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Abstract Intense interest has been expressed in high-
codimensional bifurcations and the nonlinear interac-
tions between unstable modes. Nonlinear interactions
betweenoscillatorymodes canproducenumerous com-
plex motions. Such motions are caused by the double
Hopf bifurcation. A cantilevered pipe conveying fluid
is a typical non-conservative continuous system.When
theflowvelocity exceeds a critical value, a certainmode
becomes unstable due toHopf bifurcationwhich can be
caused by the non-orthogonality of the eigenfunctions.
Linear stability analyses have also revealed that another
mode can experience an oscillatory instability as the
flow velocity is increased further. Therefore, nonlin-
ear interactions between two unstable modes become a
problem. We focus on the double Hopf bifurcation of a
pipe conveying fluid and investigate the nonlinear inter-
actions between unstable second and third modes. We
derive the amplitude equations governing the time evo-
lution of the amplitudes of two unstable modes from a
nonlinear nonself-adjoint partial differential equation
and its boundary conditions. The theoretical results
show that the self-excited planar pipe vibration can be
produced either in the second or the thirdmode in a cer-
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tain range of flow velocity, whereas the mixed-modal
self-excited vibration is inhibited. Experiments were
also conducted to verify the theoretical results. The the-
oretical results give a qualitatively good account of the
typical features of double Hopf interactions in experi-
ments.
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fluid · Nonlinear stability · Bifurcation

1 Introduction

Intense interest has been expressed in high-codimen-
sional bifurcations. In non-conservative autonomous
systems, nonlinear interactions between oscillatory
modes can produce numerous complex motions. Such
motions are caused by the double Hopf bifurcation
[1,2]. The double Hopf bifurcation is a codimension
two bifurcation. At the bifurcation point, the linearized
system has two pairs of eigenvalues ± iωm and ± iωn.

Chamara [3] theoretically investigated the double
Hopf bifurcation of two airfoils elastically supported
in a two-dimensional fluid flow. Each airfoil has two
degrees of freedom (pitch and plunge), and the two
airfoils are coupled only through the fluid. Shaw [4]
theoretically investigated flexural vibrations of a rotat-
ing shaft taking into account internal damping. The
reduced system obtained by Galerkin’s method sug-
gests the existence of a double Hopf bifurcation. They
studied the qualitative behavior of the interactions of
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two unstable modes using the method of center mani-
fold theory.

Such motions appear to widely exist in non-
conservative continuous systems, which are subjected
to the circulatory forces. We consider the self-excited
pipe vibration as a typical example of self-excited
vibrationswhich canbe causedby thenon-orthogonality
of the eigenfunctions. Pipes conveying fluid have
attracted interest because (i) they exhibit numerous
complex motions, and (ii) they have emerged as a
vehicle to test modern dynamical theory [5]. It is also
well known that the system realizes self-excited lateral
vibration of a beam subjected to the follower force.
Moreover, experiments can be easily conducted to ver-
ify the theoretical results. Copeland and Moon [6]
experimentally investigated the effect of an attached
endmass on the post-flutter bifurcation phenomena and
reported various three-dimensional motions. It is well
known that the attached end mass enriches the dynam-
ics of the pipe conveying fluid.

High-codimensional bifurcations are also attract-
ing a great deal of attention in pipes. For cantilevered
pipes with a spring support, Jin and Zou [7] focused
on the doubly degenerate point, where coupled flutter
and divergence bifurcations occur. In addition, three-
dimensional motions of a cantilevered pipe that has
rotational symmetry about the vertical axis have been
an interesting phenomenon from the view-point of non-
linear dynamics [8,9]. When the flow velocity reaches
the critical value, the linearized system has a double
pair of complex conjugate eigenvalues ωm = ωn. The
bifurcating three-dimensional motions are described
with two amplitude equations and one phase equa-
tion. Moreover, Bajaj [10] investigated the symmetry-
breaking effects on three-dimensional motions.

Another question is whether double Hopf bifurca-
tion (ωm �= ωn) can be produced or not. In the present
paper, we focus on the double Hopf bifurcation (ωm

�= ωn) of the pipe conveying fluid. As a first step to
investigate the double Hopf bifurcation in pipes, we
consider the planar pipe vibration. In the present paper,
we focus on the nonlinear interactions between unsta-
ble second and third modes. We first derive the two
complex amplitude equations for two unstable modes.
We conduct nonlinear analyses to clarify the nonlinear
interactions between two unstable modes. In particu-
lar, we conduct experiments involving a silicone rub-
ber pipe conveying water to qualitatively confirm the
nonlinear features predicted by theoretical analyses.

Fig. 1 Analytical model of planar self-excited pipe vibration

2 Basic equations

Webriefly give some basic definitions and assumptions
to derive the nonlinear governing equations presented
in Yoshizawa [11]. We consider the planar pipe vibra-
tion in the X − Y plane, as shown in Fig. 1. A pipe is
hung vertically under the influence of gravity g. The
upper end of the pipe is clamped, and the lower free
end is fitted with lumped mass M . The pipe conveys an
incompressible fluid of density ρ that discharges to the
atmosphere from the free end. The flow in the pipe is
assumed to be constant and one-dimensional, and the
flow velocity U relative to the pipe motion is assumed
to be parallel to the pipe centerline. In addition, the
pipe is assumed to be a flexible and inextensible beam
of length �, flexural rigidity E I , mass per unit lengthm,
and bore area S. The pipe is sufficiently long compared
with its diameter.

Let w be the displacement along the pipe center-
line in the Y direction. Displacement w is expressed
as a function of the curvilinear coordinate s along the
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pipe centerline and time t . Non-dimensionalization is
achieved using the overall length of the pipe � and the
characteristic time

√
(m + ρS)�4/E I . The equation of

pipe vibration in the X − Y plane can be written with
terms up to the third order of w∗ in non-dimensional
form [11]:
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ẇ

′2dsds

+1

2
ẅw
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where ˙( · ) and ( · )
′
denote the derivatives with

respect to t and s, respectively. On the right-hand side
of Eq. (1), the first through the ninth terms are associ-
ated with the inertial force, the tenth and the eleventh
terms are associatedwith theCoriolis force and the cen-
trifugal force, respectively, the twelfth through the fif-
teenth terms are associated with the gravitational force,
and the remaining terms are associated with the flexu-
ral restoring force. The asterisks indicating the dimen-
sionless variables are omitted in Eq. (1) and hereinafter.
The subscript expression w1 indicates w at s = 1. The
boundary conditions for the pipe vibration in the X−Y
plane are also expressed as follows:

s = 0 : w = 0, w
′ = 0,

s = 1 : w
′′ = 0,
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(2)

Four dimensionless parameters are involved in Eqs. (1)
and (2): flow velocity V = √

ρSl2/E IU , the ratio of
the lumped mass to the total mass α = M/(m + ρS)l,
the ratio of the fluid mass to the total mass β =
ρS/(m+ρS), and the ratio of the gravitational force to
the elastic force γ = (m+ρS)gl3/E I . In order to sys-
tematically derive the amplitude equations, we convert

the governing equations into vector form by defining
w = (w ẇ + 2

√
βVw

′
)t . The governing equation of

w is expressed in vector form as follows:

ẇ = Lw + N, (3)

where

L =
(−2

√
βV (·)′

1
L21 0

)
, N =

(
0
n

)
,

L21 = −(·)′′′′ + γ {(α + 1 − s)(·)′ }′ − V 2(·)′′
. (4)

The boundary conditions associated with w are as fol-
lows:

s = 0 : B1w = 0, s = 1 : B2ẇ = B3w − Nb, (5)

where

B1 =
(

1 0
(·)′

0

)
, B2 =

(
0 0

−2
√

βVα(·)′
α

)
,

B3 =
(

(·)′′
0

(·)′′′ − αγ (·)′
0

)

, Nb =
(
0
b

)
, (6)

and n and b in Eqs. (4) and (6) are expressed as non-
linear polynomials respect to w describing Eqs. (1)
and (2).

3 Linear stability and adjoint function

3.1 Unstable regions

In this section, the linear stability analysis of the lateral
vibration of a pipe with an endmass is briefly described
to determine the vibration modes and the linear com-
plex natural frequencies as a function of V . Moreover,
to estimate the existence of the double Hopf bifurca-
tions, parameter regionswhere twodistinct eigenmodes
simultaneously become unstable are examined.

We disregard the nonlinear terms in Eqs. (3) and (5)
in order to investigate the linear stability. After letting
w = qne

λnt and qn(s) = (Φn1(s) Φn2(s))t , (n =
1, 2, . . .), and substituting these terms into Eqs. (3)
and (5), we construct the eigenvalue problems. Cal-
culations of the linear eigenvalues and eigenmodes for
the lowest three modes, which are described in a power
series of s that satisfies the governing equation and
the boundary conditions, are conducted. The nth eigen-
value λn, being the root of the complex characteristic
equation, which is symbolically described by f (λn;
V, α, β, γ ) = 0, can be found numerically. Here, λn
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Fig. 2 Linear stability
(β = 0.25 and γ = 32.8). a
Eigenvalues λn as a function
of the flow velocity V for
the lowest three modes
(α = 0.3), and b unstable
regions on α − V plane: (I)
second mode is unstable
(ω2i < 0), (II) third mode is
unstable (ω3i < 0), and (III)
second and third modes are
unstable (ω2i < 0, ω3i < 0) 0 20 40 60
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is equal to i(ωnr + iωni), where ωnr is the natural fre-
quency and ωni corresponds to the damping ratio.

In the case of α = 0.3, β = 0.25 and γ = 32.8, ωnr

and ωni (n = 1, 2, 3) are shown as a function of V
in Fig. 2a. The first mode is stable because ω1i > 0.
When V increases, ω2i becomes negative at V = 5.05,
and the system becomes unstable by Hopf bifurcation.
Above V = 5.25, ω3i also becomes negative. Then,
another Hopf bifurcation occurs. For 8.43 < V, ω2i

becomes positive again. Therefore, for 5.25 < V <

8.43, both ω2i and ω3i are negative and the Hopf–Hopf
interactions become a problem. The given parameter
values used in the numerical examples henceforward
are equal to the experimental values in Sect. 5.

We then calculate the effect of additional mass α

on the unstable regions for the self-excited vibrations.
Figure 2b shows the unstable regions on the α-V plane.
The area enclosed by the solid line indicates the region
in which ω2i is negative, and the area above the dash–
dotted line indicates the region where ω3i is negative.
The unstable region can be divided into three regions:
(I) ω2i < 0, ω3i > 0, (II) ω2i > 0, ω3i < 0, and (III)
ω2i < 0,ω3i < 0. At the points where the solid line and
the dash–dotted line intersect, the second and the third
modes become unstable simultaneously and the system
experiences double Hopf bifurcation. Figure 2b shows
that the second and the third modes become unstable
almost simultaneously for a certain range of parame-
ters.

3.2 Adjoint function

The motions of the pipe are governed by the nonself-
adjoint partial differential equation and the boundary

conditions. Then, the eigenfunctions in the pipe do not
belong to the system of orthogonal functions. There-
fore, in order to capture the evolution of thefinite ampli-
tudes, we need to project the system nonlinearity to
the unstable eigenspaces using the adjoint functions q∗

n
= (ψn1 ψn2)

t (n = 1, 2, 3, . . .). The adjoint functions
q∗
n (n = 1, 2, 3, . . .) are described as follows:

λn

(
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)
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(
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)
, (7)

where
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)
.
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′
2n = 0,
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′′
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ψ
′′′
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√
βVψ1n + αγψ

′
2n − V 2ψ

′
2n + αλnψ1n, (8)

where L∗
12 = −(·)′′′′ + γ

{
(α + 1 − s) (·)′}′

− V 2(·)′′
.

We also calculate the adjoint function q∗, which is
described in a power series of s that satisfies Eqs. (7)
and (8).

4 Nonlinear interactions between two unstable
modes

4.1 Amplitude equations

We can express the solution space Z as Z = X ⊕ M.
Then, X is spanned by two unstable eigenvectors q2
and q3, and M is the complementary subspace of X.
Therefore, w is expressed as follows:

w = C2q2 + C3q3 + y + c.c., (9)
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where y is the element ofM and c.c. denotes the com-
plex conjugate of the preceding terms. In addition, C2

is the complex amplitude of vibration in the second
mode, and C3 is that in the third mode.

As in the previous study [12], using the adjoint func-
tion q2 = (ψ21, ψ22)

t and the projection Px =<

x, q∗
2 >= {∫ 1

0 x ·q∗
2ds+αx(1) ·q∗

2(1)−2
√

βVαx
′
1(1)

ψ22(1)}q2, where x = (x1, x2)t and (·) indicates the
inner product, we can project the nonlinear governing
equation on the eigenspace spanned by q2. Producing
the terms proportional to eiω2r t from the projected gov-
erning equation, the following evolutional amplitude
equation can be obtained.

Ȧ = −ω2iA + ξ1A
2A + ξ2ABB, (10)

where C2 = Aeiω2r t . The evolutional amplitude equa-
tion of complex amplitude B can be obtained in the
manner described above:

Ḃ = −ω3iB + ξ3B
2B + ξ4BAA, (11)

where C3 = Beiω3r t and ξn = ξnr + iξni (n = 1, . . . 4)
in Eqs. (10) and (11) are the complex values determined
by α, β, γ and V . Letting A = a exp(iφ)/2 and B =
b exp(iψ)/2 in Eqs. (10) and (11), where a, b, φ, and
ψ are real, and separating the real and imaginary parts,
we obtain

ȧ =
(

−ω2i + ξ1r

4
a2 + ξ2r

4
b2

)
a, (12)

ḃ =
(

−ω3i + ξ3r

4
b2 + ξ4r

4
a2

)
b, (13)

aφ̇ =
(

ξ1i

4
a2 + ξ2i

4
b2

)
a, (14)

bψ̇ =
(

ξ3i

4
b2 + ξ4i

4
a2

)
b. (15)

Since ω3r/ω2r is irrational, the equations of the
amplitudes and the phases are not coupled. Therefore,
in order to study the bifurcating pipemotions, it is suffi-
cient to consider onlyEqs. (12) and (13). Equations (12)
and (13) are in the same form as a normal form of the
pure imaginary pairs of eigenvalues without resonance
[13]. Equations (14) and (15) give the nonlinear cor-
rection values for the linear eigenfrequencies.

We explain the roles of the nonlinear terms in
Eq. (12). In the case of single-mode flutter (b = 0),
the steady-state amplitude of as is determined when the
first term on the right-hand side of this equation bal-
ances the second term. Within the limits of our exami-
nations, both ξ2r and ξ4r are negative. Then, in the case

of b �= 0, the third term acts as a damping term and sup-
presses a. Similar relationships are found in Eq. (13).

The horizontal displacement w of the pipe is
expressed as follows:

w = a|Φ21| cos (ω2rt + φ + � Φ21)

+ b|Φ31| cos (ω3rt + ψ + � Φ31) , (16)

where |Φn1| and � Φn1, (n = 2, 3) are the magnitude
and argument of Φn1, respectively.

4.2 Steady-state solutions of amplitude equations

The steady-state solutions as and bs are obtained by
substituting ȧ = ḃ = 0 into Eqs. (12) and (13).
We obtain the following four steady-state solutions
(as, bs): (i) trivial solution, (ii) vibration in the sec-
ond mode, (iii) vibration in the third mode, and (iv)
mixed-modal self-excited vibration.

(i) : (as, bs) = (0, 0) , (17)

(ii) : (as, bs) =
(
2
√

ω2i

ξ1r
, 0

)
, (18)

(iii) : (as, bs) =
(
0, 2

√
ω3i

ξ3r

)
, (19)

(iv) : (as, bs) =
(

2

√
(ω2iξ3r − ω3iξ2r)

(ξ1rξ3r − ξ2rξ4r)
,

2

√
(ω2iξ4r − ω3iξ1r)

(ξ2rξ4r − ξ1rξ3r)

)

. (20)

In order to determine the stability of these steady-
state solutions, we assume a = as + ad(t) and b =
bs + bd(t). Substituting these equations into Eqs. (12)
and (13) and keeping only the linear terms in ad and
bd, we obtain the governing equations of infinitesimal
disturbances ad and bd. We can determine the stability
of steady states as and bs by calculating the eigenvalues
of a coefficient matrix in the governing equations of ad
and bd.

We examine the effects of flow velocity V on the
steady-state solutions as and bs. The bifurcation dia-
grams of as and bs are shown in Fig. 3. In these fig-
ures, the solid and broken lines correspond to stable and
unstable steady-state solutions, respectively. The trivial
solution described by (i) is stable for V < Vcr = 5.05,
above which ω2i becomes negative. At V = Vcr, the
straight position of the pipe experiences a supercriti-
cal Hopf bifurcation. Consequently, the trivial solution
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Fig. 3 Bifurcation
diagrams of the steady-state
amplitudes as and bs under
the influence of double
Hopf bifurcation (α = 0.3,
β = 0.25 and γ = 32.8).
Solid line: stable
steady-state amplitudes,
broken line: unstable
steady-state amplitudes 5 6 7 8

0

1

2

5 6 7 8
0

1

2

3

4

(a) (b)

becomes unstable, and a new branch of steady-state
solutions, described by (ii) in Fig. 3, emerges from this
bifurcation point. The value of as on branch (ii) is iden-
tical to the amplitude of the self-excited vibration in
only the second mode. As V increases, the self-excited
vibration in the second mode (ii) continues, although
ω3i becomes negative above V = 5.25. As V increases
beyond V2 = 7.73, steady-state solutions (ii) become
unstable and as jumps from A to zero and bs from zero
to B. This steady-state solution corresponds to the self-
excited vibration in the third mode (iii). Here, V2 is the
upper limit of V at which the self-excited vibration in
the second mode (ii) occurs.

When V decreases slowly from a large value above
V2 = 7.73, bs follows the curve throughB andC.When
V decreases below V1 = 7.14, as jumps from zero to D
and bs decreases from C to zero. Here, V1 is the lower
limit of V atwhich the self-excited vibration in the third
mode (iii) occurs. For the further decrease in V , the
self-excited vibration in the secondmode (ii) continues
down to V = Vcr = 5.05. Therefore, in the case of
7.14 < V < 7.73, there are two stable steady-state
solutions (ii) and (iii). Moreover, the unstable solutions
described by (iv) in Fig. 3 appear in this region. The
velocity region 7.14 < V < 7.73 is much smaller than
the linear estimation 5.25 < V < 8.43.

The qualitative classification of Eqs. (12) and (13)
is given with all generality [13]. The pipe motions in
Fig. 3 can be classified as shown in Fig. 4a. Figure 4b
shows the variation of the nonlinear coefficients ξ2r and
ξ4r as a function of α at V = Vcr. According to the con-
siderations of Eqs. (12) and (13), the nonlinear terms
can be deduced to restrict the evolution of amplitudes
because of ξ2r < 0 and ξ4r < 0.

We numerically integrate Eqs. (12) and (13). Fig-
ure 5a–d show the flow around the steady-state solu-
tions. The • and ◦ denote the stable and unstable steady-

state solutions, respectively. The arrows indicate the
directions of time evolutions of a and b. When the flow
velocity V increases above the critical flow velocity
Vcr = 5.05, all flows settle at the only stable solu-
tion (ii) in Figs. 5a (V = 5.1) and b (V = 7.0)
after a sufficient time. Figure 5c shows the flow for
7.14 < V = 7.50 < 7.73. A non-trivial unstable solu-
tion indicates the unstable steady-state solution (iv).
Here, Es and Eu indicate the stable and unstable eigen-
vectors, respectively, for this non-trivial unstable solu-
tion. This point is a saddle point that separates regions
of the above-mentioned qualitatively differentmotions.
We numerically integrate Eqs. (12) and (13) by giving
two initial condition (i) t = 0 : a = 0.1, b = 0.1 and
(ii) t = 0 : a = 0.1, b = 0.2. Figure 5e and f shows
the time histories of a and b for V = 7.5. Figure 5e
shows that a converges to the steady-state amplitude
(ii) in Fig. 3, whereas the growth of b is suppressed
and b approaches zero. Figure 5f shows that b con-
verges to the steady-state amplitude (iii) in Fig. 3, and
a approaches zero. Therefore, the self-excited planar
pipe vibration may be produced either in the second
or the third mode, depending on the initial conditions.
WhenV increases further, all flows settle at the only sta-
ble solution (iii) in Fig. 5d (V = 7.8) after a sufficient
time.

Figure 6 shows the bifurcation set on theα−V plane.
The post-flutter region is divided into three regions: (I)
only steady-state solution (ii) is stable, (II) only steady-
state solution (iii) is stable, and (III) steady-state solu-
tions (ii) and (iii) are stable. The dash–dotted line indi-
cates the linear stability boundaries for the secondmode
(ω2i = 0). Two solid lines also indicate V1 over which
steady-state solution (iii) is stable and V2 below which
steady-state solution (ii) is stable. Compared with the
linear unstable region shown in Fig. 2b, region (III)
becomes much smaller because of the nonlinear modal
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Fig. 4 Classification of the
pipe motions in the ω2i-ω3i
plane. a Phase portraits in
the ω2i-ω3i plane, and b
Variation of the nonlinear
coefficients ξ2r and ξ4r as a
function of α at V = Vcr
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Fig. 5 Flow around the
steady-state solutions: a
V = 5.1, b V = 7.0, c
V = 7.5, and d V = 7.8.
All flows settle at stable
solution (ii) or (iii) in Fig. 3.
Here, Es and Eu represents
the stable and unstable
eigenvectors at non-trivial
unstable solution (iv). •:
stable steady-state solution,
◦: unstable steady-state
solution. Time histories of a
and b for V = 7.5: e
initiated (a, b) = (0.1, 0.1)
and f (0.1, 0.2)
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interactions. When α increases, self-excited vibrations
in the second mode become dominant and widely sup-
press the growth of self-excited vibrations in the third
mode.

5 Experiments

5.1 Experimental apparatus

We provide an outline of our experimental apparatus
and procedures. We used a silicone rubber pipe with an
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Fig. 6 Bifurcation set on theα-V plane: (I) self-excited vibration
in second mode, (II) in third mode and (III) in second mode
or in third mode. Dash–dotted lines indicate the linear stability
ω2i = 0

external diameter of 12 mm and an internal diameter of
7mm.Thepipe had a circular cross section, and the pipe
motion was not restricted by any constraints. The pipe
had an overall length of 470mm. Itwasmolded silicone
rubber to maintain the static equilibrium state to be as
straight as possible. The flowing fluid was water. The
pipe was clamped at the upper end and was fitted with
a mass M at the other end. The additional mass was a
brass ring with a mass of 16.3 g (α = 0.30).

The schematic experimental apparatus is shown in
Fig. 7. This experimental system was similar to that

used in a previous study [12]. The volume of flowing
water was continuously measured by a Coriolis flow
sensor (KEYENCE FD-SS20A). There are valves in
the watercourse that allowed the mean flow velocity to
be changed by the amount that the valve was opened.
The pipe motions in 3D space were sensed by a move-
ment analysis system in real time (OKK Inc., Quick
Mag System). The system enabled us to conduct non-
contact measurements of pipe motions in 3D space at a
rate of 120 times per second. Themeasurements of pipe
motions were continuously conducted, and the data
were stored in a computer. The lateral displacements
w of the pipe were sensed by the system at s = 329
mm (non-dimensional expression s∗ = 0.7).

The experimental parameter values (α = 0.3, β =
0.25, γ = 32.8), where the double Hopf bifurcation
was expected, were estimated through linear stability
analyses and preparatory experiments. The mean flow
velocity was slowly increased from 3.0 m/s in the fol-
lowing quasi-static manner. Once the amplitude of the
pipe vibration settled at a constant value, the image pro-
cessing system took 120 measured values per second
continuously for 140 s. After that, the mean flow veloc-
ity was slightly increased so that we could exclude the
irregular variations caused by disturbances as much as

Fig. 7 Experimental setup
and measurement system

0.0

0.1
0.2 0.3

0.4

0.5MPa

Pressure Gause

Pressure Gauge

Tank

Colioris Flow Sensor

Pump

Pipe Quick MAG 

Quick Mag System

PC

Reflector

CCD Camera FFT Analyzer

123



Nonlinear interactions between unstable oscillatory modes 2935

Fig. 8 Time histories of w

and its frequency spectrum:
a U = 4.9 m/s,
b U = 5.2 m/s,
c U = 5.3 m/s,
d U = 5.3 m/s,
e U = 5.0 m/s, and
f U = 4.9 m/s

-100

0

100

0

50

100

2
-100

0

100

0

50

100

-60

0

60

0

60

-60

0

60

0

60

0 1 2
-60

0

60

0

60

-100

0

100

0 1 2 0 2 4 6 8 10

0 1 0 2 4 6 8 10

0 1 2 0 2 4 6 8 10 0 1 2 0 2 8 10

0 2 8 10

0 1 2 0 2

4 6

4 6

4 6 8 10
0

50

100

(a)

(b)

(c)

(e)

(d)

(f)

possible. We repeated this procedure. After the flow
velocity reached 5.5 m/s, the flow velocity was slowly
decreased to 3.0 m/s in the same manner.

5.2 Experimental results

When U reached 3.6 m/s, the planar self-excited pipe
vibration in the secondmodeoccurred. The critical flow
velocity U = Ucr in the second mode was 3.6 m/s
(Vcr = 4.8). This value was 95% of the theoretical
value. Figure 8 shows a series of time histories of w

and its frequency spectrum. As shown in Fig. 8a, in
the case of U = 4.9 m/s, the distinguished frequency
component of w was 2.1 Hz, which corresponded to
the natural frequency of the second mode. The small
superharmonic component 6.2 Hz is three times the
distinguished frequency 2.1 Hz. Under different initial
conditions atU = 4.9m/s, we could not observe quali-
tatively different steady-state pipe vibrations. Figure 9a
shows a series of photographs showing the self-excited
pipe vibration in the second mode during a period at

U = 5.2m/s. The self-excited vibration in the second
mode was observed below U = 5.2m/s, as shown in
Fig. 8b. When U reached 5.3 m/s, the pipe vibration
changes suddenly to planar self-excited pipe vibration
in the thirdmode as shown in Fig. 8c. The distinguished
frequency component of w was 3.9 Hz, which corre-
sponded to the natural frequency of the third mode.
Over U = 5.3m/s, we could not observe qualitatively
different steady-state pipe vibrations under different
initial conditions.

When U decreased from 5.5 m/s, the self-excited
vibration in the third mode could be observed above
U = 5.0 m/s, as shown in Fig. 8d and e. Figure 9b
shows a series of photographs showing the self-excited
pipe vibration in the third mode during a period at
U = 5.2m/s. WhenU reached 4.9 m/s, the pipe vibra-
tion changes suddenly to planar self-excited pipe vibra-
tion in the second mode as shown in Fig. 8f. Therefore,
fromU = 5.0m/s (non-dimensional value V = 6.6) to
U = 5.2m/s (V = 6.9), self-excited vibrations in the
second or third modes could be produced. This region
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Fig. 9 Series of
photographs showing the
self-excited pipe vibration
at U = 5.2 m/s.
a Self-excited vibration in
the second mode, b
self-excited vibration in the
third mode

(a)

(b)

in the experiments was slightly smaller than the theo-
retical results (dimensionless form V2−V1 = 0.6). The
self-excited vibration in the second mode could not be
observedbelow the critical flowvelocityUcr = 3.6m/s.
The theoretical results give a qualitative good account
of typical features of double Hopf interactions in the
experiments.

6 Conclusion

In this paper, we have studied the nonlinear stabilities
of planar self-excited pipe vibrations corresponding to
eigenvalues of two distinct modes almost simultane-
ously crossing the imaginary axis. Nonlinear analy-
ses are conducted to clarify the nonlinear interactions
between unstable second and third modes.

We first derive the complex amplitude equations
from a nonlinear nonself-adjoint partial differential
equation and its boundary conditions. Since the ratio
of the natural frequencies ω3r/ω2r is irrational, the
equations governing the bifurcating pipe motions are
described by the amplitudes of two unstable modes.
From the bifurcation analysis of the amplitude equa-

tions, we clarify that the self-excited pipe vibration in
the second mode, which has the lowest critical flow
velocity, suppresses the amplitude of the third mode.
The self-excited vibration in the second mode can last
even after the flow velocity increases slowly above the
critical value at which the damping ratio of the third
mode becomes negative and changes to the self-excited
vibration in the third mode when the flow velocity
increases further. In the case of slowly decreasing flow
velocity, the self-excited vibration in the thirdmode can
last below the upper limit of the flow velocity for the
second mode vibration. Therefore, in a certain range
of flow velocity, self-excited planar pipe vibrations can
be produced either in the second or the third mode,
depending on the initial conditions.

Finally, experiments were conducted to verify the
theoretical results. As predicted in the theoretical anal-
ysis, we confirmed that self-excited vibrations in the
second or third modes can be produced within a cer-
tain range of flow velocity. The theoretical results give
a qualitatively good account of the typical features of
double Hopf interactions in the experiments.
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Appendix A

Here, we outline the derivation of Eq. (1). We consider
the small elements of the pipe and the fluid as shown in
Fig. 10. We assume that the static equilibrium state in
Fig. 10a is deformedas shown inFig. 10b,whereu is the
displacement in the X direction. Applying aNewtonian
derivation, we obtain the following equation:

(m + ρS) (üi + ẅj) = T ′t + T t′ + Q′n + Qn′

+ (m + ρS) gi − 2ρSV θ̇n − P ′St − PSt′ − ρSV 2t′, (21)

where i and j are fundamental vectors. t is a unit vector
in the direction of the neutral axis, and n is a unit vector
perpendicular to t. θ is the angle between the neutral
axis and the X axis. T , Q, and P denote the axial
tension, the shearing force, and the pressure. Using
Q = −E Iθ

′′
, an inextensible condition and geometric

relationships, this equation can be written in terms of
w and we obtain Eq. (1).

Appendix B

Here, we briefly discuss the non-planar rotating pipe
vibration in the third mode. In the case of M = 5.4 g
(α = 0.1), non-planar rotating motions are produced
forU > 5.3m/s. Figure 11a shows the time histories of
displacements v andw parallel to the two perpendicular
axes intersecting each other in the horizontal plane.
The dominant frequency of the pipe vibration is 3.9 Hz
which corresponds to the third mode natural frequency.
The phase difference between v and w is almost π/2
and the pipe experiences rotating motion as shown in

Fig. 10 Geometric
relationship on the small
elements δs for a static
equilibrium, b deformed
element

(a) (b)

Fig. 11 Rotating motion of
the self-excited pipe
vibration in the third mode.
a Time histories of v and w

(U = 5.3 m/s, M = 5.4 g),
b Pipe motion in the
horizontal plane
(U = 5.3 m/s, M = 5.4 g),
c Bifurcation diagram of the
rotating pipe motion in the
third mode
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Fig. 11b. Figure 11c shows the bifurcation diagram of
the rotating pipe motion. We increase U from 5.3 m/s
through 6.0m/s. In this region, the rotating pipemotion
is the only stable steady-state motion and we did not
observe modal interactions.
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