impulsive behavior cor-
responds to the abrupt update of the observer state,
z(t+1 ) = K1z(t

−
1 ) with K1 given by (34). Thanks to

the judicious choice of the gain K1, the estimated state
provided by the proposed observer becomes imme-
diately equal to the true state. Meanwhile, the pro-
posed observer allows to obtain exact state observa-
tion after the predefined time t1. Theoretically, the pro-
posed observer is able to achieve instantaneous and
exact synchronization immediately after t1. However,
some distortion with relatively small estimation error
for t > t1 may occur (Fig 7b) due to the discretization
process in the numerical simulation and the use of the
Grunwald–Letnikov formula as approximation of the
fractional-order derivative significantly depending of
the sampling time.

In order to highlight the performance of the proposed
observer, we compare it to the sliding mode observer

Fig. 4 State variable x1 (in
black color) and its estimate
x̂1(t) (in red color) resulting
from the proposed observer
for δ = 0.5s. (Color figure
online)

123



Impulsive observer for fractional-order systems 1345

Fig. 5 State variable x2 (in
black color) and its estimate
x̂2(t) (in red color) resulting
from the proposed observer
for δ = 0.5s. (Color figure
online)

Fig. 6 State variable x3 (in
black color) and its estimate
x̂3(t) (in red color) resulting
from the proposed observer
for δ = 0.5s. (Color figure
online)

recognized as the most popular finite convergence time
observer. A step-by-step sliding mode observer for the
fractional-order Lorenz chaotic system (76) with the
single output y1(t) = x1(t) is described by the follow-
ing equations

Dα x̂1mg(t) = −ay1(t) + ax̂2mg(t) + k1sign(ẽ1)

Dα x̂2mg(t) = cy1(t) − x̃2mg(t) − y1(t)x̂3mg(t)

+E1k2sign(ẽ2)

Dα x̂3mg(t) = y1(t)x̃2mg(t) − bx̃3(t)E2k3sign(ẽ3)

x̃2mg = x̂2mg + 1

a
+ E1k1sign(ẽ1)

x̃3mg = x̂3mg − 1

y1 + ς
+ E2k2sign(ẽ2) (86)

where x̂img, i = 1, 2, 3, denote the estimates of the state
variables and ẽi (t) = x̃i (t) − x̂i (t), i = 1, 2, 3, are the
intermediate estimation errors with x̃1(t) = x1(t) by
construction. The standard sign function is defined as
follows.

sign(e) =
⎧⎨
⎩
1 if e > 0
0 if e = 0
− 1 if e < 0

ς = 0.0001 denotes a small constant added in order
to avoid division by zero. The estimation errors are
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Fig. 7 Estimation errors for
δ = 0.5s. a
e1(t) = x1(t) − x̂1(t), b
e2(t) = x2(t) − x̂2(t), c
e3(t) = x3(t) − x̂3(t)

(a)

(c)

(b)

Fig. 8 State variable x1 (in
black color) and its estimate
x̂1mg(t) (in red color)
resulting from the sliding
mode observer. (Color
figure online)

ei (t) = xi (t) − x̂img(t), i = 1, 2, 3. Obviously, we
have ẽ1(t) = e1(t). The switching logic variables
E1 and E2 obey to the following rules: Ei = 1 if
‖x̃i (t) − xi (t)‖ = 0 else Ei = 0, i = 1, 2. The
observer gains are taken as k1 = k2 = k3 = 5. Fig-
ures 8, 9 and 10 plot the estimated variables resulting
from the slidingmode observer. Results obtained by the

proposed impulsive observer are much better as clearly
shown in Fig. 11 where the estimation error of the pro-
posed method is compared with the estimation error
provided by the sliding mode observer. Error criteria
Jimp for the proposed impulsive observer and Jmg for
the sliding mode observer are evaluated as follows
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Jimp = 1

N

N∑
i=0

√(
x1(tsi) − x̂1(tsi)

)2 + (
x2(tsi) − x̂2(tsi)

)2 + (
x3(tsi) − x̂3(tsi)

)2

Jmg = 1

N

N∑
i=0

√(
x1(tsi) − x̂1mg(tsi)

)2 + (
x2(tsi) − x̂2mg(tsi)

)2 + (
x3(tsi) − x̂3mg(tsi)

)2

where N is the number of simulations points at sam-
pling instants tsi, i = 0, 1, . . . , N . We get Jimp =
1.61155 and Jmg = 1.9110. This confirms the superi-
ority of the proposed impulsive observer. The conver-

gence time of the proposed observer is chosen almost
arbitrarily and independently of the system initial con-
ditions. In contrast, the convergence time of the sliding
mode observer, or of any other finite-time observers, is,

Fig. 9 State variable x2 (in
black color) and its estimate
x̂2mg(t) (in red color)
resulting from the sliding
mode observer. (Color
figure online)

Fig. 10 State variable x3
(in black color) and its
estimate x̂3mg(t) (in red
color) resulting from the
sliding mode observer.
(Color figure online)
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Fig. 11 Synchronization
errors resulting from the
proposed observer for
δ = 0.5s, α = 0.995 and
x(0) = [6 5 1]T (in black
color) and from the sliding
mode observer (in red
color). a e1(t), b e2(t), c
e3(t). (Color figure online)

(a)

(c)

(b)

Fig. 12 Synchronization
errors resulting from the
proposed observer (in black
color) for δ = 0.1s,
α = 0.995 and
x(0) = [20 30 10]T and
from the sliding mode
observer (in red color). a
e1(t), b e2(t), c e3(t).
(Color figure online) (a)

(c)

(b)

in general, not known and depends on the initial con-
ditions. Only an upper bound can be estimated. Fig-
ures 12 and 13 plot the trajectories of the estimation
error with x(0) = [60 30 10]T, for t1 = 0.1s and
t1 = 1s, respectively. We obtain Jimp = 2.2986 and
Jmg = 18.5951 for t1 = 0.1s and Jimp = 11.7153
and Jmg = 18.5951 for t1 = 1s. In both cases, the
proposed observer works well even if the initial con-
ditions are very large and converges instantaneously at
the predefined time t1 since ei (t) = xi (t) − x̂i (t) = 0
for t ≥ t1. However, this is not the case for the slid-
ing mode observer. In order to obtain a rapid conver-

gence, the sliding mode observer requires large output
injection gain. However, this would cause chattering
phenomena and significant transient peaks. The pro-
posed impulsive observer converges accurately in a
predefined time without increasing the output injec-
tion gain. We also tested the performance of the pro-
posed impulsive observer to different values of α. The
values α = 0.95 (0 < α < 1) and α = 1.02
(1 ≤ α < 2) are chosen so that the responses of the
fractional-order Lorenz system remain bounded. For
α = 0.95, the LMIs given by (47) are solved by pole
placement method in LMI region defined by ρ1 = 0.5
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Fig. 13 Synchronization
errors resulting from the
proposed observer (in black
color) for δ = 1s,
α = 0.995 and
x(0) = [20 30 10]T and
from the sliding mode
observer (in red color). a
e1(t), b e2(t), c e3(t).
(Color figure online) (a)

(c)

(b)

Fig. 14 Synchronization
errors resulting from the
proposed observer for
δ = 0.1s, α = 0.95 and
x(0) = [6 5 1]T. a e1(t),
b e2(t), c e3(t)

(a)

(c)

(b)

and ρ2 = 0.7. For α = 1.02, the LMIs given by (48)
with (49) and (50) are solved by pole placementmethod
in LMI region defined by ρ1 = 15 and ρ2 = 15.7.
Computer simulations are performed for t1 = 0.3s
and for the initial conditions of the system x1(0) = 6,
x2(0) = 5, x3(0) = 1, while the initial conditions
of the observer are fixed to zero. From the simulation
results illustrated in Figs. 14, 15 and 16 almost zero
synchronization errors have been achieved infinite time
t1 = 0.3s which confirms that the proposed impulsive
observer works well for different values of α.

4.2 Observer with unknown input in a secure data
communication

Below, we present the application of the proposed
observer with unknown input in a secure communi-
cation scheme. A fractional chaos-based secure com-
munication scheme consists of an emitter and a trans-
mitter as illustrated in Fig. 17. At the emitter side,
the fractional-order Lorenz chaotic system (76) rep-
resented in the Takagi–Sugeno form (79) is used for
masking the secret message. The unknown input d(t)
represents the secretmessage to be confidentially trans-
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Fig. 15 True state variables
(in black color) and its
estimates (in red color)
resulting from the proposed
observer with δ = 0.3s,
α = 1.02 and
x(0) = [20 15 10]T, a
x1, x̂1, b x2, x̂2, c x3, x̂3.
(Color figure online)

(a)

(c)

(b)

Fig. 16 Synchronization
errors resulting from the
proposed observer with
δ = 0.3s, α = 1.02 and
x(0) = [20 15 10]T. a
e1(t), b e2(t), c e3(t)

(a)

(c)

(b)

mitted from the emitter to the receiver trough a public
channel. The secret message is included in the chaotic
dynamic and also added in the output y(t) as given by
(23). The emitter plays the role of an encoder. At the
receiver side, the proposed unknown input impulsive
observer (52) plays the role of a decoder. The goal is to
show that using the proposed observer, the transmitted
message can be accurately recovered by the receiver
in finite time; after that, the synchronization between
the emitter and the receiver is achieved. As has been
pointed out in [35], the message can only be recov-

Fig. 17 Fractional-order chaos-based secure data communica-
tion scheme

ered with complete integrity if the synchronization is
performed in a relatively small finite time.
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The matrices R1, R2 and V are taken as

R1 =
⎡
⎣ 1

−1
1.2

⎤
⎦ , R2 =

⎡
⎣ 1
1.5
1

⎤
⎦ , V = [

1 1
]

(87)

Let δ = t1 = 0.3s be the synchronization delay. In
order to avoid information loss, themessage to be trans-
mitted is delayed and is taken as

d(t) =
{
0 t < t1
0.1sin(5t) t ≥ t1

Assumptions 2 and 3 are well satisfied. The order
derivative is taken as α = 0.996, and the system initial

conditions are x1(0) = 6, x2(0) = 5, x3(0) = 1. The
two LMI regions Ω̃1 and Ω̃2 are chosen as (ρ1 = 1,
σ1 = 10) and (ρ2 = 3, σ2 = 10), respectively.
Using the YALMIP/MATLAB toolbox, the LMIs (70)
and (71) with the equality constraint (55) and (56)
are shown to be feasible. The recovered message is
obtained as

d̂(t) = V+ (y(t) − ŷ(t)
)

ŷ(t) = Cx̂(t) (88)

where V+ denotes the pseudoinverse of V . In Fig. 18
are reported the trajectories of the state variables xi (t)
and their estimates x̂i (t), i = 1, 2, 3, and the corre-

Fig. 18 Case with
unknown input with
δ = 0.3s and α = 0.996:
state variable time responses
of the system (in black
color) and the observer (in
red color). a x1(t), x̂1(t), b
x2(t), x̂2(t), c x3(t), x̂3(t).
(Color figure online)

(a)

(c)

(b)

Fig. 19 Case with
unknown input with
δ = 0.3s and α = 0.996:
estimation errors. a
e1(t) = x1(t) − x̂1(t),
b e2(t) = x2(t) − x̂2(t),
c e3(t) = x3(t) − x̂3(t)

(a)

(c)

(b)
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Fig. 20 Case with unknown
input with δ = 0.3s and
α = 0.996: hidden message
d(t) and its estimate d̂(t)

sponding estimation errors are shown in Fig. 19. From
these simulation results, we check that the unknown
input does not affect the observation error, and thus, the
decoupling between the unknown input and the estima-
tion of the state variables is successful, and then, the
zero synchronization error is achieved after the time
instant t1. In addition to the estimation of the state vari-
ables, the proposed impulsive observer can also recon-
struct the unknown input. The original message d(t)
and its estimate d̂(t) are plotted in Fig. 20. The obtained
simulation results show the almost exact reconstruction
of the unknown input.

5 Conclusion

In this paper, the design of predefined finite conver-
gence time impulsive observer for nonlinear fractional-
order chaotic systems is addressed. The T–S fuzzy
representation of the nonlinear system subjected to
an unknown input is used. The T–S model exactly
describes the nonlinear system as has been illustrated
with the fractional-order chaotic Lorenz system. The
exact and finite-time reconstruction of the state vari-
ables and the unknown input were possible thanks to
a impulsive state observer update. We treated both
cases without and with the presence of the unknown
input. In both cases, the convergence of the proposed
observer is established using the LMI formulation.
Simulation results clearly illustrate the advantage of
the proposed impulsive observer in a secure data com-
munication application. The present works can deserve
future research directions. First, in the proposed work,
we assumed that the premise variables are measur-

able, which is not usually always true. The extension
the case of unmeasurable premise variables would be
more realistic. Second, we considered a common out-
put for all linear local models in the T–S representa-
tion. It would be worth studying the case where each
output is defined for each local model. It is also inter-
esting to study the robustness of the proposed impul-
sive observer with respect to output noise and mod-
eling uncertainties. Other points worth studying con-
cern the extension of the impulsive observer to other
more complex fractional-order chaotic systems such as
hyperchaotic systems, non-commensurate fractional-
order chaotic systems and fractional-order neural net-
work chaotic systems. Future works are oriented in
these directions.
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