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Abstract In this paper, the problem of robust syn-
chronization of fractional-order multi-weighted com-
plex dynamical networks in the presence of time-
varying coupling delay and disturbances is studied via
fractional-order equivalent-input-disturbance (FOEID)
estimator-based non-fragile feedback control scheme.
Precisely, FOEID-based disturbance estimator is incor-
porated in the feedback control input to compensate the
disturbance effect in the resulting closed-loop system,
which removes the disturbance effect without any prior
knowledge of it. By utilizing FOEID method and syn-
chronization error dynamics, the synchronization prob-
lem of fractional-order complex dynamical network is
transformed into the stability problemof the augmented
form of the closed-loop error system. Based on the
Lyapunov stability theory, fractional calculus theory
and some advanced integral inequalities, a novel set of
sufficient conditions is established to ensure the robust
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asymptotic stability of the augmented error system sub-
ject to time-varying delay and disturbances. Finally,
two numerical examples including a comparison study
are given to illustrate the obtained theoretical results
and the control design.
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1 Introduction

During the recent few years, the research on complex
dynamical networks (CDNs) has gained tremendous
attention from research communities since it can be
successfully applied to analyse various kinds of natural
and artificial systems, such as world wide web, electric
power grids, image processing, secure communication
and mobile networks [1–8]. The general framework of
CDNs is that a collection of large number nodes con-
nected through a topological network, in which each
node is evolving according to its respective dynam-
ical equation and some of these nodes are normally
coupled as per the network topology. Many beneficial
results on CDNs are available in the recent literature
to show their usefulness and potential requirements in
practice [9–17]. Specifically, global synchronization is
one of the important hot research topics in the study of
CDNs, in which distributed control policies are devel-
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oped based on local information of CDNs that enable
to synchronize the dynamic behaviours of each node
in CDNs with the isolated node on certain quantities
of interest [18]. In [19], with the use of the developed
adaptive control law, a new set of sufficient conditions
was developed to ensure the global output synchroniza-
tion of theCDNs. In [20], some sufficient conditions for
synchronization of CDNs with time delays were estab-
lished by using the passivity theory and sampled-data
control technique. On the other hand, many real-time
networks, such as social networks, communication net-
works and transportation networks are described by
multi-weighted CDNs, where the nodes are connected
bymore than oneweight. For example, people can con-
tact others by multiple ways, such as mobile phone,
Facebook, e-mail, Skype, WhatsApp, Instagram, Twit-
ter and so on, consider that every contact information
has different weights, so human connection network
is a complex network with multi-weights. According
to the method of the network split, complex network
with multi-weights is split into several different sin-
gle weighted complex networks by different nature
of the network weights. There are a lot of different
characteristics between complex networks with multi-
weights and complex dynamical networks with sin-
gle weight. Therefore, the synchronization problem
of multi-weighted CDNs (MWCDNs) has attracted
increasing interest in recent years [21,22], which is one
of the motivations of the present study.

On the other hand, the fractional-order systems have
been widely utilized in several fields of engineering
and science due to its lower order, less parameters and
higher accuracy. That is, the fractional-order systems
give a complete description compared to the integer-
order systems [23]. As a result, until the recent decades,
fractional-order calculus has become one of the hottest
topics in many network fields of science and engi-
neering [24–33]. In [27], the authors investigated the
stabilization problem for fractional-order neural net-
works with discrete and distributed delays via LMI-
based approach. However, because of the increasing
complexity of the fractional-order CDNs, it is not easy
to ensure the accuracy and stability of a system. So,
it is necessary to develop a more reliable optimiza-
tion algorithm for the study of the fractional-order sys-
tem. In addition, considering the complexity and the
high dimension of a fractional-order CDNs, it is very
hard to obtain the accurate state information of the sys-
tem. To answer these problems, the many state estima-

tion techniques exist for fractional-order systems dur-
ing the recent few years and some remarkable works
are reported in [34–36]. In [34], the authors investi-
gated the state estimation problem for fractional-order
memristive system with the aid of Lyapunov stability
theory and non-fragile control approach.Moreover, the
problem of robust global synchronization of fractional-
order complex dynamical networks (FOCDNs) with
decentralized coupling has been discussed in [31],
where an adaptive control scheme has been proposed to
obtain the required theoretical result. In [32], the robust
synchronization problem for fractional-order complex-
valued neural networks subject to time-varying delays
has been analysed by using Lyapunov-like function
method, where the designing laws ensure the synchro-
nization of the neural networks.

As we know, in the process of controller imple-
mentation in many practical systems, it is difficult or
even not possible to find accurate controller because of
the existence of some inevitable uncertainties in the
design parameters. In addition, it is shown that the
vanishingly small perturbations in controller parame-
ters could even destabilize the dynamical control sys-
tem [37–39]. Hence, it is necessary to design a con-
troller that tolerates only the uncertainties and dis-
turbance in the system. This motivates the study of
non-fragile control problems in many networked sys-
tems in the recent decades [40–43]. In addition, distur-
bances arise in many practical problems inmechanical,
robotics, biological, economical and medical systems
whichmay induce an adverse effect on system stability.
Therefore, it is practically more significant to design
a controller with disturbance rejection ability. Also,
many researchers have already used various robust con-
trol methods to simplify the disturbance of the dynam-
ical systems effect in previous studies, such as the dis-
sipative control [44], disturbance observer [45], active
disturbance rejection control [46] and equivalent-input-
disturbance (EID) estimator design [47]. Among them,
the EID-estimator method proposed in [48] is a highly
attractive and effective one, which improves the dis-
turbance rejection performance of a servo system due
to its simple structure. In particular, the EID-estimator
method is a useful tool for the practical control sys-
tem since it can reject not only an external distur-
bance but also deal with parameter variations with-
out any prior knowledge of them. Recently, there have
been significant works on EID-based control systems
[49,50].
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Motivated by the above discussions, we shall study,
in this paper, the problem of robust synchronization
for a class of multi-weighted FOCNDs in the presence
of disturbance and time-varying delay. Compared with
current research achievements, major contributions of
this paper are presented as follows:

1. In this work, as a first attempt, a FOEID-based
non-fragile feedback controller is designed for
FOMWCDNs, which involves not only the exter-
nal disturbances but also multi-weighted coupling
delays.

2. By combining the Lyapunov–Krasovskii func-
tional approach, fractional calculus theory and EID
approach, a new set of sufficient conditions in the
form LMIs are developed for the robust synchro-
nization.

3. A novel effective control algorithm for selecting
the gain matrices for the controllers and observers
is developed which ensures the synchronization of
FOMWCDNs with disturbance rejections.

4. The proposed FOEID-based control law is easy
to implement since it has a significant amount of
parameters that can be easily tuned via a simple
algebraic structure.

Finally, two numerical examples including com-
parison study are given to demonstrate the effective-
ness of the dynamic non-fragile synchronization con-
trol scheme proposed in this paper. The rest of this
paper is organized as follows. System description and
preliminaries are provided in Sect. 2. In Sect. 3, an
LMI-based synchronization criterion and non-fragile
controller design algorithm are developed. A simula-
tion verification is illustrated to show the validity and
superiority of the proposed method in Sect. 4, and a
conclusion follows in Sect. 5
Notations Throughout this paper, the superscripts “T”
and “(− 1)” stand for matrix transposition and matrix
inverse, respectively. Rn denotes the n-dimensional
Euclidean space. Rn×n denotes the set of all n × n
real matrices. P > 0 (respectively, P < 0) means that
P is positive definite (respectively, negative definite).
I and 0 represent identity matrix and zero matrix with
compatible dimensions. In symmetric block matrices
or long matrix expressions, we use an asterisk (∗) to
represent a term that is induced by symmetry. diag{.}
stands for a block-diagonal matrix. ‖ · ‖ refers to the
Euclidean vector norm.

2 System description and preliminaries

In this section, first we define the Riemann–Liouville
derivative and then discuss the construction of FOEID-
based synchronization control design by employing
fractional-order low-pass filter and fractional-order
Luenberger-type state observer.

Definition 1 [51] The Riemann–Liouville derivative
of a continuous function f : [t0, t] → R is defined by:

t0D
α
t f (t) = 1

Γ (α)

t∫

t0

(t − s)α−1 f ′(s)ds, 0 < α<1,

where α denotes the fractional order and Γ (·) denotes
theGamma functiondefinedbyΓ (α)=∫ ∞

0 e−z zα−1dz.

Consider the following fractional-ordermulti-weighted
complex dynamical network (FOMWCDN) consisting
of N identical nodes with unknown disturbance in the
following form:

t0D
α
t xi (t) = Axi (t) + B f (xi (t))

+
q∑

r=1

N∑
j=1

arG
r
i jΓr x j (t)

+
q∑

r=1

N∑
j=1

ãr G̃
r
i j Γ̃r x j (t − τ(t))

+ Cui (t) + Dωi (t),

yi (t) = Exi (t),

t0D
−(1−α−1)
t xi (t0) = φi (t0), t0 ∈ [−τ2, 0],

i = 1, 2, . . . , N , (1)

where xi (t) ∈ R
n , ui (t) ∈ R

m , yi (t) ∈ R
p andωi (t) ∈

R
nd are the state, control input, measured output and

external disturbance of the i th node, respectively; 0 <

α < 1 is the fractional order; f : R+ ×R
n → R

l is an
unknown continuous nonlinear vector-valued function,
which satisfies sector bounded constraint; φi (t0) is the
continuous initial vector function; A, B, C , D and E
are known constant matrices with appropriate dimen-
sions; τ(t) is the time-varying delay function satisfy-
ing 0 ≤ τ1 ≤ τ(t) ≤ τ2 and τ̇ (t) ≤ μ < 1; ar ∈ R

+
and ãr ∈ R

+ (r = 1, 2, . . . , q) denote the coupling
strength of the r th coupling form; Γr ∈ R

n×n and
Γ̃r ∈ R

n×n (r = 1, 2, . . . , q) represent the positive
diagonal inner coupling matrices of the r th coupling
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form; Gr = [Gr
i j ]N×N and G̃r = [G̃r

i j ]N×N denote
the outer coupling configuration matrices of the r th
coupling form, where the non-diagonal elements ofGr

and G̃r satisfy the conditions if there is a connection
between node i and node j , thenGr

i j > 0 and G̃r
i j > 0;

otherwise, Gr
i j = 0 and G̃r

i j = 0 (i 	= j), and the diag-

onal elements of matrices Gr and G̃r are defined by
Gr

ii = −∑N
j=1, j 	=i G

r
i j and G̃r

ii = −∑N
j=1, j 	=i G̃

r
i j

(i = 1, 2, . . . , N and r = 1, 2, . . . , q).
Here, the nonlinear function in the system satisfies

the following assumption:

Assumption 1 For any x(t) ∈ R
n , the nonlinear vec-

tor function f (x(t)) satisfies || f (x(t))|| ≤ ‖Gx(t)‖,
∀t , where G is the known real constant diagonal matrix.

Furthermore, to develop the synchronization crite-
ria, it is assumed that in the system (1), (A,C, E) is
controllable, observable and has no zeros on the imag-
inary axis. In order to estimate and reject the unknown
exogenous disturbance effect in the control system, we
employFOEID-based control approach.Then, the orig-
inal system (1) is represented by the following equiva-
lent system model:

t0D
α
t xi (t) = Axi (t) + B f (xi (t))

+
q∑

r=1

N∑
j=1

arG
r
i jΓr x j (t)

+
q∑

r=1

N∑
j=1

ãr G̃
r
i j Γ̃r x j (t − τ(t))

+ C(ui (t) + ωie(t)), (2)

where i = 1, 2, . . . , N and ωie(t) is equivalent-input-
disturbance. Let s(t) be a solution to the isolated node
for the synchronization of CDNs (1) and its dynamics
are described as t0Dα

t s(t) = As(t)+B f (s(t)). Further,
to estimate the actual disturbance, the multi-weighted
CDNs (2) are connected with the following fractional-
order Luenberger-type state observer:

t0D
α
t x̂i (t) = Ax̂i (t) + B f (x̂i (t))

+
q∑

r=1

N∑
j=1

arG
r
i jΓr x̂ j (t)

+
q∑

r=1

N∑
j=1

ãr G̃
r
i j Γ̃r x̂ j (t − τ(t)) + Cui f (t)

+ L[yi (t) − ŷi (t)],
ŷi (t) = Ex̂i (t), i = 1, 2, . . . , N , (3)

where x̂i (t) ∈ R
n , ui f (t) ∈ R

m and ŷi (t) ∈ R
p rep-

resent the state, control input and the output of the
i th observer node, respectively; and L ∈ R

p×n is
the observer gain matrix to be determined. Further, let
us define the errors of state estimation and synchro-
nization of i th node as ∇xi (t) = xi (t) − x̂i (t) and
ei (t) = xi (t)−s(t), respectively. Further, according to
the system (2) and its observer system (3), the estimate
of EID can be expressed as follows [48]:

ω̂i (t) = C+LE∇xi (t) + ui f (t) − ui (t),

i = 1, . . . , N , (4)

where C+ is the pseudo inverse of C . However, it can-
not be directly used to formulate control law. The EID-
based robust control strategy [48] adopts an estimation
of this signal based on the assumption that a signal
can be approximated and estimated using a filter with
the appropriate bandwidth. For example, if the filter
has a wide enough bandwidth, the EID is able to accu-
rately and quickly estimate the unknown disturbance
term ωie(t). Therefore, the estimated disturbances are
passed through a fractional-order low-pass filter F(s)
with cut-off frequency ω f . Moreover, the low-pass fil-
ter satisfies F( jω) ≈ 1, ∀ω ∈ [0, ωm], where ωm

denotes the highest angular frequency, which is usually
chosen as five time smaller than ω f . The state-space
representation of the fractional-order low-pass filter is
given by

t0D
α
t xi F (t) = AFxi F (t) + BF ω̂i (t),

ω̃i (t) =CFxi F (t), i = 1, 2, . . . , N , (5)

where xi F (t) is the filter state of the i th node; AF , BF

and CF are filter coefficient matrices; ω̃i (t) represents
the filtered disturbance estimate of the i th node. The
filtered disturbance estimate together with the control
input ui f (t) yields the following improved control law
[50]

ui (t) = ui f (t) − ω̃i (t). (6)

Further, the non-fragile feedback control input is cho-
sen as follows: ui f (t) = K̄ (x̂i (t) − s(t)), where K̄ =
K + �K (t), K is the feedback controller gain matrix
which to be determined in the forthcoming section,
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�K (t)denotes the possible control gain variationswith
the structure �K (t) = M�(t)N, where M and N are
known real constant matrices and �(t) is an unknown
time-varying matrix satisfying �T(t)�(t) ≤ I .

By employing (4) and (6), the fractional-order filter
dynamics (5) can be expressed as follows:

t0D
α
t xi F (t) = (AF + BFCF )xi F (t)

+ BFC
+LE∇xi (t). (7)

From (1)–(7), we can easily obtain the following
dynamical system equations:

t0D
α
t x̂i (t) = Ax̂i (t) + B f (x̂i (t))

+
q∑

r=1

N∑
j=1

arG
r
i jΓr x̂ j (t)

+
q∑

r=1

N∑
j=1

ãr G̃
r
i j Γ̃r x̂ j (t − τ(t)) + LE∇xi (t)

+ CK̄ (ei (t) − ∇xi (t)), (8)

t0D
α
t ∇xi (t) = A∇xi (t) + B f̄ (∇xi (t)) + LE∇xi (t)

+
q∑

r=1

N∑
j=1

arG
r
i jΓr∇x j (t) − CCF xi F (t)

+
q∑

r=1

N∑
j=1

ãr G̃
r
i j Γ̃r∇x j (t − τ(t))

+ Dωi (t) − LE∇xi (t), (9)
t0D

α
t ei (t) = Aei (t) + Bḡ(ei (t))

+
q∑

r=1

N∑
j=1

arG
r
i jΓr e j (t)

+
q∑

r=1

N∑
j=1

ãr G̃
r
i j Γ̃r e j (t − τ(t)) − CCF xi F (t)

+ CK̄ (ei (t) − ∇xi (t)) + Dωi (t), (10)

where f̄ (∇xi (t)) = f (xi (t))− f (x̂i (t)) and ḡ(ei (t)) =
f (xi (t)) − f (s(t)).
According to the EID approach [50], the distur-

bance estimation of the closed-loop system is irrel-
evant to exogenous signals. Therefore, we may set
the external disturbance as ω(t) = 0. By defin-
ing ξi (t) = [xTi F x̂Ti (t) ∇xi (t) eTi (t)]T, F(ξi (t)) =
[0 f T(x̂i (t)) f̄ T(∇xi (t)) ḡT(ei (t))]T and combining
(7)–(10), and the virtue of Kronecker product, we can
obtain the augmented fractional-order system as fol-
lows:

t0D
α
t ξ(t) = ( Ā + � Ā(t))ξ(t) + B̄ξ(t − τ(t))

+ C̄F(ξ(t)),

Ā =

⎡
⎢⎢⎣

A 0 B 0
0 Π L − K K

− C 0 Π − L 0
− C 0 −K Π + K

⎤
⎥⎥⎦ ,

� Ā(t) =

⎡
⎢⎢⎣
0 0 0 0
0 0 −M M
0 0 0 0
0 0 −M M

⎤
⎥⎥⎦ ,

B̄ =

⎡
⎢⎢⎣
0 0 0 0
0 Π̃ 0 0
0 0 Π̃ 0
0 0 0 Π̃

⎤
⎥⎥⎦ and

C̄ =

⎡
⎢⎢⎣
0 0 0 0
0 (I ⊗ B) 0 0
0 0 (I ⊗ B) 0
0 0 0 (I ⊗ B)

⎤
⎥⎥⎦ (11)

with A = (I ⊗ AF ) + (I ⊗ BFCF ), B = (I ⊗
BFC+LE), L = (I ⊗ LE), K = (I ⊗ CK ), C =
(I ⊗ CCF ), Π = (I ⊗ A) + ∑q

r=1 ar (G
r ⊗ Γr ),

M = (I ⊗ CM�(t)N), Π̃ = ∑q
r=1 ãr (G̃

r ⊗ Γ̃r ),

ξ(t) = [ξT1 (t), ξT2 (t), . . . , ξTN (t)]T and F(ξ(t)) =
[FT(ξ1(t)),FT(ξ2(t)), . . . ,FT(ξN (t))]T.

Furthermore, the block diagram of the overall
closed-loop control system configuration is shown in

Fig. 1 Configuration of EID-based non-fragile controller
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Fig. 1. To derive the required theoretical result, we
impose the following lemma:

Lemma 1 [52] The fractional-order nonlinear differ-
ential equation t0Dα

t x(t) = f (x(t)) can be written as

⎧⎪⎪⎨
⎪⎪⎩

∂Y(w,t)
∂t = −wY(w, t) + f (x(t)),

x(t) =
∞∫

0

ζ(w)Y(w, t)dw,

where Y(w, t) is the infinite-dimensional distributed
state variable, w is the elementary frequency, and
ζ(w) = sin(απ)

π
w−α .

Remark 1 In particular, many real-world network
model-based systems such as complex biological net-
works, transportation networks, communication net-
works and social networks can be described by multi-
weighted CDNs, in which the nodes are coupled by
multiple coupling forms. Nevertheless, in the literature
only a few researchers have studied the synchroniza-
tion problem of CDNs with multi-weights [21,22]. As
far as we know, this is the first work which discusses
about themulti-weighted fractional-ordermodel CDNs
with external unknown disturbances, directed commu-
nications, with and without delayed multiple coupling
forms.

Remark 2 In general, due to the effect of some abrupt
environmental disturbances in the design of control
parameters will not be avoided. Thus, it is necessary
to consider uncertainty for EID-based non-fragile con-
troller. It is worth mentioning that such a description
is considered for EID-based synchronization of multi-
weighted FOCDNs for the first time. Hence, it is very
important to further investigate the synchronization of
multi-weighted FOCDNs. Specifically, the inner cou-
pling matrices Γr and Γ̃r may change in the links such
as breaking, recovering and coupling strength occa-
sionally due to the internal or external factors, which
may affect synchronization of FOCDNs.

Remark 3 It should bementioned that this paper inves-
tigates roust synchronization problem for fractional-
order multi-weighted complex dynamical networks in
the presence of time-varying coupling delay and dis-
turbance via Lyapunov stability theory. For time-delay
systems, calculating the fractional derivative of delay
dependant Lyapunov function is not easy. To overcome

this difficulty, the frequency distributed fractional inte-
grator equivalent model transformation is formulated
for the considered fractional-order system. To make
such equivalent fractional integrator transformation R–
L fractional-order derivative is better choice. Thus, in
this study, to avoid the incorporation of the fractional
derivative in the Lyapunov functions, we adopt the R–L
fractional-order derivative instead of the Caputo frac-
tional derivative.

3 Stochastic finite-time boundedness criterion

In this section, a novel fractional EID-based non-
fragile control design is established to ensure the
robust synchronization of the considered FOMWCDN
(1). In order to solve the synchronization issue of
FOMWCDN (1) to the isolated node s(t), it is enough
to establish the asymptotic stability for the closed-
loop augmented system (11). In the derivation proce-
dure, a new criterion is established in terms of linear
matrix inequalities (LMIs) for the robust EID-based
non-fragile controller (6) for the network model under
consideration.

Theorem 1 Consider the fractional-order augmented
system (11) with Assumption 1. For the given gain
matrices K , L and a positive scalars τ1, τ2, μ, δ, the
considered system (11) is robustly asymptotically sta-
ble, if there exist symmetric matrices P > 0, Q p > 0
(p = 1, 2, 3), Rz > 0 (z = 1, 2) and a positive scalar
ε such that the following matrix inequality holds:

Ω̄ =
⎡
⎣[Ωa,b]7×7 εϑ υT

∗ −ε I 0
∗ ∗ −ε I

⎤
⎦ < 0, (12)

where

Ω1,1 = (I ⊗ P) Ā + ĀT(I ⊗ P)

+ (I ⊗ Q1) + (I ⊗ Q2)

+ (I ⊗ Q3) + τ 21 (I ⊗ R1) + (I ⊗ G)(I ⊗ G)T,

Ω1,3 = (I ⊗ P)B̄, Ω1,5 = (I ⊗ P)C̄,

Ω2,2 = − (I ⊗ Q1)

− τ 212(I ⊗ R2), Ω3,3 = −(1 − μ)(I ⊗ Q2),

Ω4,4 = − (I ⊗ Q3), Ω5,5 = −I, Ω6,6 = −(I ⊗ R1),

Ω7,7 = − (I ⊗ R2), τ12 = τ2 − τ1,
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Observer-based robust synchronization of fractional-order 1237

ϑ = [(I ⊗ P)M̄ 0 0 . . . 0︸ ︷︷ ︸
6

]T,

υ = [N̄ 0 0 . . . 0︸ ︷︷ ︸
6

],

M̄ =

⎡
⎢⎢⎣
0 0 0 0
0 0 − (I ⊗ BM) (I ⊗ BM)

0 0 0 0
0 0 − (I ⊗ BM) (I ⊗ BM)

⎤
⎥⎥⎦ ,

N̄ =

⎡
⎢⎢⎣
0 0 0 0
0 0 − (I ⊗ N) (I ⊗ N)

0 0 0 0
0 0 − (I ⊗ N) (I ⊗ N)

⎤
⎥⎥⎦

and the remaining parameters of Ωa,b are zero.

Proof By applying Lemma 1, the fractional-order aug-
mented system (11) can be rewritten as follows:

∂Y(w, t)

∂t
= − wY(w, t) + ( Ā + � Ā)ξ(t)

+ B̄ξ(t − τ(t))

+ C̄F(ξ(t)),

ξ(t) =
∞∫

0

ζ(w)Y(w, t)dw, (13)

whereY(w, t) = [Y1(w, t), Y2(w, t), · · · Yn(w, t)]T.
Then, we choose the Lyapunov function for the sys-

tem (13) as υ(w, t) = YT(w, t)(I ⊗P)Y(w, t), where
(I⊗P) = diag{(I⊗P1), (I⊗P2),

1
δ
(I⊗P2), (I⊗P2)}

is a positive symmetricmatrix. This function is called as
the monochromatic Lyapunov function corresponding
to the elementary frequency w. Based on υ(w, t), we
construct the global monochromatic Lyapunov func-
tion for the system (13) we have

V1(ξ(t)) =
∞∫

0

ζ(w)YT(w, t)(I ⊗ P)Y(w, t)dw.

This Lyapunov function integrates all the monochro-
matic υ(w, t) with a weighting function ζ(w) on the
whole spectral range. Further, we select some addi-
tional Lyapunov–Krasovskii functional candidates to
incorporate time-delay information as follows:

V2(ξ(t)) =
∫ t

t−τ1

ξ T (s)(I ⊗ Q1)ξ(s)ds

+
∫ t

t−τ(t)
ξT(s)(I ⊗ Q2)ξ(s)ds

+
∫ t

t−τ2

ξT(s)(I ⊗ Q3)ξ(s)ds,

V3(ξ(t)) = τ1

∫ 0

−τ1

∫ t

t+θ

ξT(s)(I ⊗ R1)ξ(s)dsdθ

+ τ12

∫ −τ1

−τ2

∫ t−τ1

t+θ

ξT(s)(I ⊗ R2)ξ(s)dsdθ,

whereQp = diag{Qp1, Qp2, Qp3, Qp4} (p = 1, 2, 3)
and Rz = diag{Rz1, Rz2, Rz3, Rz4} (z = 1, 2) are pos-
itive symmetric matrices. Let V (ξ(t)) = V1(ξ(t)) +
V2(ξ(t)) + V3(ξ(t)). Now, by calculating the time
derivative of V (ξ(t)) along the solution trajectories of
(11) and (13) as

V̇1(ξ(t)) =
∞∫

0

ζ(w)
{−wYT(w, t)

+ ξT(t) ĀT + ξT(t − τ(t))

× B̄T + FT(ξ(t))C̄T}
(I ⊗ P)Y(w, t)dw

+
∞∫

0

ζ(w)YT(w, t)(I ⊗ P) {−wY(w, t)

+ Āξ(t) + B̄ξ(t − τ(t)) + C̄F(ξ(t))
}
dw

= − 2

∞∫

0

ζ(w)YT(w, t)(I ⊗ P)Y(w, t)dw

+ 2ξT(t)(I ⊗ P)[ Āξ(t) + B̄ξ(t − τ(t))]
+ 2ξT(t)(I ⊗ P)C̄F(ξ(t)), (14)

V̇2(ξ(t)) ≤ ξT(t)
(
(I ⊗ Q1)

+ (I ⊗ Q2) + (I ⊗ Q3)
)
ξ(t)

− ξT(t − τ1)(I ⊗ Q1)ξ(t − τ1)

− (1 − μ)ξT(t − τ(t))(I ⊗ Q2)ξ(t − τ(t))

− ξT(t − τ2)(I ⊗ Q3)ξ(t − τ2), (15)

V̇3(ξ(t)) = τ 21 ξT(t)(I ⊗ R1)ξ(t)

+ τ 212ξ
T(t − τ1)(I ⊗ R2)

× ξ(t − τ1) − τ1

∫ t

t−τ1

ξT(s)(I ⊗ R1)ξ(s)ds

− τ12

∫ t−τ1

t−τ2

ξT(s)(I ⊗ R2)ξ(s)ds, (16)

Further, by applying Jensen’s single integral inequality
[53] to the integral terms in equation (16), we can get
the following inequalities:

− τ1

∫ t

t−τ1

ξT(s)(I ⊗ R1)ξ(s)ds
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≤ −
∫ t

t−τ1

ξT(s)ds(I ⊗ R1)

∫ t

t−τ1

ξ(s)ds, (17)

− τ12

∫ t−τ1

t−τ2

ξT(s)(I ⊗ R2)ξ(s)ds

≤ −
∫ t−τ1

t−τ2

ξT(s)ds(I ⊗ R2)

∫ t−τ1

t−τ2

ξ(s)ds. (18)

Moreover, according to Assumption 1, we can obtain
the following inequality

ξT(t)(I ⊗ G)(I ⊗ G)Tξ(t) − FT(ξ(t))F(ξ(t)) ≥ 0.
(19)

Thus, by combining Eqs. (14)–(19) and taking mathe-
matical expectation, it can be obtained that

V̇ (ξ(t)) ≤ −2

∞∫

0

ζ(w)YT(w, t)(I ⊗ P)Y(w, t)dw

+ χT(t)
([Ωa,b]7×7 + ϑ�(t)υ

+ (ϑ�(t)υ)T
)
χ(t), (20)

where χ(t) =
[
ξT(t) ξT(t − τ1) ξT(t − τ(t)) ξT(t −

τ2) FT(ξ(t))
∫ t
t−τ1

ξT(s)ds
∫ t−τ1
t−τ2

ξT(s)ds
]T

and

the elements of Ωa,b, ϑ and υ are defined in the theo-
rem statement. Moreover, based on Lemma 2 in [53],
for any positive scalar ε, the right-hand side of (20) can
equivalently be written as

[Ωa,b]7×7 + ϑ�(t)υ + (ϑ�(t)υ)T ≤ [Ωa,b]7×7

+ εϑϑT + ε−1υTυ. (21)

Based on the Schur complement, it is noted that (21) is
equivalent to the left-hand side of (12). Thus, it can be
observed that V̇ (ξ(t)) < 0 if the LMI (12) holds. This
completes the proof of the theorem. ��

It is worthy to mention that if the control gain matri-
ces are unknown, then the constraint in (12) cannot be
solved directly via MATLAB LMI control toolbox due
to the existence of nonlinear terms. To resolve this prob-
lem,we implement congruence transformation onto the
obtained conditions in the above theorem. The follow-
ing theorem provides the required LMI constraints to
obtain the feedback control gain matrices.

Theorem 2 Consider themulti-weighted FOCDNs (1)
with the assumption that the singular value decom-
position of the output matrix E with full row rank is
E = U [S 0]V T, where U and V are unitary matrices
and S is a semi-positive definite matrix. For given posi-
tive scalars τ1, τ2,μ, δ, the considered fractional-order
augmented system (1) is robustly synchronized under
the state feedback controller (6), if there exist symmet-
ric matrices X1 > 0, X2 > 0, Q̂ p > 0 (p = 1, 2, 3),
R̂z > 0 (z = 1, 2), any matrices Y , W with appro-
priate dimensions and a positive scalar ε such that the
below LMI conditions are satisfied:

ˆ̄Ω = [Ω̂a,b]10×10 < 0, (22)

where

Ω̂1,1 =Φ̂1 + Φ̂T
1 + (I ⊗ Q̂1)

+ (I ⊗ Q̂2) + (I ⊗ Q̂3)

+ τ 21 (I ⊗ R̂1), Ω̂1,3 = Φ̂2,

Ω̂1,5 = C̄, Ω̂1,8 = β̄ M̄,

Ω̂1,9 = (I ⊗ X)N̄T, Ω̂1,10 = (I ⊗ X)(I ⊗ G),

Ω̂2,2 = − (I ⊗ Q̂1) − τ 212(I ⊗ R̂2),

Ω̂3,3 = − (1 − μ)(I ⊗ Q̂2), Ω̂4,4 = −(I ⊗ Q̂3),

Ω̂5,5 = − (I ⊗ I ), Ω̂6,6 = −(I ⊗ R̂1),

Ω̂7,7 = − (I ⊗ R̂2),

Ω̂8,8 = − ε(I ⊗ I ),

Ω̂9,9 = − ε(I ⊗ I ), Ω̂10,10 = −(I ⊗ I )

with Φ̂1=

⎡
⎢⎢⎢⎣

Â 0 B̂ 0
0 E Ĥ1 T̂2

−Ĉ 0 Ĥ2 0
−Ĉ 0 −T̂1 E + T̂2

⎤
⎥⎥⎥⎦ Φ̂2=

⎡
⎢⎢⎣
0 0 0 0
0 Û1 0 0
0 0 Û2 0
0 0 0 Û1

⎤
⎥⎥⎦,

where Â = (I ⊗ AF X1) + (I ⊗ BFCF X1), B̂ =
(I⊗δBFC+

WE), Ĉ = (I⊗CCF X1),E = (I⊗ΠX2),
Ĥ1 = (I ⊗ δWE)− (I ⊗ δCY ), Ĥ2 = (I ⊗ δΠX2)−
(I ⊗ δWE), T̂1 = (I ⊗ δCY ), T̂2 = (I ⊗ CY ),
Û1 = (I ⊗ Π̃X2), Û2 = (I ⊗ Π̃δX2) and the remain-
ing parameters of Ω̂a,b are zero. Moreover, the control
design parameters can be obtained by the following
relations: K = Y X−1

2 and L = WUSX̄−1
11 S−1UT.

Proof In order to prove this theorem, first, consider
the following linear congruence transformations: X =
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P−1, X = diag{X1, X2, δX2, X2}, Q̂ p = XQpX
(p = 1, 2, 3) and R̂z = XRz X (z = 1, 2). Then, pre-
and post-multiplying the constraint (12) in Theorem 1
by diag{(I ⊗ X), . . . , (I ⊗ X)︸ ︷︷ ︸

4

, (I ⊗ I ), (I ⊗ X), (I ⊗

X), (I⊗ I ), (I⊗ I )} and its transpose, respectively, and
using Schur complement, it is easy to obtain the LMI
in (22), where the term EX2 can be written as X̄2E ,
where X̄2 = USX−1

11 S
−1UT with the aid of Lemma 1

in [54]. This completes the proof of the theorem. ��
Remark 4 It should be noted that most of the existing
results in the literature dealt with EID technique only
for the integer-order systems (see [47–49] and refer-
ences therein). The proposed EID approach extends to
the fractional-order systems for obtaining the synchro-
nization alongwith non-fragile controller.Moreover, in
[51], the observer-based robust control has been devel-
oped in the presence of uncertainties in control gain
matrices. The main advantage of the proposed design
is that it does not require any prior knowledge about the
disturbance and also it is suitable for many real-time
problems with multi-weighted coupling delays.

Remark 5 In recent years,manyof the researchers have
investigated the synchronization of CDNs through var-
ious control approaches, for instance see [1–5]. How-
ever, very few researchers only have concentrated on
the design of non-fragile controller for achieving syn-
chronization of CDNs (see Refs. [41,42]). In many
practical applications, the parameter perturbations are
unavoidable which influence stability and performance
of the system if they are not treated appropriately.
In order to handle this problem, the non-fragile con-
trol design is required. Nevertheless, the design of
non-fragile controller for synchronization of CDNs
with multi-weights has not been fully considered. The
main aim of this paper is to construct an EID-based
non-fragile controller for robust synchronization of
FOMWCDNs subject to time-varying coupling delays.

4 Simulation verifications

In this section, numerical examples with simulations
are given for demonstrating the effectiveness and supe-
riority of the proposed controller. First, we present
the synchronization and disturbance estimation perfor-
mance of the developed control design in Example 1.

Further, in Example 2, the system parameters are bor-
rowed from [55] and compared the superiority of the
proposed FOEID-based controller with the observer-
based controller method developed in [55].

Example 1 Consider the time-delayed FOMWCDNs
(1) with four nodes and three coupling weights and
its parameters are taken as follows: α = 0.8, A =[− 5 2
− 2 − 3

]
, B =

[
0.1 0
0 0.1

]
, C = D =

[
1
1

]
,

E = [
1 2

]
, a1 = 5, a2 = 4, a3 = 8, ã1 =

3, ã2 = 4, ã3 = 2, Γ1 = diag{0.8, 0.5}, Γ2 =
diag{0.6, 0.5}, Γ3 = diag{0.2, 0.4}, Γ̃1 = diag{0.3,
0.1}, Γ̃2 = diag{0.4, 0.5} and Γ̃3 = diag{0.1, 0.3}.
The inner coupling matrices are chosen as follows:

G1 =

⎡
⎢⎢⎣

− 0.5 0.1 0.2 0.2
0.1 − 0.4 0.2 0.1
0 0.1 − 0.8 0.7
0.2 0.1 0 − 0.3

⎤
⎥⎥⎦ ,

G2 =

⎡
⎢⎢⎣

− 0.6 0.2 0.2 0.2
0.2 − 0.7 0.3 0.2
0.7 0.3 − 1.0 0
0.2 0.2 0 − 0.4

⎤
⎥⎥⎦ ,

G3 =

⎡
⎢⎢⎣

− 0.6 0.3 0 0.3
0.3 − 0.9 0.3 0.3
0 0.3 − 0.3 0
0.3 0.2 0 − 0.5

⎤
⎥⎥⎦ ,

G̃1 =

⎡
⎢⎢⎣

− 0.5 0.1 0.1 0.3
0.2 − 0.6 0.2 0.2
0.1 0.2 − 0.3 0
0.3 0.2 0 − 0.5

⎤
⎥⎥⎦ ,

G̃2 =

⎡
⎢⎢⎣

− 0.7 0.3 0.1 0.3
0.1 − 0.4 0.1 0.2
0.1 0.3 − 0.5 0.1
0.3 0.2 0.1 − 0.6

⎤
⎥⎥⎦ ,

G̃3 =

⎡
⎢⎢⎣

− 0.7 0.2 0.2 0.3
0.2 − 0.8 0.4 0.2
0 0.3 − 0.3 0
0.3 0.2 0 − 0.5

⎤
⎥⎥⎦ .

Further, the nonlinear function is taken as f (xi (t)) =[
0.01 tanh(xi1(t))
0.01 tanh(xi2(t))

]
and according to Assumption 1,

we obtain G = diag{0.01, 0.01}. The time-varying
delay is taken as τ(t) = 0.50 + 0.50 sin(t) from
which it can be obtained that τ1 = 0, τ2 = 1 and
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μ = 0.5. The low-pass filter parameters are selected as
AF = −51I, BF = 50I and CF = I. The uncertain
parameters of the non-fragile controller ui f are taken

asM = [
0.1 0.1

]
, N =

[
0.2 0.2
0.1 0.1

]
and �(t) = sin(t).

In addition, by taking δ = 1×10−6, and by solving the
LMI (22) in Theorem 2 via MATLAB LMI toolbox,
it can be found that LMI (22) has a feasible solution,
and the corresponding gain matrices of controller and
observer are given by K = [− 0.2215 − 0.7648] and
L = [141.4010 285.2104]T.

For the simulation purposes, the external distur-
bances are selected as follows:

ω1(t) = ω3(t) =
⎧⎨
⎩
20 sin(π t), 5 ≤ t ≤ 10,
20, 11 ≤ t ≤ 15,
0, elsewhere,

and

ω2(t) = ω4(t) =
⎧⎨
⎩
20 cos(π t), 5 ≤ t ≤ 10,
20, 11 ≤ t ≤ 15,
0, elsewhere,

and the initial conditions for the states of nodes, the
observer of nodes and the isolated node are, respec-
tively, chosen as follows: x1(0) = [− 2 − 5]T,
x2(0) = [− 5 4]T, x3(0) = [6 − 7]T, x4(0) =
[9 8]T, x̂1(0) = [− 3 6]T, x̂2(0) = [9 − 3]T,
x̂3(0) = [− 2 − 6]T, x̂4(0) = [8 5]T and s(0) =
[6 8]T. With these initial conditions, the correspond-
ing response curves under the above-obtained gain
matrices are plotted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10
and 11. The state responses of four nodes together with
an isolated node under the proposed controller with and
without FOEID estimator are plotted in Figs. 2 and 3,
respectively, where the dotted line is the isolated node
and the dashed lines are the four identical nodes. From
Fig. 2, it is seen that the states of the nodes are per-
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Fig. 2 State trajectories of complex network (1) with FOEID estimator
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Fig. 3 State trajectories of complex network (1) without FOEID estimator
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Fig. 4 State trajectories of ei (t) (i = 1, 2, 3, 4) with FOEID estimator
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Fig. 5 State trajectories of ei (t) (i = 1, 2, 3, 4) without FOEID estimator
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Fig. 6 Control responses of ui (t) (i = 1, 2, 3, 4) with and without FOEID estimator

fectly synchronized with the states of the isolated node
in a short period of time which shows the effective-
ness of the proposed control design. Figure 3 shows
that in the absence of EID-estimator input, the dynam-

ics of FOCDNs fail to synchronize to the isolated node
due to the external disturbance effect. Moreover, the
corresponding error state trajectories with and without
FOEID estimator are given in Figs. 4 and 5, respec-
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Fig. 7 External disturbances and their estimation

tively. Further, Fig. 6 depicts the control performance
of the controller with and without EID input. From
Fig. 6, it is noted that in the absence of FOEID esti-
mator signal, magnitude of the control input largely
increases but in the presence of FOEID estimator input,
less control effort is obtained. Next, in Fig. 7, the actual
disturbance inputs and their correspondingFOEIDesti-
mations are plotted, where it can be seen that the given
disturbance signals are exactly estimated. Lastly, we
will show the effect of FOMWCDNs (1). We allow to
vary the parameter α while keeping the other parame-
ters and initial values are fixed. Figures 8, 9, 10 and 11
show the synchronization error first and second state
between the various fractional orders of the considered
system (1) when α = 0.1 and α = 0.5, respectively.
We can observe from Figs. 8, 9, 10 and 11 that the syn-
chronization speed for α = 0.5 is faster than one for
α = 0.1, which implies the synchronization speed of
system (1) is getting faster and faster with the increas-
ing of fractional order α (0 < α < 1). Thus, it can be
concluded from the simulations that the FOEID-based
controller effectively synchronizes FOMWCDN with
satisfactory tracking performance.

In order to show the superiority of the proposed
control scheme, we consider the following numerical
example.

Example 2 Consider the Lur’e CDN as in [55], which
consists of five nodes and is described as follows:

ẋi (t) =Axi (t) + B f (xi (t)) +
5∑
j=1

Gi jΓ x j (t) + ui (t)

+ Dωi (t),

yi (t) =Exi (t), i = 1, 2, 3, 4, 5, (23)
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Fig. 8 First error states of ei1(t) with α = 0.1
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Fig. 9 First error states of ei1(t) with α = 0.5

where A =
⎡
⎣− 20 1 0

0 − 0.7 1
0 − 14 − 1

⎤
⎦, B =

⎡
⎣− 9.1241

0
0

⎤
⎦ ,

D = E =
⎡
⎣1
0
0

⎤
⎦
T

, and Γ =
⎡
⎣1 0 1
1 1 0
1 1 1

⎤
⎦. Further, the
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Fig. 10 Second error states of ei2(t) with α = 0.1
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Fig. 11 Second error states of ei2(t) with α = 0.5

outer couplingmatrix beG=

⎡
⎢⎢⎢⎢⎣

− 2 1 0 0 1
1 − 2 1 0 0
0 1 − 2 1 0
0 0 1 − 2 1
1 0 0 1 − 2

⎤
⎥⎥⎥⎥⎦.

The nonlinear function is taken as f (xi (t)) =
− 0.7225xi1(t)−0.2080(|xi1(t)+1|−|xi1(t)−1|) (i =
1, 2, 3, 4, 5). Let the external disturbances be ωi (t) =
10 sin(t) (i = 1, 2, 3, 4, 5). Furthermore, the uncer-
tain parameter matrices in the control gain are taken

as M =
⎡
⎣0.1 0.1 0.2
0.2 0.1 0.2
0.1 0.1 0.3

⎤
⎦ , N =

⎡
⎣0.2 0.2 0.1
0.1 0.1 0.1
0.2 0.1 0.2

⎤
⎦ and

�(t) = sin(t). The filter parameters are selected as
AF = − 65I, BF = 64I and CF = I. Then, by solv-
ing the LMI (22) in Theorem 2, we can get a set of fea-
sible solutions fromwhich the corresponding feedback
control and observer gain matrices computed by K =⎡
⎣5.4801 − 0.0026 0.0594
0.2280 − 0.6362 − 0.0311
3.4362 − 0.2732 − 0.3437

⎤
⎦ and L =

⎡
⎣247.1602

0.6225
− 1.4926

⎤
⎦.

For the simulation purposes, we choose the initial con-
ditions for the states of nodes xi1(0) = [4 5 6]T, the
observer of nodes x̂i1(0) = [7 8 9]T and the isolated
node s(0) = [0 0 0]T. The state and its estimation of
first node under the proposed FOEID-based controller
and the observer-based controller proposed in [55] are
plotted in Fig. 12a and b, respectively. From these fig-
ures, it is concluded that the proposed FOEID-based
control yields the better estimation performance than
the classical observer-based controller. The synchro-
nization error responses of the first node of the FOCDN
(23) under the proposed FOEID-based controller and
observer-based controller proposed in [55] are plotted
in Fig. 13a and b, respectively. From Fig. 13b, it is easy
to observe that the controller proposed in [55] fails to
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(a) Under FOEID-based controller (b) Under observer-based controllerin [55]

Fig. 12 State trajectories and its estimation
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Fig. 13 Error state trajectories

ensure to synchronization of the system (23). The sim-
ulations result demonstrates that the proposed FOEID-
based controller is superior to the classical observer-
based controller.

Remark 6 It should be noted that in [55], the external
disturbance input is chosen as ω(t) = 1

1+2t , in which
as time increases ω(t) tends to zero. So, in this case the
state estimation is not affected since amount of the dis-
turbance is less. However, in our paper the disturbance
input is chosen as ω(t) = 10 sin(t), which is relatively
high magnitude for all t . Therefore, it is noted that
in the early works, the estimation performance of the
observer-based controller depends on the magnitude of
the disturbance input, but the proposed FOEID-based
non-fragile feedback control does not depend on mag-
nitude of the disturbance.

5 Conclusion

In this paper, a robust synchronization problem for
FOMW CDN is studied via FOEID-based non-fragile
control scheme. A new set of sufficient conditions for
the robust synchronization of the FOMWCDN is estab-
lished in terms of LMIs by using an indirect Lyapunov
method and the properties of fractional calculus theory.
It should be mentioned that the synchronization crite-
rion is obtained such that control and observer gains
are irrelevant of the disturbance. Finally, two numeri-
cal examples are explored to demonstrate the effective-
ness and superiority of the proposed control design. It is

worth noting that the developed results can be extended
to Lur’e dynamical networks with distributed delays
based on the impulsive controller approach [56–58]
which will be the topic of future research.
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