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Abstract We investigate in a silicon micromachined
arch beam the activation of a one-to-one internal res-
onance between the first symmetric and first anti-
symmetric modes simultaneously with the activation
of a two-to-one internal resonance between these
modes and the second symmetric mode. The arch
is excited electrically, using an antisymmetric partial
electrode to activate both modes of vibrations, and
tuned electrothermally via Joule’s heating. Theoreti-
cally, we explore the dynamics of the beam using the
Galerkin and multiple timescales methods. The simu-
lation results are shown to have good agreement with
the experimental data. The results show the merging of
both modes at crossing, after which the first antisym-
metric mode exchanges the nonlinear behavior with the
first symmetric mode. The nonlinear behavior of the
arch beam is demonstrated and analyzed experimen-
tally and theoretically as experiencing the simultaneous
2:1 and 1:1 internal resonances.
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1 Introduction

Energy transfer via internal resonance among various
modes of vibration of micro and nano-electromechanical
structures (MEMS and NEMS) has been explored
for several potential applications, such as timing/
synchronization [1,2], energy harvesting [3,4], mass
sensing [5], and frequency stabilization [6,7]. Inter-
nal resonance, also called auto-parametric resonance,
represents a nonlinear mechanism for energy leakage
from the targeted vibration mode to another mode. One
necessary condition to activate internal resonance is
to have an integer ratio between the involved modes.
Commonly, the 1:1[8,9],2:1[7,10-13],3:1[6,7,9,11],
and 4:1 [7] internal resonance types are investigated.

In the classical structural dynamic, several studies
demonstrated and explored different types of internal
resonances experimentally and theoretically, mainly in
cables [14—17], curved [18-20], and cantilever beams
[21,22].

Various studies have been conducted on internal res-
onance in M/NEMS resonators either for fundamen-
tal understanding or for implementation in different
potential applications. One of the early works is that
of Antonio et al. [6] who showed that the oscillation
frequency of a nonlinear self-sustained MEMS res-
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onator could be stabilized by coupling different modes
of vibration through 3:1 internal resonance. The same
group [1] has recently shown a novel technique to real-
ize a self-sustained oscillation, via internal resonance,
to compensate for energy losses. In electrothermally
tuned MEMS arch resonator [7,9,11,12,23], 2:1 and
3:1 internal resonances were explored experimentally
and theoretically among the first two symmetric vibra-
tional modes. Rich complex dynamics were shown,
such as Hopf bifurcation, limit cycle instabilities, and
chaotic behavior. At the nanoscale, Samanta et al. [8]
studied the activation of 1:1 internal resonance in 2D
materials in MoS, NEMS structures.

The one-to-one internal resonance has also been
studied theoretically among the first symmetric and
antisymmetric modes for arch MEMS resonators known
by their rich and complex dynamical behavior [9]. As
shown in the presented work in [A. Z. Hajjaj, F. K.
Alfosail, N. Jaber, S. Ilyas, and M. 1. Younis: Theoret-
ical and Experimental Investigations of the Crossover
Phenomenon in Micromachined Arch Resonator: Part
I—Linear Problem. Nonlinear Dynamics. Submitted
(2019)], as tuning the stiffness of the arch beam
(increasing the compressive load via electrothermal
voltage), the first symmetric mode frequency shows
higher sensitivity (increases with high slope) to the
stiffness change compared to the first antisymmetric
mode frequency (slowly decreases) due to the stretch-
ing. Hence, both modes cross a critical load, which
enhances the potential to activate 1:1 internal resonance
due to the break of symmetry by the electrostatic exci-
tation with the antisymmetric electrode configuration.
The linear coupling between both involved modes at
crossing has been in-depth investigated in [A. Z. Haj-
jaj, F. K. Alfosail, N. Jaber, S. Ilyas, and M. 1. You-
nis: Theoretical and Experimental Investigations of the
Crossover Phenomenon in Micromachined Arch Res-
onator: Part [—Linear Problem. Nonlinear Dynamics.
Submitted (2019)]. As both modes cross, they possess
aratio 2:1 with the second symmetric mode. This offers
a condition for the activation of simultaneous 1:1 and
2:1 internal resonances.

In the classical structural dynamics, the simultane-
ous 2:1 and 1:1 internal resonances among the second
symmetric mode and both first symmetric and antisym-
metric modes were in-depth investigated in suspended
cables [14,15]. In [14,15], the 2:1 internal resonance,
which is for the in-plane motion, is coupled to the out-
of-plane 1:1 internal resonance and analytically solved
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via the method of multiple timescales (MTS). Another
recent example on shallow suspended cables is the work
of Wang and Zhao [24], in which they investigated the
3:1 internal resonance between the first and third in-
plane symmetric modes coupled with a 1:1 internal
resonance between the in-plane and out-of-plane third
modes. Cylindrical shells are another classical structure
where simultaneous internal resonances are observed
[25-27]. In cylindrical shells, coupling occurs between
the first and third axisymmetric modes via 2:1 inter-
nal resonance while more than one asymmetric modes
are in the 1:1 internal resonance with the first axisym-
metric mode. This results in a coupled four-degree-
of-freedom system that is solved and analyzed using
MTS. Other classical examples where simultaneous
internal resonances occur are in rotating strings [28],
liquid sloshing in storage systems [29], coupled beams
[30], and beams with cruciform cross section under the
influence of shear deformation [31]. In most of these
works, the simultaneous internal resonance is activated
due to the coupling between a planer and non-planner
modes, which is analyzed via perturbation methods.
More examples of these internal resonances can be
found in [32].

Here, the investigation presented in [A. Z. Haj-
jaj, F. K. Alfosail, N. Jaber, S. Ilyas, and M. 1. You-
nis: Theoretical and Experimental Investigations of the
Crossover Phenomenon in Micromachined Arch Res-
onator: Part [—Linear Problem. Nonlinear Dynamics.
Submitted (2019)] is extended to study the nonlinear
coupling among the first two symmetric and first anti-
symmetric modes of the initially curved beam, which
leads to simultaneous activation of the 1:1 and 2:1 inter-
nal resonances. The theoretical study will be based on
the Galerkin and MTS methods, which will be validated
with the experimental data based on a silicon-based ini-
tially curved beam.

The rest of the paper is organized as follows. Mod-
eling using MTS is presented in Sect. 2. A discussion
of the dynamic results is presented in Sect. 3. The main
conclusions are summarized in Sect. 4.

2 Modeling: perturbation analysis

We conduct the analysis on a curved beam separated
from a stationary electrode (with antisymmetric config-
uration) with a transduction gap of width d. The curved
beam is actuated electrostatically by a DC bias voltage
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Vpc and an AC harmonic voltage of amplitude Vac
and frequency 2 and subjected to viscous damping of
coefficient ¢. A DC voltage, Vy, is applied between the
anchors of the arch beam controlling its induced axial
load, and hence stiffness, via Joule’s heating effect. The
curved beam under consideration is of length 700 pm,
thickness 2 wm (&), depth 30 wm (), and initial rise at
the midpoint 2.6 pm.

The problem formulation and the Galerkin proce-
dure are presented in [A. Z. Hajjaj, F. K. Alfosail, N.
Jaber, S. Ilyas, and M. I. Younis: Theoretical and Exper-
imental Investigations of the Crossover Phenomenon in
Micromachined Arch Resonator: Part [—Linear Prob-
lem. Nonlinear Dynamics. Submitted (2019)]. Here,
the multiple time scales procedure will be detailed. The
frequency of the first symmetric mode of the arch beam
makes a ratio 2:1 with that of the second symmetric
mode as crossing with the first antisymmetric mode,
which affects the linear eigenvalue problem. Hence,
we consider analyzing the multiple internal resonances
by directly attacking the dimensionless nonlinear par-
tial differential equation [A. Z. Hajjaj, F. K. Alfosail, N.
Jaber, S. Ilyas, and M. I. Younis: Theoretical and Exper-
imental Investigations of the Crossover Phenomenon in
Micromachined Arch Resonator: Part [—Linear Prob-
lem. Nonlinear Dynamics. Submitted (2019)], which is
expressed as

2w tw Jw
— — C—
9tz ox* ot

2w d*wy
= PR
0x dx
1
dw?
N+ — +
0x
0

(Vbc + Vac cos(£21))?
(1 —w — wp)?

Jwd
K W AW | 4
dx dx

+ o u(x —0.5) (D)
where the nondimensional variables above are defined
as follows: w is the deflection, x is the position, ¢ is
time, wy is the initial static deflection, and u(x — 0.5)
is the Heaviside function to account for the influence
of partial electrode electrostatic excitation. The nondi-
mensional axial applied load N, nondimensional vis-
cous damping coefficient ¢, frequency of excitation £2,
and the parameters o« and o are defined as below
2

o] = 6ﬁ,

N = No + Stn;

2 . 2.
No = —Np; Sth = — STh;
0 El 0 Th El Th
6sl* " R
a ¢, =T, 2

T ERd T EIT,
where e represents the dielectric constant of the medium
and Ty = \/pbhi*/E]1 is the timescale. The arch beam
has Young’s modulus E, material density p, and a
moment of inertia I = bh3/12. The arch beam is sub-
jected to an axial load that is a combination of No,
arising from the fabrication process (positive for ten-
sile), and S’Th, denoting the thermal compressive load
induced by Vrj [A. Z. Hajjaj, F. K. Alfosail, N. Jaber,
S. Ilyas, and M. 1. Younis: Theoretical and Experi-
mental Investigations of the Crossover Phenomenon in
Micromachined Arch Resonator: Part [—Linear Prob-
lem. Nonlinear Dynamics. Submitted (2019)].

First, the equation governing the static displacement
wgi(x) is obtained by dropping the time-dependent
terms in Eq. (1) yielding

d*wg . dZwy n dZwy
dx4 dx? dx?

1

dwg 2 dwg dwg
N 2 — |d
+a1/|:dx + dx dx o
0
V2. .
+oap——DC(x —0.5) (3.1

(1 —wg — wO)2

where Vpcefr 1s defined as V]%Ceff = V]%C + 1 /2V§C.
The boundary value problem of Eq. (3.1) is solved using
the shooting method [33,34]. Then, we perturb Eq. (1)
around the static solution by adding the dynamic dis-
placement wy(x, t) as

w(x, 1) = ws(x) + walx, 1) (3.2)
Equation (3.2) is substituted in Eq. (1). Then expanding

the electrostatic force term in Taylor series and drop-
ping the static terms of Eq. (3.1) yield

1wy 0*wg owg 2wy d2wyg
C— =
912 dx4 ot dx2 dx?

1
dwg  dwg dwy dwa \*
2 )4 (22 |a
|:al/|:<dx+dx>8x+(8x) o
0
92 T/a dwg \
Wd Wst Wd
N -
+<ax2){ +a1/|:(dx + ax)
0
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dwg  dwg \ dwg
2 — ) —d
+ <dx + Bx) dx] *
V()

toy | ———
2l = w, —wo)?

2
5 Vicerr + V()
(1 —wg — w0)3

w3 Vicest + V(0
(1 — wy — wp)* i

wdi| u(x —0.5)

+ HOTj| u(x —0.5)

(3.3)

where HOT denotes higher-order terms and the elec-
trostatic forcing term V(t) is defined as V(r) =

2Vac Vbe cos (21) + AC cos (2821). The influence of
the second term in the electrostatlc frequency excita-
tion results in a primary resonance in the case of a two-
to-one frequency ratio. We note in Eq. (3.3) the cubic
stretching nonlinearities in addition to the quadratic
terms from the curvature and the electrostatic force.
On that basis, we seek a third-order expansion of the
form

wy(x,t; &) = ewi(x, Ty, T1, T2)
+ 2w (x, To, T1, T2) + 3ws(x, To, Ty, Ta)  (4)

where T; = &'t, ¢ is a bookkeeping parameter that is
introduced to segregate the different nonlinear scales.
As such, the chosen scale in Eq. (4) determines that the
quadratic nonlinearity is at €2 and the cubic nonlinear-
ity is at &3. Then, the forcing and damping terms are
scaled, based on the simultaneous one-to-one and two-
to-one internal resonance, as ezV(t) and ec, respec-
tively. We substitute Eq. (4) in Eq. (3.3) to obtain

Lo(wy) = D%wl + wy’
1
N2 2 ”
(e [ ) = ) ax ) g
0
1

4 / /
—20 wy /wswldx

0
2 V3
az DCef3f _ 0 (5)
S

e L(wy) = —2DgDiw; — cDow;
1

1
2
+ajw! /‘(w/l) dx | + 20w/ /w;w/ldx
0 0
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3a, V2 200 VacV,
a2 DCeI;fwlz a2 Vac C 0s (2Th)
(I —wy) (1 —wy)?
V2
M2IAC o5 227TY) 6)

2 (wy (x) — 1)?
& L(w3) = —2DyDrw; — 2DoDywy — D%wl
—cDywy — cDywo

4oy Vac Vi
M 0s (To$2) wy
(1 —wy)?
ar V2 602 V2 e
+ 2—AC3 cos (22Ty) w1 + Z—Dcegw]wz
(1 — wy) (1 — wy)

1 1
+2a 1wy fw’lwédx + 20 wh /w;w'ldx

0 0
1

+2ajwy f wiwhdx

1
+ajw) / (w’l)zdx (7)
0

where the total static deflection is given by ws = Wy +
wo, the derivatives are defined as D’. 3T” and ()’

denotes the derivative with respect to x. For 51mphclty,
we introduce

af1 df>
a—a—d (®)
0

I'(filx,1), f2(x, 1) =

Equation (5) is the linear eigenvalue problem taking
into consideration the influence of the electrostatic
actuation. Hence, it can be solved using, for example,
the Galerkin method [35].

For coupled mode interaction of the modes con-
tributing to the internal resonances, we assume the solu-
tion to be of the form

wi = Ap(T1, To)m (x)e'“n ™0
+ A (T, Ta) gy (x)e!nT0
+ Ap(T1, To) i (x)e' ™0 + c.c. )

where A, A,, A represent the amplitudes of modes
m, n, and k, ¢, ¢n, P represent their mode shapes,
wm , Wy, W represent their frequencies, and c.c. denotes
complex conjugate where the amplitudes are repre-
sented by A, A,, Ay. First, we consider the inter-
action at the second order, where a two-to-one inter-
nal resonance occurs, by assuming the excitation to be
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around the first natural frequency, i.e., £2 = w,, + o7,
and the one-to-one and two-to-one internal resonances
activation conditions are given by w, = w,; + €02
and wy = 2w, + €o3. Substituting Eq. (9) into Eq. (6)
while considering the activation conditions and mul-
tiplying the result with the adjoint of each mode
O (x) eiimeo’d)n (x) eiiw,,To’ and ¢ (x) eiia)kTo
yields the solvability conditions at the second order
as

2iwm D1 Ay = —2ipu@mAm + R, ApApyel@o2todT
+ RmzAkAnei(02+03)T1 + leeialTl
(10.1)
2iw, D1 A, = 2ipw, A, + RnlAkAmei(Uerm)Tl
+ Ry, ArA,e T 4 Fnlei("1 —o)Ti
(10.2)
iwx Dy Ay = —2ipay Ay + Ry, AL e 1Corto3)Ti
+ Ry, A2 i T
+ Riy A Ape 02007
+ Fklei(Z(Ul—Gz)—Gs)Tl (10.3)

where the coefficients w, Ry, Rinys Finys Ruys Ruys Fay,
Ry, Ri,, Ry and Fy, are defined in “Appendix A.”
Next, we consider the particular solution at the second
order, which is written as

Wy = ¢y (x) B (T1, T») el 10
+ ¢ (x) By (Ty, To) e T0
+ ¢ (x) By (Th, To) e*T0
+ Yiem (x) Ag Al @FenTo
+ Yin (x) Ap Ayl @tenTo
+ Ymn (x) Ay Apel@r—emTo
+ Yinm () A A+ Yn (6) An Ay
+ Wik (¥) AeAr + iy (6) Age? 0 e,
(an

The homogenous terms in Eq. (11) with amplitudes B,,,,
B,, and By are introduced to satisfy the Lagrangian
formulation at the third order following the detailed
procedure in [36,37]. The functions Y¥im, Yin, Yinn,
Ymms Yan» Yik, and Yy, are obtained by solving the
boundary value problems given by

Yim (%) © Hlwg + om] = Agm (12.1)
VYin(x) : Hlwg + oyl = Agn (12.2)
Ymn (X) + Hlw, — o] = Apm (12.3)
Vmm (x) © H[0] = Ap, (12.4)

Ynn (x) + H[0] = A,
Yk (x) : H[0] = Ay
Vi, (x) : H[O] = Ak
where H is defined by

(12.5)
(12.6)
(12.7)

1
Hlw;l = H" — NH" — 2w/ /w;H’dx
0
2
_2m VDCef?f H—oH
(1 — wy)
where A;; and A; are defined as

Ajj = 2a1w;’1“ ((]5‘]', ¢,)
+ 2019 T (ws, 1) + 20197 T (wy, ¢1)
602 VDCESt i @ )
(1 —wy)?
Ap = aqwi T (¢;, ¢i) + 2019 T (wy, di)
302 Ve d;
(1 —wy?
Equations (12.1)—(12.8) are solved using a five-mode
Galerkin procedure described in “Appendix B.” Then,
the solutions from the first and second orders, Egs. (9)
and (11), are substituted in the third-order Eq. (7) con-
sidering the activation conditions and multiplying the
result with the adjoint of the modes ¢,, (x) eT @10,
¢ (x) et T0and ¢y (x) e %70, which yield the
solvability conditions at the third order as

(12.8)

(13.1)

(13.2)

2iwy, Dy A, = —2uD1 Ay — 21 By
—2iwy D1 By — D3 Ay — Fpy Ape®oth
—Foun, Anei(%l —02)Th
¥ Ky, B Al @02+,
+ Ko, B AgeiCo+o0Th
+ Kin, BkAnei(Uz-HB)Tl
+ KknlAkgnei(Uz+U3)T|
+ Kimky Ak Am Ax + Kk, AxAp Arei?ht
+ Komm, A2, Ay
+ Koy A2, Ane 72T 4 K, A Ay AT
+ Konnny AmAn Ay + Kopm, A2 A eH2hh
+ Ko, A%Anei"ﬂl _ 2kaAkei(—01+2oz+03)T1
(14.1)
2iw, DA, = —2uD1 A, — 2iuB,w,
—2iw, D1 By — DI A, — Fpp, Apel@o17o07
Fyy Apei@n 20T _ g A ei(-oitortonT)
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+ Skm, BkAmei(UZ-HTg)Tl

+ SkmlAkBmei(tr2+zr3)T1 + Skn] BkAnei@T'

+ Skn, Ay B, e

+ Stk Ak Am Age 7T+ Spar, AxAn Ax

+Smmm1A3nAme—icrle + SmmnlAgylAne_Ziale

+ Smnm, AmAnA_m + Smnn, AmAnAne—iale

+ SnnmlAzAmeszl + SnnnlAﬁAn
Qiwg Dr Ay = —2uD1 A — 2ijBrowy

—2iwy D1 By — D} Ay

+ Tyum Am Bmei(—202—03)T1 + A, B, Tnmei(—o'z—g3)Tl

+ Ty Ay Byel 027037

+ Tun An Bue 7! + T AR A

+ Tmm Ak Am Am + Timn Ak Ay Aye 10271

+ TknmAkAnA_mei‘UTl

T+ Tonn ArAn A, — 2F i Ayel©@1202-03T1

—2F, Ape' 10203

(14.2)

(14.3)

where the coefficients Fj;, Kjj, S;ji, and T;j; are
defined in “Appendix C.” In order to satisfy the
Lagrangian formulation, the terms D%Am, D%An and
D7 Ar inEgs. (14.1)~(14.3) must vanish. Therefore, we
impose the following conditions:

2iwy D1 By + D3 A, =0 (15.1)
2iw, D1 B, + D}A, =0 (15.2)
2iwy D By + D%Ak =0 (15.3)

Equations (15.1)—(15.3) are integrated while having no
explicit dependence on 75 to obtain

B, = —D]A (16.1)
Za)m

B, = DA, (16.2)
Za)n

B, = —DlAk (16.3)
2wy

To obtain the modulation equations, we use the method
of reconstitution [38] to combine the solvability condi-
tions at each order defined by

dA;
L DA + eXDaA; (17)

At this stage, the value of ¢ is set to unity, and we use
the polar transformation

1 .
Ap (1) = Eamel(ﬂ”‘+0”) (18.1)
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1.
A (1) = Eanel(ﬁn-i-(tfl—tfz)l) (18.2)

1.
Ax (1) = Eakel(ﬁn+(201—202—03)f) (18.3)

Combining the solvability conditions at each order
Eqgs. (10.1)—(10.3) and (14.1)—(14.3) into Eq. (17) and
using Egs. (16.1)—(16.3) with the polar transformation
Egs. (18.1)—(18.3) and separating the real and imagi-
nary parts yield

da,,

dr

W,
= —uam + cos (Bm)

20,
<Fm1Kkm1

Fu,
——=sin (Bn) + | 5
m

W
F, K Fox
e L )aksm(ﬂk—ﬂm)
8wy wy; W
(Fm  Fy Kimy

2wy, Sw%wm

N (an. ~
2w,
R )
——"2agay sin (Bx — Bm — Bn)
4wy,

Kkm1 Rmz
3203,

) am sin (2fm)

Fie, Kieny

8w,%a)m

) ay sin (B + Bn)

Kknl Rl’lz
32wmw?

Kink .
e ) agay sin (B — Bn)
8 m

+ —akam sin (Br — 28m)

Rk3 Kkm1 nnm1
32a)k W 8w,

) ama? sin2(Bw — Bn))

Rk3 Kknl nnny
32wka)m 8w,

) a’sin (B — Bn)

n Ry Kiny— Riy Kim,
32a)ka)m 32a)kwm
K
4 ’"’"'” — ) aZan sin (B — Pu)
8wy,
MKkml lLKkml
Bwrwp,
u
+ ) aiam cos (B — 2m)
MKknl 1K,
8wy, wy, kaa)m
UR
+5 )akan cos (B — B — ) (19.1)
Wl
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dg

Aam

_ Fm| Kkm1

-(

Kim, R K
+ km12 k1 0,3,, . < mnny
32w wn 8w,

mo_ _HEm, sin (B) — Fm cos (Bm)

dt 20),2" Wm
(ka _ Fn|Kkn1

2

Wm Bwpmw;

803 > ak cos (B — Bm)

2

K
IL_ toi)a, — mmm;
2w 8w

Kin R
+—knl kz)a,%am

32w,%wm
Kkmlq Kknl Rnl
8wy, 32wy w?

l

Kim R
+ oy Sy ) a,%am

320),3"
F, Fi, K
4|2 w am €08 (2Bm)
2w, 8w wm
F, Fi., K
+ | S — SO2E ) g cos (B + Ba)
2w, 8wj wm
e axay cos (B — Bm — Bu)
Wm
. Kknlq Kkm an
8wy, 32wma),%
Kim R
3';’—0)’3':"2> agay cos (B — Pn)

R,

{
{
{

Kiom, Ri,
32a),%a)m

axamy cos (B — 2Bm)
Q.

m
Knnml Kkmlez 2
+ = | apna; cos (2 —
S 20om m@y €08 (2 (B — Bn))

Knnm Kkn| Rk3
8wy, 32a)1%a)m

) a3 cos (B — Bn)

Kin, Ry
32a),%a)m

Kmmnl Kmnm1

8w, 8wy,

) a2 ay cos (B — Bn)

<PLKkm1 _ ,ukaml

8w31 Swrwm
uR .

o ) aam sin (B — 2m)
8wz,

+ <H/Kkn] . MKknl

8wnw, Bwrwy

uR .
';2> akan sin (B — Pm — Bn) (19.2)
8wy,
da uwk,
1 t" = —pap + 20)%1 cos (Bn)
Fm . leskrm FmSknl
o sin (Bn) + ( 8wz, wn 8w

Fnk .
——) ag sin (B — Bn)
()

n

F, Fi S
+ (L’“ _ M) am sin (Bm + Bn)

2wy, Sa)lzwn
R _ F
+ —2aray sin (Br — 2B) + | —
4w, 2wy,
Fi. S,
—%) ay sin (2B,)
8wy wy

R . Sk
+ 4;1 At Sin (B — B — Bn) + <_m|

n Bwmwy,

1Sk uR
- “ ;1 axam cos(Br — Bm — Bn)
8w wy, 8w}
HSknl MSknl Man
+ — cos
( 8w?2  8wrw, 8wl Aitin 0P
Rk1 Skml Smmml 3 .
-2 + —
,Bn) ( 320)]%0)" Sa)n a,, s (,Bm ,Bn)

Rklsknl Smmm 2 .
+ + a; ay sin (2 —
(3260]%% o R 2 (Bmn — Bn))
Skml le Skmkl Skm Rn1 2 .
+ (326031@,1 T Ry T 3207 ) Um0

—/3 )+ szsknl _ Rk3Skm1 Smnnl
" 32a),%a),, 32(0,%(0,, 8wy,

+

. Snnm1
8wy,
dBy MFnl

) ama, sin (B — Bn) (19.3)

. Fy,
an—— = — sin (By) — — cos (Bn)
Wy

dr 2w

_<Fm1Skm1 Fnlsknl _ Fnk

8wz, wn 8w wn
+ (me . Fk] Skm1
2wy,

SwI%a)n
R F,
"2 aray cos (B — 2Bn) + | 7=
4w, 2wy

) ag cos (Bx — Bn)

) am €0S (B + Bn)

@ Springer



414

A.Z. Hajjaj et al.

Fi, S
— k'zk"' ) ay cos (28,)
Bwiwy
R Sk
— - agan cos (Bx — B — Bn) + (—’”
n 8wy wy
WSk WR :
——L ;l axap sin (B — Bm — Bn)
8w wy, 8wz
/'LSknl _ /'LSknl
8w? 8wy wy
l‘Lan Rk] Skm1

aray, sin -2 —
8w5>k" (=2 (32w,§wn

S
+ %) 08 (B — Bn)

Ry S, S
—( ok ’”’”"1>a3,,ancos(2(ﬁm—ﬂn>)

320),30),, 8w,

. le Skm1 Skmlq
32a),2n Wy 8wy,
Rn1 Skru
3203
Rk3 Skml Smnm
_ 5 +
32w wy, 8wy,

) agam cos (Bm — Bn)

Snnm1 sz Skn1
8w, 32a)1%w,,

. szks;kml +Smnm1 a,z,,an
32w wy, 8w,

- Rk3t§kn1 +Snnn1 as
32wy wy 8wy,

. (Rmzskim + Sknlq ansknl) 2

) amai cos (Bm — Bn)

02tw, | Swn | 3203 ) KN
2
tan (m P > (19.4)
2wy,
day wF Fy, .
—— = —pay + —— cos () — —- sin (Bx)
dt 2wy, Wk
M _ leTmm . Fn|Tnm a sin(,B
Wi Sa)ka),zn kawﬁ " k
F, F,,, T
o+ (B e
Wi Bwrwy,
Fn1 Tun

> an sin (B — Bn)

N 2
8wy

Ry, )
——=aman sin (B — Bm — Bn)
4wy,

@ Springer

MR, Uhnm 2
_ mrmm -2
+ ( 802 kawm> a, cos (Bx — 2Bm)

R T,
+ - ]; — Mo a,zlcos(,Bk —28,)
8wy, 8wk wp

Ry .
—mai sin (Bx — 2Bm)

Rk3 2 . /Lsz UWhm
_5 ) —

40)]( al’l sin (IBk ,371) + ( 8(1),% kawm

T,
- ) aman €08 (Be — Bm — Bn)

8w wy,

8wy 8wy
Rmz Toum le Tum an Tum

R} ol 3wgw?

( Tkmn Tknm

Rn1 Tun .
T35, 2 ) @kAman S (Bm — Bn) (19.5)
wyw;
dBk WFy, . Fi
@y = =5 sin (B0 — 1 cos (B

k
ka _ le Tmm
Wk 8w w2,

o, T,
-2 "';1) am €08 (Bx — Bm)
8wy

+< nk — Umytnm — ny n;)anCOS(,Bk_ﬂ")

n

Wk 8w, — Bwrw

R cos (B — B — )

4wy,

“lnm U R, 2 &

PEimm PR _2
(8a)kwm 8w? > i S0 (B = 2m)

T K Ry,
S8wrw, Sa)l,%

) a2 sin (B — 2B)

Ry
—@aé cos (B — 2Bm)

Ri; »
——=a; cos -2
doy (Bx —2Bu)
Wm J7
—_ + —_
8wrwy,  8wrwy,
_ 1Ry
Sa),%
_ Tkmn Tknm + Rmz Tmm Rm| Tnm
8wy 8wy 32a)ka)%1 32wkw,2n
an Tum Rn1 Tun
32a)ka),% 32a)ka),%

) aman sin (B — Bm — Bn)

) axamdy cos (B — Bn)



Theoretical and experimental investigations of the crossover phenomenon 415

2
ar <c73 — 201 + 207 — —)
2wy
. Timm + le Tum
8wr  32wpw?
Rannm 2 Tkk 3
> ) aka,, — ——a;
wyw; 8wy

Tienn
( 8wy *

an Tun 2
19.6
+ 32a)ka)%> e ( )

Equations (19.1)-(19.6) govern the amplitude and
phase modulation of each mode. The fixed points of
these equations are obtained by solving the right-hand
side using the arc length continuation method [39].
Then, the dynamic solution is expressed using Egs. (9)
and (11) as
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The stability of each fixed point is determined by first
expressing the modulation using the complex Cartesian
form detailed in “Appendix D.” Then, the eigenvalues
of the system Jacobian are used to assess stability.

3 Results and discussions

One should note that the partial electrode electro-
static actuation breaks the symmetry of forcing causing
hybridization of the first symmetric and antisymmetric
modes of the arch beam near crossing where the 1:1 and
2:1 internal resonances are observed [A. Z. Hajjaj, F. K.
Alfosail, N. Jaber, S. Ilyas, and M. I. Younis: Theoret-
ical and Experimental Investigations of the Crossover
Phenomenon in Micromachined Arch Resonator: Part
I—Linear Problem. Nonlinear Dynamics. Submitted
(2019)]. In addition, the quadratic nature of the exci-
tation causes direct excitation of the first and second
symmetric modes due to the high values of AC volt-
ages [12,23]. This makes the dynamic response more
complex, especially when combining 1:1 and 2:1 inter-
nal resonances.

The natural frequencies and the dynamic response of
the silicon arch beam under consideration are measured
using a stroboscopic video microscopy (a high-speed
camera) from Polytec [40]. The fast Fourier transform
(FFT) is used to measure the natural frequencies for dif-
ferent Vp, using ring down tests. The dynamic response
is measured by sweeping the excitation frequency for
various DC and AC electrostatic loads.

As shownin [A. Z. Hajjaj, F. K. Alfosail, N. Jaber, S.
Ilyas, and M. I. Younis: Theoretical and Experimental
Investigations of the Crossover Phenomenon in Micro-
machined Arch Resonator: Part I—Linear Problem.
Nonlinear Dynamics. Submitted (2019)], the first natu-
ral frequency, f1, increases as increasing the compres-
sive load induced by the applied electrothermal voltage
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while the first antisymmetric, f>, and the second sym-
metric, f3,natural frequencies decrease. Increasing fur-
ther the electrothermal voltage leads to the crossing of
the first symmetric frequency and first antisymmetric
frequency, which is necessary condition to activate the
1:1 internal resonance between both modes (Fig. 1a).
On the other hand, Fig. 1b shows that the ratio between
the second symmetric and first antisymmetric natural
frequencies remains equal to two for a wide range of
electrothermal voltage, V1, until crossing while the
first symmetric mode has a ratio around two at and
slightly after crossing. Hence, this may lead to the pos-
sible activation of simultaneous 2:1 and 1:1 internal
resonances among different modes.

To explore the dynamics of the arch beam around
crossing, we experimentally sweep the excitation fre-
quency around the first symmetric and antisymmetric
resonance frequencies for different AC excitation volt-
ages. The static DC load is kept constant at Vpc =
15 V. The electrothermal voltage is fixed to certain val-
ues before, on, and after crossing of the first symmetric
and antisymmetric natural frequencies. As sweeping
the frequency, we experimentally record the displace-
ment of the arch beam at the midpoint, x = //2, and
the quarter, x = [/4. One should mention that all the
experiments were conducted at atmospheric pressure
requiring high AC excitation amplitudes to drive the
arch beam nonlinearly.

3.1 At the quarter point: x = [//4

Experimentally at high AC voltages, the vibrational
amplitude responses near the first antisymmetric fre-
quency at the quarter of the arch beam, before crossing
for Vt, = 1.4 V,is splitinto two branches of two peaks
(Fig. 2a). At this level of electrothermal voltage, the
two branches of the response represent the direct exci-
tation of the first antisymmetric and symmetric modes
with no signs of 1:1 internal resonance interaction.
As the AC voltage is increased, we notice the emer-
gence of another response branch near f = 90kHz
suggesting a nonlinear interaction via 2:1 internal res-
onance between the first antisymmetric mode and the
second symmetric mode in addition to the direct exci-
tation of the second symmetric frequency leading to
a bistate solution. Numerically, we simulate, for the
same V1, = 1.4V, the dynamic response of the arch
beam for different electrostatic excitation forces using

@ Springer

the Galerkin method [A. Z. Hajjaj, F. K. Alfosail, N.
Jaber, S. Ilyas, and M. I. Younis: Theoretical and Exper-
imental Investigations of the Crossover Phenomenon in
Micromachined Arch Resonator: Part [—Linear Prob-
lem. Nonlinear Dynamics. Submitted (2019)], imple-
menting 4 modes (Fig. 2b) and MTS (Fig. 2c). The
Galerkin results in Fig. 2b show good agreement com-
pared to the experimental data in Fig. 2a. Also, the
results show that as increasing the excitation force, the
range of interaction between both contributed modes
in the 2:1 internal resonance broadens. The multiple
timescales simulations in Fig. 2¢ confirm these results
and also demonstrate the new branch caused by the 2:1
internal resonance between the second symmetric and
first antisymmetric modes without any contribution of
the first symmetric mode. This can be further confirmed
by examining the contribution of each mode generated
using MTS around the first antisymmetric frequency
(Fig. 2d). The first symmetric mode a; does not have
any 1:1 internal resonance that affects the total response
shown in Fig. 2c, while the second symmetric mode a3
contributes due to the 2:1 ratio with the first antisym-
metric mode ay, in addition to the direct excitation of
the second symmetric frequency from using high AC
voltage. One should mention that this combined effect
of the 2:1 internal resonance and the direct excitation
was investigated in [23] between the first two symmet-
ric modes of an arch microbeam. It was found that both
the nonlinear internal resonance and the direct excita-
tion have considerable impact on the response. Also, at
V1h = 1.4 V, no mode hybridization was shown even
for high effective DC bias voltages [A. Z. Hajjaj, F. K.
Alfosail, N. Jaber, S. Ilyas, and M. I. Younis: Theoret-
ical and Experimental Investigations of the Crossover
Phenomenon in Micromachined Arch Resonator: Part
I—Linear Problem. Nonlinear Dynamics. Submitted
(2019)]; hence, it does not affect the nonlinear cou-
pling among different modes.

The system undergoes a Hopf bifurcation as experi-
encing 2:1 internal resonance leading to a bistate stable
solution. The 2:1 internal resonance interaction disap-
pears through a saddle-node bifurcation. For high AC
voltages, the arch beam passes a Hopf bifurcation as
shown using the MTS method (Fig. 2¢). Drawing the
time history and fast Fourier transform (FFT) for the
case Vac = 80V at the upper branch (Fig. 2e), the
middle scatters (Fig. 2f), and the lower branch (Fig. 2g)
prove the strong contribution of the second symmetric
mode into the upper branch. Also, Fig. 2f suggests that
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Fig.1 Measured natural frequencies. a The variation of the ratio
between the first antisymmetric and the first symmetric natural
frequencies with the electrothermal voltage, V.. The inset shows
the variation of the first three natural frequencies of the arch beam
with V1. b The variation of the ratio between the second sym-

the system undergoes quasi-periodic motion as passing
from the upper branch to the lower branch dominated
by the first antisymmetric mode. Experimentally, the
stroboscopic camera was not able to detect any quasi-
periodic motion as experiencing 2:1 internal resonance.

Increasing the electrothermal voltage such that the
interaction is closer to the crossing zone V, =
1.9V, both first symmetric and antisymmetric modes
approach each other and start to hybridize [A. Z. Haj-
jaj, F. K. Alfosail, N. Jaber, S. Ilyas, and M. 1. You-
nis: Theoretical and Experimental Investigations of the
Crossover Phenomenon in Micromachined Arch Res-
onator: Part [—Linear Problem. Nonlinear Dynamics.
Submitted (2019)]. Experimentally, the response shows
a complex dynamic motion as increasing the AC exci-
tation voltages, as shown in Fig. 3a. The softening part
of the response combines the influence of each sym-
metric and antisymmetric modes due to the 1:1 and 2:1
internal resonances. Similarly, the hardening part of
the response is a contribution resulted from the second
symmetric mode via the 2:1 internal resonance with
the first antisymmetric mode. Numerically, we simu-
lated, using Galerkin and MTS, the arch response for
different AC excitation voltages (Fig. 3b—d) to con-
firm the experimental observations. For moderate AC
values, the motion of the arch beam near f = 83 kHz
merges into one mode solution around the first symmet-
ric mode. The high sensitivity to a small electrostatic
excitation and the mode coupling near crossing are

3.5-
o
£ 3.0
o
> 2.5-
c
[]
3 2.0
o
% 15
1.04 : : : : ’ ’
00 05 10 15 20 25 3.0
Vo (V)
(b)

metric and first symmetric and antisymmetric natural frequen-
cies with V. f1 and f3 denote the first and second symmetric
natural frequencies. f> indicates the first antisymmetric natural
frequency

extensively studied in the first part of this work [A. Z.
Hajjaj, F. K. Alfosail, N. Jaber, S. Ilyas, and M. 1. You-
nis: Theoretical and Experimental Investigations of the
Crossover Phenomenon in Micromachined Arch Res-
onator: Part [—Linear Problem. Nonlinear Dynamics.
Submitted (2019)]. As increasing more the AC excita-
tion voltages, the motion around the first antisymmetric
mode increases and a hardening-type response emerges
due to the contribution of the second symmetric mode
into the response caused by the 2:1 internal resonance.
The high contribution of the second symmetric mode is
confirmed in Fig. 3e. Plotting the time history and FFT
atdifferent frequencies located in the softening (Fig. 3f)
and hardening (Fig. 3g) bands for Vac = 120 V proves
the strong contribution of the second symmetric mode
via 2:1 internal resonance at the hardening band.

At Vn, = 2V, slightly after crossing where the
first symmetric and antisymmetric modes interchange
places but remain almost having same resonance
frequencies, both first symmetric and antisymmetric
modes hybridize as exceeding certain threshold of volt-
age excitation [A. Z. Hajjaj, F. K. Alfosail, N. Jaber, S.
Ilyas, and M. I. Younis: Theoretical and Experimental
Investigations of the Crossover Phenomenon in Micro-
machined Arch Resonator: Part I—Linear Problem.
Nonlinear Dynamics. Submitted (2019)]. Experimen-
tally, the response shows the merging of both modes
due to 1:1 internal resonance dominated by the first
symmetric mode demonstrating softening behavior for
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Fig. 2 a Experimentally measured frequency response curves
at the arch quarter point around the first symmetric and anti-
symmetric resonance frequencies at V, = 1.4V, Vpc =15V,
and for different AC voltages. b Simulated frequency response
curves at the quarter point, using the Galerkin method, around
the first symmetric and antisymmetric resonance frequencies at
Vmn = 1.4V, Vpc = 15V, and for different AC voltages. The
inset shows the linear response at the quarter point for Vy
1.4V, Vpc = 15V, and Vac = 15V. ¢ Comparison of the sim-
ulated, Galerkin and MTS, and experimental frequency response
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curves at the quarter point around the first symmetric and anti-
symmetric resonance frequencies at Vi, = 1.4V, Vpc =15V,
and Vac = 80 V. d Frequency response curves from MTS
showing the contribution of the first symmetric and antisym-
metric modes as well as the second symmetric mode into the
total response shown in (c). The continuous lines denote stable
solutions, while the dashed lines indicate unstable solutions. e—-g
Time history and FFT for the case V, = 1.4V, Vpc = 15V,
and Vac = 80V at 88 kHz, 90 kHz, and 91 kHz, respectively
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Fig.3 aExperimentally measured frequency response curves at
the arch quarter point around the first symmetric and antisymmet-
ric resonance frequencies at Vt, = 1.9V, Vpc = 15V, and for
different AC voltages. b, ¢ Simulated frequency response curves
at the quarter point, using Galerkin, around the first symmet-
ric and antisymmetric resonance frequencies at Vy, = 1.9V,
Vbc = 15V, and for different AC voltages. d Comparison of
the simulated, Galerkin and MTS, and experimental frequency
response curve at the quarter point around the first symmet-
ric and antisymmetric resonance frequencies at Vy, = 1.9V,
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Vpc = 15V, and Vac = 100 V. e Frequency response curves
from MTS showing the contribution of the first symmetric and
antisymmetric modes as well as the second symmetric mode
into the total response shown in (d). The continuous lines denote
the stable solutions, while the dashed lines denote the unstable
solutions. f, g Time history and FFT for the case V1, = 1.9V,
Vbc = 15V, and Vac = 120 V at 80 kHz (located at the soft-
ening band) and 87 kHz (located at the hardening band), respec-
tively
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Fig. 4 a Experimentally measured frequency response curves
at the arch quarter point around the first symmetric and anti-
symmetric resonance frequencies at Vr, = 2V, Vpc = 15V,
and for different AC voltages. b, ¢ Simulated frequency response
curves at the quarter point, using Galerkin, around the first sym-
metric and antisymmetric resonance frequencies at Vt, = 2V,
Vpc = 15V, and for different AC voltages. d, e Comparison
of simulated, Galerkin and MTS, and experimental frequency
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response curve at the quarter point around the first symmet-
ric and antisymmetric resonance frequencies at Vi, = 2V,
Vbe 15V, Vac = 90V, and V¢ 110 V, respectively.
f, g Frequency response curves from MTS showing the contri-
bution of the first symmetric and antisymmetric modes as well
as the second symmetric mode into the total response shown in
(d, e), respectively. The continuous lines denote stable solutions,
while the dashed lines indicate unstable solutions
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the arch beam, as shown in Fig. 4a. The response indi-
cates the emerging, experimentally and numerically,
of a hardening band at high AC excitation voltages
demonstrating a simultaneous 2:1 internal resonance
with the 1:1 internal resonance among the contributed
modes. A good agreement is observed in Fig. 4d, e
between the results obtained from MTS and the exper-
imental one. Also, the contribution of each amplitude
in Fig. 4f, g demonstrates the strengthening of the hard-
ening behavior due to the increase in the AC voltage.
The emergence of the hardening band in the response of
the first antisymmetric mode is a result of the 2:1 inter-
nal resonance interaction with the second symmetric
mode.

After crossing, both first symmetric and antisym-
metric modes exchange behaviors. Then, we experi-
mentally show, for Vp, = 2.6V and low AC voltages,
the arch beam experiences hardening as known for the
first antisymmetric mode. As increasing the AC volt-
ages, the first antisymmetric mode starts to exhibit soft-
ening in addition to mixed behavior due to the inter-
action with the first symmetric mode as exciting the
arch beam (Fig. 5a). Numerically, Fig. 5b—g confirms
the phenomena observed experimentally. Figure 5b—d,
f demonstrates that the arch beam has a mixed behavior
passing from hardening to softening behavior around
the first antisymmetric resonance frequency. Figure Se—
g proves that the first and second symmetric mode con-
tribute even far from crossing to the response of the first
antisymmetric mode. Good agreement is shown among
the experimental, the Galerkin, and MTS results.

3.2 At the midpoint: x =1[/2

Because the midpoint is known as a nodal point of the
first antisymmetric mode, it would be interesting to
monitor the arch behavior at that point. The nodal point
of the first antisymmetric mode is shifted due to the high
effective static electrostatic voltage. Also, we showed
in [A. Z. Hajjaj, F. K. Alfosail, N. Jaber, S. Ilyas, and
M. 1. Younis: Theoretical and Experimental Investiga-
tions of the Crossover Phenomenon in Micromachined
Arch Resonator: Part [—Linear Problem. Nonlinear
Dynamics. Submitted (2019)] that at crossing the mode
shapes of the first symmetric and antisymmetric modes
hybridize even for low static electrostatic voltage.

For moderate values of AC voltages (Fig. 6a, b), the
frequency sweeps, experimentally measured around

the first symmetric and antisymmetric resonance fre-
quencies at the midpoint, show that the first antisym-
metric frequency starts to be measurable at the mid-
point since the mode shapes have been changed due
to the break of symmetry. Figure 6a, b also shows
that the first antisymmetric frequency has softening
behavior after crossing instead of hardening behav-
ior.

Numerically, we simulate using the Galerkin method
the frequency response for different electrothermal
voltages before, at, and after crossing for different val-
ues of AC excitation voltages. Figure 6c¢, d shows that
even away from crossing, the arch beam shows high
amplitude of motion at the midpoint around the first
antisymmetric frequency due to the 2:1 internal reso-
nance with the second symmetric frequency. Getting
closer to the crossing zone, the amplitude of motion
at the midpoint seems to be equal to the motion at the
quarter point resulted from the mode shapes hybridiza-
tion (Fig. 6e-h). After crossing, for moderate values
of AC voltages, the nonlinear behavior of the first
antisymmetric frequency changes from hardening to
softening as shown in previous results in Fig. 5b,
c.

4 Conclusions

We investigated experimentally and theoretically the
1:1 internal resonance between the first symmet-
ric and antisymmetric modes of an electrothermally
tuned and electrostatically actuated arch MEMS res-
onator. A simultaneous 2:1 internal resonance was
also shown with the second symmetric mode as expe-
riencing the 1:1 internal resonance. A complex and
rich dynamic behavior was demonstrated. Theoreti-
cally, we studied the nonlinear dynamic response of
the arch beam using the Galerkin and multiple scales
methods. Good agreement among experimental and
theoretical results was shown. Other methods can be
used in future research to characterize the dynamic
response of the system, such as shooting and con-
tinuation techniques. Moreover, this work motivates
further research to exploit multiple and/or simultane-
ous types of internal resonances of arch resonators
for practical applications, such as sensors, frequency
stability, energy dissipation, and mechanical ampli-
fier.
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Fig.5 aExperimentally measured frequency response curves at
the quarter point around the first symmetric and antisymmetric
resonance frequencies at Vr, = 2.6 V, Vpc = 15V, and for
different AC voltages. b, ¢ Simulated frequency response curves
at the quarter point, using Galerkin, around the first symmet-
ric and antisymmetric resonance frequencies at Vy, = 2.6 'V,
Vbe 15V, and for different AC voltages. d, e Comparison
of simulated, Galerkin and MTS, and experimental frequency
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response curve at the quarter point around the first symmet-
ric and antisymmetric resonance frequencies at Vy, = 2.6 'V,
Vpc = 15V, Vac = 60V, and Vac = 80 V, respectively. f, g
Frequency response curves from MTS showing the contribution
of the first symmetric and antisymmetric modes as well as the
second symmetric mode into the total response shown in (d, e),
respectively. The continuous lines denote stable solutions, while
the dashed lines indicate unstable solutions



Theoretical and experimental investigations of the crossover phenomenon

423

Fig. 6 a, b Experimentally
measured frequency
response curves at the arch
midpoint around the first
symmetric and
antisymmetric resonance
frequencies for different
electrothermal voltages at
Vpbc = 15V, and

Vac =60V Vpc =80V,
respectively. ¢—j Simulated
frequency response curves
at the midpoint, using
Galerkin, around the first
symmetric and
antisymmetric resonance
frequencies at Vpc = 15V
and for different AC
voltages. ¢, d Vpp, = 1.4 V.
e fVih,=19V.g h
Vin=2V.1i,j

Vrh = 2.6 V. The inset in
(¢) shows the linear
response at the midpoint for
Vih=14V, Vpc =15V,
and Vpoc = 15V
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5 Appendix A. Definition of coefficients used in
Egs. (10.1)—(10.3)

To simplify the expressions, we use the following def-
inition to represent the integrals:

1

(A,B):/A(X)B(x) dx (A1)
0
. A2
w= 5 (A.2)
i
Gm (x)
Finy = a2VacVbe {m X (A3)
1
Fp, = a2VacVpc {% (A.4)
or (x)
F =— A.
h = geaic /(ws -1 A

Ry = 2001 (I (k. $m) (b wy)
+ I (ws, dm) (‘bmv ¢]/</> + I' (wy, dr) <¢mv ¢}Zl>)

1
brd2

(1 —wy)*
0

Ry = 201 (T (@, $n) (6, w))

+ 602 VpcEst (A.6)
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§1.4
2121
c
g 1.0
Q
g 03
& 061
a
b= 0.4
2 0.2
T R
— S 00 —————————1——
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Frequency (kHz)
(1))
+F(ws»¢n)(¢ma¢]/¢/)+F(ws,ﬁbk)(ﬁbmv(ﬁg))
+ 6 VbcEtron —¢k¢m On S dx (A7)
(1 — wy)

Rnl =2 (F (Pk, ¢m) (‘pn’ ws>
+ I (wy, ¢m>(¢n, o))+ I (wy, dx) (B, Bp))

¢k¢m¢n
| (- (1 —wy)?

Ry, =21 (T (¢x. ¢n> (@, wy)
+ I (wy, $n) (dn, &) + T (s, $) (¢, B1)))

+ 60t2 VpcEst ———dx (A.8)

) k2
+ 602 Vo [ T (A9)
R, = o1 (I (s ) (¢, W)
+2I (wy, ) (Bx. D))
2
+ 32 VbeEst [ %dx (A.10)

Ri, = 201 (I (@, dn) (1 wy)
+ I (wy, ¢n) ((bk on)+ T (W, dm) (dr. 0))

Drbm ¢n

+ 26 VDCESF m (A.11)
R, =ai (I (¢n,¢n>(¢k, wy)
+27I (wy, ¢n) (Px. 8)))
1
k2
_PkPn A.12
+ 3as Vpeett / 1= ) ( )
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6 Appendix B. Galerkin procedure

Here we explain the Galerkin procedure used to find
the particular solutions by solving the boundary value
problem in Egs. (12.1)—(12.7) defined by

1
Hlw] = H® — NH" — 2ayw;” /w;H’dx
0
20,V
_ 2V DCeff gy a)izH (B.1)

(1 —wy)?
We express the function H as a superposition of five
mode shapes f;(x) given by

n=>5
H=> g fix) (B.2)
i=1
where g; are coefficients to be solved for in the Galerkin
procedure. The f; (x) are the mode shapes of the straight
clamped—clamped beam. Then, the equation is reduced
via orthogonality of the mode shapes to a set of five
algebraic equations that are solved to obtain the value
of coefficients.

7 Appendix C. Definition of coefficient used in
Eqgs. (14.1)-(14.3)

To simplify the expressions, we use the definition in
(C.1) to represent the integrals in (C.2)—(C.34).
1

(A, B) = /A(x)B(x)dx (C.1)
0
1
Fik = —a2VacVpe de (C2)
(1 —wy)
0
1 2 / ¢1%1
F,, = ——aV ———dx C3
R VAT IRt (€
0
1 1 Pmd
Foun, = Y Bl C4
mny 2052 AC (1— ws)3 ( )
0
| brp
Fuie = a2VacVpe ki 3 (C5)
(1 — wy)
0
L2 o
Fp, = -V ——dx C.6
ny 20l2 AC /(;(1 _ws)?’ ( )

Kk, = 201 (I (D, Yem) (W, b )

+ T (b Vi) (W bm)

+T (W, Yiom) (DF . )
+2a1 (21 (Pk> dm) (D1 dm)
+ T (wy, Yik) (D dm)

+T (Gx, ) (B )
+2a1 (I (ws, @) (Virs dm)
+ T (wy. dm) (Vi bm))

1
bm ()% Yk
+ 60 V) — —dx
2 VDCEff (1 — wy)?

1
¢k¢mwkizdx
s (1 —wy)

Kink, = 201 (I (fx. Yxn) (W), )

+ I (¢ Yir) (W), )

+I (g, Yin) (D1 - b))

+ 201 (2T (. dn) (D1 dm)
+ I (ws, Vi) (@) Pm)

+I" (Gr. d1) (¢ b))

+ 201 (I (ws, ) (Vigs dm)
+ I (wy, o) (Vs dm))

+ (C7

1
¢m ¢n 1ﬁkk dx

+ 602 Vst (1 —w)?
0

1
¢k¢m¢kndx
0 (11— ws)4

Koy = 201 T (s Yo (W], )
+2a1 I (Wy, Yinm) (D)1, dm)
+31 T (G bm) (s dm)
+ 201 T (g, ) (Vs b ()

(C.8)

2 Vmm

dx C.9
(1 —wy)* 2

1
“+602 VDCESft /
0
Konnmy = 201 (I ($ms Yimn) (W] s dm)
+ T @ Yimm) (W], bm)
+ I (s, Yimn) (D, )
+2a1 (I (wy Yium) (D)) bm)
+ T (P> bm) (@) dm)
+ T (s, $n) (Vrs ém)
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+4a1 T (G, dn) (D bm) L &
+201 T (w, ¢m1) (Wrs bm) + / mdx (C.14)
~+60 VDCEfr ( w—wn“zdx) Knnny = 2011 (Pn, Yun) (w!, ¢m>
(=) 201 T (W, Yiun) (B bm)
! ¢ v +2a1 I" (wy, ¢n)<¢y/lln’ ¢m>
+ 602 VDCEft (1 "i u:in)“d (C.10) 31T (G, bn) (¢// ¢m)
4602 VDCEf ( % x) (C.15)
Kynm, = 2y (I_' (Pn> Yrmn) (wg, ¢m> :
+ I (s, Yun) (D)) bm) Kimy =201 (I (¢, $m) (W), dm)
+ T (P ¢n) (D)) b)) + T (ws, o) (¢4, bm)
+ a1 T (pu, $n) (D D) + I (ws, $1) (b bm))
+2a1 I" (wy, ¢n) w;p;n Om 1 2
< ) + 602 VDCESt %métdx (C.16)
¢m¢n¢mn 0 (1 = wy)
+60a2 VpCEfr 7dx (C.11) §
p 4= ws) Kiny = 21 (T (@, $0) (w], )
Kkml = 20 (F (k> Pm) (w;/, ¢m> + " (ws, ¢n) (d’]lc/, (bm)
+ T (ws, $) (¢ D) + T (wy, D) (7,6m)) + I (ws. ¢1) (67 b))
1
¢k¢m (bkd)md)n
+ 602 VDCESf ( = ws)4d ) (C.12) + 602 VDCESt ( = ws)4 ) (C.17)
Kmmnl = 20 (F (D> Yimn) <ws s ¢m> SkMkl = 2« (F (Pk> Yiem) <ws s ¢n>
+F(wS’ wmn)<¢;r/p (bm) +F(¢mv wkk) (UJ;/, ¢n>
+T (G- dn) (@7, D)) + I (ws, Yiom) (¢4 > #n))
+ a1l (bms ) (D) bm) +2a1 (I (ws, Yix) (B Dn)
201 T (W, ) (Vo> Bim) + T (P 96) (D )
1 +I" (wy, ¢m) <¢Ii/k’ ¢n>)
+ 602 VbCESt ( ;ﬁml/fmn4 x) (C.13) +2a1 (I (ws, ¢ (Vi dn)
o =) +20 (g, d) (0] 94))
Kinnny = 201 (F (Dms Yan) (wg, ¢m)
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+ T (bns Yrmn) (w5, i)

+ T (ws, Yun) (B )

+ 201 (T (. dn) (&1, &)
+ I (ws, Yomn) () dm)

+ T (s, @) (Vs )

+ 21 (I (s dm) (V- Dim)
+ 20 (- ) (&) D))

. ¢m¢n¢mn
+ 602 VDCEst (( 1= ws)4 )

1
¢m¢n1ﬂkk
+ 6012 Vst (( / 1= w0y )

1
¢k¢n1/fkm
+ (O mdx)) (C.18)

Sknky = 221 (T (dk, Yin) (W), bn)

+ I (fn, Vi) (wy, )

+ I (W, Ykn) (07 Pn))

+ 201 (I (wy, Yik) (@) dn)
+ T (. d1) (¢ ¢n)
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+ I (wy, ¢n) (‘/flgk’ ¢”>)
+ 201 (I (wy, $) (Vi &n)
F20 (ks ¢n) (0, b))

1
2
+ 602 VDCESf ( (/ (1¢il{11){]:)4
. ( [ e

‘)

Smmmy = 201 (I (@ms Yimm) (w5, @)
+ I (s, Youm) (&1 &n)
+ I (Ws. ¢m) (Vo 1))
+ 321 (P bm) (@ Pn)

(1 —wy*

¢k¢n1/fkn
(1 —wp*

~+60; VpcEtr (

Smnmy = 201 (I (P Ynn) (W bn)

+ T (Pn, Yium) (W] + )

+ T (ws, Ynn) (D b))
+2a1 (I (W, Yium) (@) dn)
+ T (s bm) (D). Pn)

+ T (s, @) (V- b))

+ 201 (I (s dm) (Y &n)
+ 2T (¢ dn) (D Dn))

1
=+ 602 VpeEst ( ( ¢ Y

(1 —wp*
+( Ay

(1 —wy)* ))

Sunmy = 2001 (I (@, Vi) (w5, ¢n)
+ I (Ws, Yimn) (¢} Dn)
+ I (wy, ) (Yny b0))
a1 (2T (. ¢n) (¢ bn)
+ T ($n. dn) (&), &n))

2 Vmn

(1 —wy)*

1
“+602 VDCESft (

Skmy = 201 (I" (@, ) (W), dn)
+ I (ws, Pm) (¢]/¢/’ ¢n>
+ I (ws, ¢1) (D)) )

dx)

‘)

‘)

1
-+ 602 VDCESt ( PP

— 2
/ (1_ws)4dx) (C.23)

Smmn, = 201 (F (Dms Ymn) (w;/, ¢n>

(C.19)

x) (C.20)

+ T (s, Ynn) (D b)
+ T (Gm. dn) (D) b))

+ a1 (I (@m. dm) (D))
+2I (wy, dm) (Vs 1))

1
O PuVmn
(1 - ws)4
0

+60> VDCESf ( dx) (C.24)
Smnny = 201 (I ($m» Yun) (W, )

+ T (n. Ymn) (w5, fn)

+ T (wy. Yun) (@ Hn))

+ 201 (T (@ &) (&1, &n)

+ T (wy, Yimn) (0} )

+ T (wy. ¢u) (Y Bn))

+ 201 (I (s, ¢m) (V- D)

+ 20 (. $n) (&) D))

1
2
+ 602 VDCEst ( ( G Y
0

(1 —wy)*
+ ( ¢m ¢n 11011}’1

‘)

(C.25)

(1 —wy)* x))

Snnny = 2001 (F (@n, Yaun) <w;/a ¢n>

(C.21)

Skn1 =

(C.22)

+ I (wg, Yun) (4’;1/’ ¢”)
+ I (s, ¢n) (Vs b))
+3a1 T (. ) (87, 8n)

2 Vnn
(1 —wy)*

dx ) (C.26)

1
~+602 VpeEst (

201 (I (pk. dn) (wy . dn)
+ I (ws, ¢n) ((151/(/7 ¢n)
+ I (ws, ) (¢}, dn))

P12

(1 —wy)*

1
+ 602 VpCEst ( dx ) (C.27)
0

Tom = 201 (I (s dm) (w), dx)

+ 21 (ws, dm) (Pl dx))

@ Springer



428 A.Z. Hajjaj et al.

Lo 52 Tinm = 2001 (I (¢k, Ymn) (W} k)
oo Vocer | | madr (C.28) + T G, i) (], )
o + T (g, V) (0] 1))
Tom = 2+<11F((F <¢Z’;ﬁ<n;/fw;’)¢k) +201 (I (bos d) 67 %)
+1‘(Zs’ ¢")(¢n/1/;> ;) + I (wy, Yin) (D 1)
O k + I (pk. ) (D). Pk))
e +2a1 (I (. $m) (87, )
+ 6a) Vi —dx C.29
o2 VDCEst (0 (1 — wy)? ) ( ) + I (wy, dm) (Vi Pk

+ I (wy, ¢ (Vi 1))

Tun = 20 (F (Pns Pn) (wgv d)k) 1 GkPmVin
20 (wy, ) (], d1)) - 6a2 Vocesr 1= wyt
O ‘

1
D} !
+60, V, . n__d C.30 2
%2 VDCER (O (1 —wy) x) (€30 + ( GicYmn dx)) (C33)

(1 —wy)*
Tirr = 201 (T (. Y (wy, i) 0 ;
4+r (¢k, sz) (w;/, ¢k) Timn = 20 (F (&K, Yimn) g/ws > ¢k>
1 s, 90 (9] 94) T @ ) 05

+ 201 (I (wy, Y, (07 k) +F(wsv¢mn)(¢l/</v¢/i(>)
+ T (s, 1) (Vi ) +2a1 (I (P bn) (1> Dx)

+ T (ws, ¢0) (Vi - #1)) + T (P $n) (D> D)

+3ai I (. ) (dF, x) ——:Zl;(u()} Z:(m)(;(ﬁ;(;f)zp)
1 ks Pm no k

1 2
6(( M) 1 e ) [ 1)
o (mw) + T (ws, 1) (W1, B1))
1 2 1
RO can ¢ b Voen bibitin
a- wy)? | A —wy)
Timm = 201 (F (ks Yimm) (wg, ¢k> ! ¢]%Wmn
T @) (0] L - (0

+ I (s, Yimm) (&7 D))
+ 201 (I (P bm) (D1 - 1)
+ I (W, Ym) (- 1)

Tinn = 201 (T (¢, V) (w5, %)
+ I (@n. Yn) (w), )
+T (wy, $1) (Vo P)) + 1 (ws, Yun) (87 b))
201 (I (wy, ¢m) (Wins 1) + 201 (T (¢, bn) (01, dx)
+ 21 (P D) (¢ H1)) + I (ws, Yin) (&7 D)
) + I (ws, ¢1) (Vs P))
d

1
+ 602 VpeEe (( qzk¢mwkﬁ x + 201 (I (s, dn) (Vi Pk)
p 7w F2T (i ) (8] )

1 1
OFVmm Dk n Vin
+ (0 (l’iws)4dx)) (C.32) + 602 VDCEst ((O T w? ws)4dx)
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b7 Vnn

+ P A
(1 —wy)*
0

(C.35)

8 Appendix D. Cartesian form of the modulation
equations Egs. (19.1)-(19.6)

To express the modulation equation in complex Carte-

sian form, we use the complex amplitude definition dgf
given by
1 . i
Ap = E(pm —1iqm) e’ (D.1)
1 . iAot
AnZE(Pn_l%'l)e (D.Z)
1 . ir3t
A = 5 (pr—1qx)e (D-3)

Equations (D.1)—(D.3) are substituted in Egs. (10.1)—
(10.3) and Egs. (14.1)—-(14.3), and using Egs. (16.1)-
(16.3) with the method of reconstitution defined by
Eq. (17) while separating the imaginary and real parts
yields
dpm

dr = —MUPm

Fy, K u? F,
+ 127”” — 5 — 01— . dm
kawm 2w 2w

+ (Fleknl _ me)q //-le

8w? wm 2w, 202,

ka Fanknl leKkml
+ om Swmw? 8w}
m mt@n m
Kmmnl Kknl Rk|
— + [ ——
( 4o, l6a)]%a)m Pndm Pm
N«Kkml /Jkaml /”“le
+ - +
802 Sorom | 8 (PkPm + qrdm)
nK “K UR
+ o ';” (PkPn + Qkdn)
8w, wy, Swrwp, 8w

8wy, 8wy, 32a)]%a)m 32w,%a)m "

_ (Kmnnl + Knnml + Kkankz + Kkmle3>qm 2

Knnml Kkm1 qu
4+ —=
4oy l6w,§wm Prcn Pm

+ Kmmn] Kmnml Kkm Rkl Kkml sz
8wy, 8w, 32w]%a)m 320),%60,,,

nm

+ Knnml _ Kmnn] _ Kkn]sz Kkm]Rk3 2
8wy, 8wy, 32a),%wm 32w,%wm

R,
+ —— (Pkgm — Gk Pm)
4wy,

Kkmkl Kkannl KkmlRm|
8wy, 32w, a)% 32w§n

Kk Ry, (
mmm| m 1 3 2

+ )
( 32a)k Om ) %n pm dm

K Kin, R Kim, R
_(qnplz_i_qlgqn)( knky + kny £ny + km mz)

‘]mPk + QkfIm) (

8w 32wmw% 326{)’371
R
+ 4 - (Pkqn — Pnqr) (D.4)
W
2
1 F, Fr, Ky
=—pgn+|5—+01— 7=+ —5" ) pu
2wy, 2wy, 8w wm
+ Fklsznl 7 an] Pu + le
8wi wm 2w, -
+ LK’";‘ _ B LK;W
8wmw (o™ 8w
le ( . )
4 PkPm 4w Gk qn
MKkn] _ MK]‘”I _ IU/Rmz ( B )
Swrwp 8w wp 8a)r2n Pkdn — Pnqk
MKkml MKkml /LRm]
+ - - J—
<8wkwm 8w2, 802, (PrGm — Gk pm)
K Kiom, Rk
+ nnm| + # Dt
4o 16wj
Kknl sz Kkml sz 2 )
+ + ( i )
(32(1)%(1)," 320)]%&)’" Py Pm qnPm
Kknl Rk[ Kmmnl ( 2 2)
i (32wlzwm * 8w PrnPm Pndm
Kinnn, Knnm, < 2 2 )
- < 80 8, ) \PaPm = Gapm
Kmnml Kkm] sz > 2
+ Zkmy Tky ( i )
( 8wy, 32w,%wm PnPp T Pndp
Kmmml Kkml Rkl 3 )
+ 4 —km Ty ( i )
( Bwm 32&)]%(0,” P T G Pm
Kmmn] Kkm Rkl
+ 4+ —L
( day, 16w]%wm qmqn Pm
KnnnI Kkn] sz 3 5
+ 4 —fm s ( n )
( 8w, 32‘0136% Pn 4y Pn

+ Kkmk1 Kkannl Kkmlle
8wy, 32w, a)% 32(1)3”

(pm P+ pmf)

+ Kknkl Kkm an Kkml Rmz
8wy, 32w, a),% 32a),3n

(pup? + padt) (D.5)
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dpn _
dr —HPn + ,U’an H/Sknl MSkn]
82  Swpwn | 82 (Pngk — Pk4n)
+ Fk1 Sknl /1.2 Fn2 n n
St Pl (R St i
e n wn Soron | Sy @k Pm — PkGm)
n
Fkl Skml Enn] Rn
* (8w,fwn T 2w, | +o - (Ppm + dkdm)
F,
4 (B _ Sk Fy Sty f(pkanquqn)
Wy 8w2 wy, 8w 4o,
+ <Man - MSknl ,LLSk,H ( n T szskml mnml (IJ i )
ga),ZI 8wy wn Sw% Pk Pn + qkqn) 32a)k a)n 8wy, nPm T Pndpm
URy HSkm WSk,
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where the values of A1, Ay, and A3 are A = o1, Ao = 01 — 02,
and A3 = 201 — 207 — 03.
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