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Abstract We investigate, experimentally and theo-
retically, the linear mode coupling between the first
symmetric and antisymmetric modes of an electrother-
mally tuned and electrostatically actuated microma-
chined arch resonator. The arch is excited using an
antisymmetric partial electrode to activate both modes
of vibrations. Theoretically, we explore the static and
dynamic behavior using the Galerkin method. When
tuning the electrothermal voltage, the first symmetric
frequency increases while the first antisymmetric fre-
quency decreases until they cross. The results show
linear coupling and hybridization of both modes near
crossing only in the presence of the perturbation from
the electrostatic force using the partial electrode. We
show the linear merging of both modes at crossing.
Also, the eigenfrequency variation around crossing
shows a ratio of 2:1 between the second symmetric
mode and the first symmetric/antisymmetric modes,
which can lead to simultaneous 1:1 and 2:1 internal
resonances.
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1 Introduction

Mode coupling among various modes of vibration of
micro- and nano-electromechanical systems (MEMS
and NEMS) has been explored for several interest-
ing capabilities and potential applications, such as
mass sensing [1,2], signals filtering [3] and tim-
ing/synchronization [4–6]. The wide implementation
of mode coupling in N/MEMS in the past decade has
been sparked by the exciting results demonstrated in
the classical structure dynamics.

The coupling between different modes can be linear
or nonlinear. The nonlinear coupling can be through a
mechanical coupler within the involved structures [7,8]
or via internal resonance [1,2,4,5,9–11]. The majority
of the reported nonlinear coupling studies are based on
internal resonance [1,2,4,5,9–11].

The linear coupling betweenmodes ismainly related
to three well-known phenomena: crossover, veering
[3,12–15], and mode localization [16,17]. These phe-
nomena were demonstrated and investigated in both
discrete and continuous systems. As two frequencies
get close to each other while monitoring a control
parameter, they either cross or veer away from each
other.

The veering phenomenon (avoided crossing) has
been reported between different modes: symmetric
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and/or antisymmetric. In the veering regime, both con-
tributed modes affect each other (hybridized), and their
nonlinearities interchange after veering. Veering was
recently demonstrated in N/MEMS resonators, mostly
in curved (arch) MEMS resonators [3,15] and CNTs
[18,19].

Veering is also known to be associated with mode
localization, which is defined as a strong localiza-
tion and confinement of injected energy in a restricted
region of a weakly coupled system influenced by a
small perturbation. Inspired by the exciting results in
the classical structural dynamics [16,20], this phe-
nomenon has been studied in recent decades using cou-
pled MEMS resonators showing great capabilities in
various potential applications [21,22].

On the other hand, crossover typically occurs
between symmetric and antisymmetric modes while
changing a control parameter. Contrary to veering,
modes at crossing are not known to hybridize or transfer
energy. In the classical structural dynamics, crossover
was primarily explored in cables and curved beams
[13,14,23–26].

Since curved beams inherit cubic and quadratic non-
linearities, they have been widely reported to have dif-
ferent types of couplings either linear, via veering and
crossover phenomena [3,14,15], or nonlinear through
several types of internal resonances, 1:1, 2:1, 3:1 and
4:1 [10,23,24], resulting from interactions among dif-
ferent vibrational modes. With increasing their curva-
ture, the fundamental frequency rises rapidly due to the
stiffening stretching mechanism, while the antisym-
metric frequency does not experience any alteration
since it is not affected by stretching [27]. Hence, this
leads to the crossing between both modes. Despite the
extensive research on the static and dynamic behavior,
particularly the nonlinear analysis of curved MEMS
resonators [15,28–30], there is little research, experi-
mental and theoretical, on the linear coupling, unforced
and forced, between the first symmetric and antisym-
metric modes at the crossing zone while tuning their
stiffness.

Here, we aim to study, experimentally and theoreti-
cally, the crossover phenomenon between the first sym-
metric and antisymmetric modes of an initially curved
beam. TheMEMS arch beam is electrothermally tuned
and electrostatically driven. Also, to enhance the acti-
vation of different modes, we actuate the arch beam

electrostatically using a partial electrode configuration
[31]. In this paper, we focus on the linear coupling
between modes at crossing, while the nonlinear cou-
pling via internal resonance will be explored in the
second part of this work [32].

The rest of the paper is organized as follows. The
experimental setup is presented in Sect. 2. The model-
ing part is expanded in Sect. 3. A discussion of the static
and dynamic results is presented in Sect. 4. Finally, the
main conclusions are summarized in Sect. 5.

2 Experimental setup

The initially curved beam of this work, in Fig. 1a,
is fabricated from SOI wafer with highly conductive
silicon device layer using a two-mask process. The
curved beam is separated from a stationary electrode
with a transduction gap of width d. In this work, we
use the half-electrode configuration in order to actu-
ate the symmetric and antisymmetric modes. The arch
beam is actuated electrostatically by a DC bias voltage
VDC and anACharmonic voltage of amplitude VAC and
frequency �̂. Also, we apply aDCvoltage VTh between
the anchors of the arch beam leading to a DC current
ITh passing through it and heating it, which controls
its induced axial load (i.e., stiffness). The initial shape
ŵ0(x̂) of the clamped–clamped arch beam (arc shape),
in Fig. 1b, is governed by

ŵ0(x̂) =
(
b̂0 − R +

√
R2 − (x̂ − l/2

)2) (1)

where x̂ is the position along the arch length l, R repre-
sents the radius of the arch and b̂0 denotes the archmid-
point rise. The arch beam is of length 700μm, thick-
ness 2 μm(h), depth 30μm (b) and initial rise at the
midpoint 2.6μm.

To measure the natural frequencies and to charac-
terize the dynamic response of the arch beam, we use
stroboscopic video microscopy (a high-speed camera)
from Polytec [33], as shown in Fig. 1c. The natural
frequencies of the curved beam are measured for dif-
ferent VTh using ring-down tests and the fast Fourier
transform (FFT). The dynamic response is measured
by sweeping the frequency for various electrostatic
loads.
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Fig. 1 aAnoptical top-view image of the silicon clamped–clamped in-plane arch beam.bAschematic of the arch beamelectrothermally
tuned and electrostatically actuated. c A schematic of the experimental setup

The stiffness of the arch beam is increased due to the
compressive axial load induced by increasing the elec-
trothermal voltage that heats the arch beam via Joules
heating effect. Figure 2 shows the variation in the first
three natural frequencies of the arch beam (first two
symmetric modes ( f1 and f3) and the first antisymmet-
ric mode ( f2)) while varying the electrothermal volt-
age. Initially, increasing the compressive load increases
the first natural frequency, f1, while the first antisym-
metric, f2, and the second symmetric, f3, natural fre-
quencies decrease. As we increase the electrothermal
voltage further, the first symmetric frequency and first
antisymmetric frequency cross and depart away from
eachother. This is knownas the crossover phenomenon,
which is a necessary condition to activate the 1:1 inter-
nal resonance between both modes as observed in the
inset of Fig. 2. Besides, at crossing, the second sym-
metric mode has a ratio of 2 with the two first sym-
metric and antisymmetric modes that may lead to the
possible activation of simultaneous 2:1 and 1:1 internal
resonances. With increasing the electrothermal voltage
beyond crossing, we notice that the first frequencies of
the two modes, f1 and f2, depart away from each other
while the third natural frequency increases, f3, after
crossing.
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Fig. 2 Variation in the three lowest natural frequencies of the
arch beam with the electrothermal voltage VTh. f1 and f3 denote
the first and second symmetric modes, respectively. f2 denotes
the first antisymmetric mode. The inset shows the variation in
the frequency ratios

3 Modeling

The governing equation of motion of the curved beam
describing its transverse deflection ŵ(x̂, t̂), where t̂ is
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time, is written as [15,34]

ρbh
∂2ŵ

∂ t̂2
+ E I

∂4ŵ

∂ x̂4
+ ĉ

∂ŵ

∂ t̂
=
⎧⎨
⎩
(

∂2ŵ

∂ x̂2
+ d2ŵ0

dx̂2

)

×
⎡
⎣N̂+ E A

2l

l∫
0

((
∂ŵ

∂ x̂

)2
+2

∂ŵ

∂ x̂

dŵ0

dx̂

)
dx̂

⎤
⎦
⎫⎬
⎭+ F̂e

(2)

The beam is subjected to the below boundary condi-
tions

ŵ(0, t̂) = ŵ(l, t̂) = 0; and ∂ŵ

∂ x̂

∣∣∣∣
(0,t̂)

= ∂ŵ

∂ x̂

∣∣∣∣
(l,t̂)

= 0

(3)

The arch beam has Young’s modulus E, material den-
sityρ and is subjected to viscous damping of coefficient
ĉ. The cross-sectional area is assumed to be rectan-
gular, A = bh, with a moment of inertia I = bh3/12.
F̂e denotes the electrostatic force induced by the half-
electrode configuration and the arch beam, expressed
as [31,34]:

F̂e = 1

2
εb

(VDC + VAC cos(�̂t̂))2(
d − ŵ − ŵ0

)2 u(x̂ − l/2) (4)

where u
(
x̂ − l/2

)
denotes the unit step function and ε

represents the dielectric constant of the medium. The
arch beam is subjected to an axial load N̂ = N̂0 −
ŜTh that designates the tensile axial load, where N̂0

arises from the fabrication process and ŜTh denotes the
thermal compressive load given by

ŜTh = E A

l

l∫
0

α(T )
(
T (x̂) − Ta

)
dx̂ (5)

where T
(
x̂
)
denotes the temperature of the curved

beam induced by the applied electrothermal voltage
via Joules heating and Ta denotes the temperature at the
ends of the arch beam assumed to be equal to the ambi-
ent temperature. Using Fourier’s law, T

(
x̂
)
is com-

puted by the procedure described in [15]. The param-
eter α(T ) is the thermal expansion coefficient of the
silicon beam [35] and is expressed as:

α(T ) =
〈
3.75 ×

(
1 − e

{−5.88×10−5(T−125)
})

+5.548 × 10−4T
〉
× 10−6 (6)

For convenience, we introduce the nondimensional
variables:

w = ŵ

d
; x = x̂

l
; t = t̂

TS
;w0 = ŵ0

d
; and b0 = b̂0

d
(7)

where Ts = √ρbhl4/E I is the timescale. Substituting
Eq. (6) into Eqs. (1) and (2), we obtain the nondimen-
sional equation of motion

∂2w

∂t2
+ ∂4w

∂x4
+ c

∂w

∂t
=
((

∂2w

∂x2
+ d2w0

dx2

)
⎡
⎣N + α1

1∫
0

[
∂w

∂x

2

+ 2
∂w

∂x

dw0

dx

]
dx

⎤
⎦
⎞
⎠

+α2
(VDC + VAC cos(�t))2

(1 − w − w0)
2 u(x − 0.5) (8)

subjected to the nondimensional boundary conditions

w(0, t) = w(1, t) = 0; and
∂w

∂x

∣∣∣∣
(0,t)

= ∂w

∂x

∣∣∣∣
(1,t)

= 0

(9)

The parameters appearing in Eq. (7) are defined as

α1 = 6
d2

h2
; N = N0 + STh; N0 = l2

E I
N̂0;

STh = l2

E I
ŜTh;α2 = 6εl4

Eh3d3
;c = l4

E IT
ĉ ; � = Ts�̂

(10)

To compute the variation in the natural frequencies, the
eigenvalue problem and the mode shapes of the arch
beam under electrothermal load and static electrostatic
voltage are solved following the procedure described
in “Appendix” [15]. Next, by fixing the electrother-
mal voltage near the crossing region, we simulate the
dynamic response of the arch beam by discretizing Eq.
(7) using a Galerkin procedure [15,34], which yields a
reduced order model (ROM). To do so, we express the
arch deflection as follows [15,34]:

w(x, t) =
n∑

i=0

qi (t)φi (x) (11)
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where qi (t)(i = 0 . . . n) are the nondimensional modal
coordinates andφi (x) (i = 0 . . . n) are themode shapes
of the arch beam at a constant electrothermal voltage
and DC bias load VDC (as described in “Appendix”)
[15].

Next, we cross-multiply Eq. (7) by(1 − w − w0)
2.

Then, by substituting Eq. (10) into Eq. (7), multiply-
ing by φ j (x) and integrating along the arch beam, n
equations governing qi (t) are obtained
n∑

i=0

Mi j (q)q̈i (t) +
n∑

i=0

Ci j (q)q̇i (t)

+
n∑

i=0

Ki j (q)qi (t) = Fc j (q) + Fe j (t)

∀( j = 0 . . . n) (12)

where

Mi j (q) =
1∫

0

⎡
⎣φi (x)φ j (x)

(
1 −

n∑
i=0

qi (t)φi (x) − w0(x)

)2⎤
⎦ dx

Ci j (q) = c

1∫
0

⎡
⎣φi (x)φ j (x)

(
1 −

n∑
i=0

qi (t)φi (x) − w0(x)

)2⎤
⎦ dx

Ki j (q) =
1∫

0

⎡
⎣φ(iv)

i (x)φ j (x)

(
1 −

n∑
i=0

qi (t)φi (x) − w0(x)

)2⎤
⎦ dx

Fe j (t) = α2(VDC + VAC cos(�t))2

1∫
0

φ j (x)u(x − 0.5)dx

Fc j (q)=α1�(q)

1∫
0

[
φ j (x)

(
n∑

i=0

qi (t)φ
′′
i (x)+w′′

0 (x)

)

(
1 −

n∑
i=0

qi (t)φi (x) − w0(x)

)2⎤
⎦ dx

�(q) = N +
1∫

0

(
n∑

i=0

qi (t)φ
′
i (x)

)2
dx

+2

1∫
0

(
n∑

i=0

qi (t)φ
′
i (x)

)
w′
0(x)dx (13)

The reduction procedure starts by computing the val-
ues of the integrals over the beam domain (x from 0 to
1) in Eq. (12) to solve the dynamic response of the arch
beam described in Eq. (11). Then, a set of nonlinear
differential equations of qi (t)(i = 1 . . . n) is obtained
and integrated in timeusing theRunge–Kutta technique
and using four mode shapes (the first three symmetric

modes and the first antisymmetric mode) [15]. Note
here that the second antisymmetric mode (the fourth
mode) does not get excited since it is orthogonal to the
electrostatic force of a half electrode. The initial con-
ditions for the time integration are updated for each
frequency step as the solutions from the previous fre-
quency step (continuation).

4 Results and discussions

First, we solve the associated eigenvalue problem [15]
and simulate the variation in the lowest three natural
frequencies of the arch beam with the electrothermal
voltage and without including the effect of the electro-
static force. As revealed in Fig. 3a, good agreement is
shown among the experimental and numerical results,
capturing the frequency trends and the crossing phe-
nomenon. Next, we compute the mode shape alteration
of the first symmetric and antisymmetric modes around
the crossing zone without including the electrostatic
effect. Figure 3b shows that the two modes cross, from
point A (VTh = 1.88V) to point C (VTh = 1.98V),
without any hybridization of modes, contrary to that
observed in the case of veering between the first two
symmetric modes [15]. In addition, we note that the
mode shapes orders interchange after crossing, from
point B (VTh = 1.92V) to point C.

Since commonly systems with repeated eigenval-
ues show high sensitivity to any perturbation, we next
investigate this effect by introducing the DC electro-
static voltage. In Fig. 4, we plot the first symmetric
and antisymmetric mode shapes of the arch beam for
different DC voltages at different electrothermal volt-
ages. For zero electrothermal voltage, inFig. 4a, the two
modes do not show any signs of hybridization or inter-
change even for high DC electrostatic voltage. A sim-
ilar observation is shown in Fig. 4b when introducing
an electrothermal voltage and being away from cross-
ing, VTh = 1.2V. Figure 4a, b demonstrates that the
mode shapes show shifting of the position of the maxi-
mum peak of the symmetric mode and the nodal point
of the antisymmetric mode at high values of electro-
static voltage caused by the antisymmetry of the driv-
ing electrode. When being closer to the crossing zone,
in Fig. 4c and d, both mode shapes start to interact
and hybridize at a critical DC electrostatic voltage. At
crossing, the hybridization of both first symmetric and
antisymmetric modes leads to the same out-of-phase
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Fig. 3 a Variation in the three lowest natural frequencies of the
arch beamwithVTh. The scattered points denote the experimental
data, and the continuous lines represent the simulated results. f1
and f3 denote thefirst and second symmetricmodes, respectively.

f2 denotes the first antisymmetric mode. b The first symmetric
and antisymmetric mode shapes of the arch beam at different VTh
denoted as sections A (VTh = 1.88V), B (VTh = 1.92V) and C
(VTh = 1.98V) in a

mode shapes when passing the critical DC electrostatic
force. The same observation as the case before crossing
can be concluded about the mode shapes after cross-
ing, as shown in Fig. 4e and f, but in this case the mode
shapes have interchanged due to crossing.

Also, one can note that the critical electrostatic volt-
age decreases when getting closer to the crossing zone
and then begins to increase again after crossing.

A further explanation of the influence of the DC
electrostatic voltage on the mode contribution for dif-
ferent electrothermal voltages around the crossing zone
is given in Fig. 5. Away from crossing, VTh = 1.2V,
we note the influence of the electrostatic voltage by
shifting the nodal point of the second mode and the
maximum peak of the first mode at x = 0.5. How-
ever, no hybridization is observed. As we move closer
to the crossing point at VTh = 1.88V, the hybridiza-
tion starts to appear which is indicated by the zero
value of the first mode at x = 0.75 at a critical elec-
trostatic voltage of 42V. This critical value becomes
the lowest at the crossing point, VTh = 1.92V, where
a small perturbation in the electrostatic voltage results
into hybridization of themodes.Moving away from the
crossing point, VTh = 2.4V, the electrostatic voltage

required to hybridize the modes reaches high values up
to 130V.

It is also noteworthy that exceeding the critical DC
electrostatic voltage leads to the hybridization of both
mode shapes that might strongly enhance the activation
of a one-to-one internal resonance.

Next, we study the linear vibration response of the
first symmetric and antisymmetric modes around the
crossing zone. The nonlinear interaction between these
modes that might lead to simultaneous internal reso-
nance of 1:1 and 2:1 with the second symmetric mode
will be further studied in the second part of the paper
[32].

We start by exciting the beam with low DC and AC
electrostatic voltages in order to keep the linear motion
of the arch beam by keeping VDC = VAC = 15V
leading to an effective static DC electrostatic voltage

Veff =
√
V 2
DC + 0.5V 2

AC =18V. Hence, the mode cou-
pling (mode shape hybridization) is expected to occur
at the crossing zone since the effective DC electrostatic
voltage is higher than the critical voltage as described
earlier in Fig. 5.
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Fig. 4 First symmetric and antisymmetric mode shapes of the arch beam at different VTh and for various DC electrostatic voltages. a
VTh = 0V. b VTh = 1.2V. c VTh = 1.8V. d VTh = 1.92V. e VTh = 1.96V. f VTh = 2.4V

123



400 A. Z. Hajjaj et al.

Fig. 4 continued

Fig. 5 Variation in the absolute amplitude of the first symmet-
ric and antisymmetric normalized mode shapes at the midpoint,
quarter and three-quarters of the arch beam for different VTh

values with the DC electrostatic voltages. ϕ1 and ϕ2 denote the
first symmetric and antisymmetric mode shapes before crossing
(VTh ≤ 1.92V) and vice versa after crossing, respectively

Experimentally, we swept the frequency around the
first symmetric and antisymmetric modes around the
crossing zone. Figure 6a shows that initially at VTh =

1.7V we have two peaks at the quarter point represent-
ing the contribution of the first symmetric and anti-
symmetric modes with a maximum amplitude close to
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Fig. 6 Linear frequency response curves of the arch beam at
the quarter point for different electrothermal voltages at fixed
VDC = VAC = 15V. a Experimental. b The simulation results
using the Galerkin procedure. c The contribution of the first

symmetric and antisymmetric modes at the quarter point for
VTh = 1.8V, VTh = 1.92V, and VTh = 2.5V. ϕ1 and ϕ2 denote
the first symmetric and antisymmetric mode shapes before cross-
ing (VTh ≤1.92V) and vice versa after crossing, respectively

0.2μm. As getting closer to the crossing zone from
VTh = 1.7V to VTh = 1.8V, the linear amplitude
of motion around the first symmetric mode uplifts the
motion around the first antisymmetric modes. At cross-
ing from VTh = 1.85V to VTh = 2V, the motion of
both modes merges into one synchronized mode show-
ing steady amplitude of motion for a narrow range
of electrothermal voltages near and at crossing. After
crossing, from VTh = 2.1V to VTh = 2.4V, both

modes interchange place and the first antisymmetric
mode shows higher amplitude of motion than the first
symmetric mode at the quarter point.

Numerically, in Fig. 6b, a qualitative agreement is
shown with the experimental data. However, the rise in
of the amplitude of motion of the first symmetric mode
is simulated at different electrothermal voltage values
compared to the experimental data. This deviation can
be explained by the fact that around crossing the ampli-
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Fig. 7 a Simulated linear frequency response curves of the
arch beam at the midpoint for different electrothermal volt-
ages at fixed VDC = VAC = 15V. b The contribution of the
first symmetric and antisymmetric modes at the midpoint for

VTh = 1.2V, VTh = 1.92V, and VTh = 2.5V. φ1 and φ2 denote
the first symmetric and antisymmetric mode shapes before cross-
ing (VTh ≤ 1.92V) and vice versa after crossing, respectively

tude of vibration of each mode becomes very sensitive
to any small perturbation (mode localization behavior),
which is due to the almost identical eigenvalues of the
two modes in that zone. Hence, in the presence of the
unavoidable fabrication imperfection, it is very hard for
the model to predict the exact amplitude of motion near
that regime. Essentially, the confinement of energy as
the two modes cross is very sensitive to the applied
voltage. Hence, it is very difficult to capture it exactly
and numerically.

Also to better understand this change in amplitude
at the quarter point, we draw the contribution of the
first symmetric and antisymmetric modes at the quar-
ter for different electrothermal voltages before, at and
after crossing (Fig. 6c). The results show that the mode
amplitude at the quarter of the first symmetric mode
exceeds the amplitude of the first antisymmetric mode
at crossing, VTh = 1.92V, contrary to the case away
from crossing, VTh = 1.8V. Hence, this explains the

rise in amplitude of motion around the first symmet-
ric mode around crossing. One should mention here
that even slightly away from crossing, for example at
VTh = 1.8V, the amplitude of the first mode may sur-
pass the one of the first antisymmetric at the beam quar-
terwhen exciting the beamwith higherDCelectrostatic
voltage while tuning the damping to keep the linearity
of the motion.

In contrary to the motion at the quarter point, the
midpoint of the arch beam is usually maximum around
the first symmetric mode. The midpoint is known in
general as a nodal point of the antisymmetric modes.
However, the presence of the half-electrode configura-
tion slightly shifts this nodal point when increasing the
DC effective electrostatic voltage. Figure 7 shows that
away from crossing, VTh = 1.2V to VTh = 1.8V, the
amplitude of motion of the first antisymmetric mode
at the midpoint is almost zero. However, at crossing,
VTh = 1.85V to VTh = 1.96V, it increases since the
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amplitudes of both modes are almost similar at mid-
point for this specific Veff . After crossing, VTh = 2.1V
to VTh = 2.5V, the motion of the first antisymmet-
ric mode vanishes again due to the interchange of the
modes.

Also, we show the contribution of the first sym-
metric and antisymmetric modes at the midpoint for
different electrothermal voltages before, at and after
crossing in Fig. 7b. The results show that the mode
amplitude at the midpoint of the first antisymmetric
mode remains almost zero away from crossing for this
range ofDC electrostatic force, which explains the zero
vibration around this mode away from crossing. Near
crossing, the amplitude of the first antisymmetric mode
at midpoint increases for low DC electrostatic volt-
ages to approach the amplitude of the first symmetric
mode, which demonstrates the detected motion at the
midpoint of the first antisymmetric mode as shown in
Fig. 7a.

5 Conclusions

In this paper, we investigated experimentally and the-
oretically the linear mode coupling between the first
symmetric and antisymmetric modes of an electrother-
mally tuned and electrostatically actuated arch MEMS
resonator. When tuning the stiffness of the arch beam
electrothermally, thefirst symmetric and antisymmetric
modes cross. The mode shapes of both modes showed
hybridization around crossing only in the presence of
perturbation originating from the electrostatic actua-
tion by the half electrode. The linear modal interaction
shown in this work seems to be different from veering
andmode localization phenomena. The reported results
motivate further research in this direction to exploit the
linear coupling of both symmetric and antisymmetric
modes at crossing for practical applications. On the
other hand, the resonance frequencies alteration due to
the electrothermal voltage showed that when experi-
encing crossing between the first symmetric and anti-
symmetricmodes, they have a ratio of 2with the second
symmetric mode. This presents a strong condition to
activate a simultaneous 2:1 internal resonance with the
1:1 internal resonance. A complex and rich dynamic
behavior will be demonstrated for such a case in the
second part of this work.
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6 Appendix

Here, we present the procedure of solving the eigen-
value problem of the arch beam when varying the elec-
trothermal and the DC bias voltages. The static deflec-
tion of the arch beam, due to VTh and VDC, is governed
by

d4ws

dx4
=
((

d2ws

dx2
+ d2w0

dx2

)
[
N + α1

∫ 1

0

[(
dws

dx

)2
+ 2

dws

dx

dw0

dx

]
dx

])

+α2
V 2
DC

(1 − ws − w0)
2 u(x − 0.5) (A.1)

with the associated boundary conditions

ws(0) = ws(1) = 0 and
dws

dx

∣∣∣∣
x=0

= dws

dx

∣∣∣∣
x=1

= 0

(A.2)

To solve the eigenvalue problem, we drop the AC
bias voltage and the damping terms from the equa-
tion of motion (Eq. (8)). Next, we assume that the
total deflection is the sum of the static configuration,
ws(x), and a small dynamic deflection of the arch beam,
wd(x, t), around ws(x). The linearized equation of
motion describing wd(x, t) is derived by substituting
w(x, t) = wd(x, t) + ws(x) into Eq. (8) and dropping
the terms representing the equilibrium position and the
nonlinear terms. This yields

∂2wd

∂t2
+ ∂4wd

∂x4

=
[
N + α1

∫ 1

0

[(
dws

dx

)2
+ 2

dws

dx

dw0

dx

]
dx

]
∂2wd

∂x2

+ 2α1

∫ 1

0

[(
dws

dx
+ dw0

dx

)
∂wd

∂x

]
dx

(
d2ws

dx2
+ d2w0

dx2

)

+ 2α2
V 2
DC

(1 − ws − w0)
3 u(x − 0.5)wd (A.3)

with the associated boundary conditions
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wd(0, t) = wd(1, t) = 0

and
∂wd

∂x

∣∣∣∣
x=0,t

= ∂wd

∂x

∣∣∣∣
x=1,t

= 0 (A.4)

We solve the eigenvalue problem of the arch beam
under electrothermal voltage and electrostatic voltage
[15,34] by using the Galerkin discretization. Toward
this, we let

wd(x, t) =
n∑

i=0

ui (t)ϕi (x) (A.5)

where ui (t)(i = 0, 1, 2 . . . n) denotes the nondimen-
sional modal coordinates and ϕi (x)(i = 0, 1, 2 . . .

n) denotes the mode shape of the unactuated clamped–
clamped arch beam. Next, we substitute Eq. (A.5) into
Eq. (A.3), multiply the outcome by the mode shape
ϕ j and integrate over the beam domain (from 0 to 1),
which yield the below equation [15,34]:

ü j = −
∫ 1

0
ϕ j

(
n∑

i=0

uiϕ
(iv)
i

)
dx

+
[
N + α1

∫ 1

0

[(
dws

dx

)2

+ 2
dws

dx

dw0

dx

]
dx

] ∫ 1

0
ϕ j

(
n∑

i=0

uiϕi ′′
)
dx

+ 2α1

∫ 1

0

[(
dws

dx
+ dw0

dx

) n∑
i=0

uiϕi ′
]
dx

∫ 1

0
ϕ j

(
d2ws

dx2
+ d2w0

dx2

)
dx

+
∫ 1

0
ϕ j

2α2V 2
DC

(1 − ws − w0)
3

(
n∑

i=0

uiϕi

)
u(x − 0.5)dx

(A.6)

Using four modes, we compute the Jacobian of the
system of the four obtained equations, for each VTh
and VDC, and find the corresponding eigenvalues and
eigenvectors (newmode shapes). Then,we compute the
natural frequencies of the resonators, at constant VTh
and VDC, by taking the square root of these eigenvalues.
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