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Abstract When introduces nonlinearity into the sys-
tem, there may be closed detached frequency response
due to the bifurcation. This paper aims to provide the
dynamical behaviors of a structure combined with a
lever-type nonlinear energy sink (LNES). The struc-
ture subjected to periodic excitation is modeled as lin-
ear to stress the dynamical complexity driven only
by the LNES. Depended on the numerical results, the
global bifurcation analysis is proposed to expose the
existence of periodic and aperiodic motion. The aperi-
odicmotions are numerically identified via time history
response, phase trajectories, Poincaré maps, and power
spectra. Besides, to trace the frequency response of the
system, especially the closed detached response curves,
the harmonic balance method is covered with the arc-
length tracking continuation. The Floquet theory is
utilized to settle the stability of frequency response
and discovers the saddle-node (SN) bifurcation and the
Neimark–Sacker (NS) bifurcation under the resonance
response interaction. The investigation demonstrates
that when SN bifurcation and NS bifurcation occur
concurrently, it is a predictor that the closed detached
frequency response may appear.
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1 Introduction

Nonlinearity can be found in any mechanical system
[1–5]. The nonlinearity has been utilized in vibration
control [6,7], such as X-type nonlinear vibration con-
trollers [8,9], quasi-zero stiffness nonlinear vibration
devices [10,11], and the nonlinear energy sink (NES)
[12,13], which have been considered as promising
ways to control vibration. However, introducing non-
linearity into the system may cause many unwanted
vibrations, such as aperiodic vibrations and closed
detached frequency responses. Therefore, it is critical
to understand the effects of nonlinearity on structural
dynamics behaviors.

TheNES is an excellent vibration control device and
can significantly dissipate vibration energy over a wide
range of frequency [12,14]. The traditional NES device
has been well-performing and applied to the structures,
such as single-DOF system [15,16], multi-DOF system
[17–19], elastic string [20], elastic beams [21,22], truss
core sandwich plate [23], hollow rotor [24], and whole-
spacecraft [25]. Besides, in order to improve the per-
formance of vibration control, some promising designs
have been proposed, such as the parallel NES [26–
29], inertial NES [30,31], rotating NES [32,33], asym-
metric magnet-based NES [34], and lever-type NES
(LNES) [35]. It is worth noting that while perform-
ing effective vibration control on the system, the NES
may introduce an unstable closed detached resonance
response branch due to the nonlinearity [36]. Zang et
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al. discovered that the appearance of the closed isolated
response could significantly enhance the transmissibil-
ity [35]. Liu et al. proved that the unstable isolated
branch could be eliminated by changing the geometric
nonlinearity of the system [37]. Habib et al. explored
the existence of the isolated resonance response in the
SDOF system [38,39]. Starosvetsky et al. discovered
the upper stable branch response accompanied by the
stronglymodulated response [40]. Because of the prac-
ticality of vibration control, the investigations of closed
detached resonance response should have received sig-
nificant attention [41,42].

When the stability of the structure changes, the
system may appear bifurcation [43–45]. Due to the
bifurcation, the dynamical behaviors of the structure
may present quasiperiodic [46] or chaotic motion [47],
which cause unwanted vibrations. Walter et al. verified
the chaoticmotion around the resonant frequency of the
curved beam through the experiments [48]. Then, they
found that the high sensitivity of the bridge flexural–
torsional frequency is close to the critical condition
via the bifurcation diagrams [1]. Ding et al. analyzed
the nonlinear dynamic behaviors of an axially mov-
ing Timoshenko beam [49,50]. Zhang et al. discussed
the existence of chaos in the horseshoe sense for can-
tilevered pipe conveying pulsating fluid [51]. Guo et
al. discovered the periodic and chaotic motions of a
composite laminated plate by the global bifurcations
[52,53]. Zhang et al. proposed a novel method to set-
tle the bifurcation and hysteresis nonlinear behavior
of varying compliance vibrations of a rotor [54,55].
Hou et al. investigated the stability and bifurcation
of a rotor system driven by constant excitation and
rub-impact [56]. For the system coupled with NES,
Starosvetsky et al. predicted the periodic and quasiperi-
odic regimes of a structure via the averaging method
[57]. Zang et al. proved that the introduction of theNES
into the linear system might create dynamic complex-
ity [58]. Detroux et al. proposed the bifurcation anal-
ysis of a satellite structure [59]. What is well known
is that various NESs can have an excellent perfor-
mance for vibration control. However, the introduc-
tion of nonlinearity may cause bifurcations of the sys-
tem, which leads to the complicated dynamical behav-
iors of the system, resulting in periodic and aperiodic
responses to the structure. In this paper, an LNES is
taken as an example of various NESs to investigate the
periodic and aperiodic motions caused by the bifurca-
tions.

Fig. 1 Linear oscillator based on an LNES

The organization of this manuscript is as follows.
Section 2 introduces a fundamental system of a struc-
ture with an LNES. Section 3 proposed the numeri-
cal explorations of global bifurcation, and the dynam-
ical behaviors are numerically identified. Section 4
illustrated the way to trace the frequency response of
the system, especially the closed detached response
curves, and then observed the stability and bifurcations
around the resonate frequency. Section 5 concludes the
manuscript (Fig. 1).

2 A linear system coupled with an LNES

To consider a structure periodically excited and com-
bined with an LNES, the structure, driven by harmonic
force F(t) = A cos(ωt), is modeled as a linear SDOF
system with linear stiffness k0, linear damping c0, and
the mass m0. The LNES consists of a linear damper c,
a nonlinear stiffness k, mass m, and a rigid massless
lever. The equations of the dynamical system can be
written by Newton’s second law as follows:

m0 ẍ0 + k0x0 + (1 − α)k(xc − x)3 + c0 ẋ0

+ (1 − α)c(ẋc − ẋ) + F cos(ωt) = 0

mẍ + k(x − xc)
3 + c(ẋ − ẋc) = 0, (1)

where x0, x , and xc are the displacement responses of
massm0, massm, and endC, respectively. The fulcrum
location α is the leveraged rate of length AC–AB. The
response of m0 is the same as that at end A. Given a
small relative motion, the vibration response xc of the
lever could be written as

xc = (1 − α)x0. (2)

The dynamical equations of the system can be rewritten
as
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Responses and bifurcations of a structure 891

Fig. 2 Bifurcation analysis
for the system responses
with m changed: a the
structure and b LNES

m0 ẍ0 + k0x0 + (1 − α)k((1 − α)x0 − x)3 + c0 ẋ0

+ (1 − α)c((1 − α)ẋ0 − ẋ) + F cos(ωt) = 0

mẍ + k(x − (1 − α)x0)
3+c(ẋ − (1−α)ẋ0) = 0.

(3)

3 Numerical explorations of global bifurcation

Nonlinear dynamical behaviors of the system with
LNES will be revealed via numerical integrations in
this section. The frequency of the periodic force is
set as ω = 125.6649 rad/s. The time increment is
defined as 0.005 of a period 2π/ω. The bifurcation
analysis of Poincaré map is introduced to identify
dynamical behaviors. The response components within
the time interval of [0, 6000T ] of the Poincaré maps
will be obtained. To eliminate the transient responses,
the displacement of the last 200 periods is focused.
Choose the parameter values as m0 = 72 kg, k0 =
1137 kN/m3, c0 = 600Ns/m, F = 4000N, m = 2 kg,
k = 10,000 kN/m3, c = 100Ns/m and α = 3. In
the following investigation, three key design param-
eters of the LNES, namely mass m, nonlinear stiff-
ness k, and fulcrum position α, are considered as
the varying parameters, respectively. The time history
response, phase portrait, Poincaré maps, and power
spectra will be employed to identify the dynamical
behaviors.

By varying the mass m for all other system param-
eters unchanged, Fig. 2 depicts the bifurcation dia-
grams analysis of the structure and the LNES. The
numerical results reveal the periodic motions and com-
plicated aperiodic motions (quasiperiodic or chaotic
motion) of the structure, and the LNESs are exchanged
alternately. The LNES induces such aperiodic motions

because the linear structure can only behave period-
ically. For the periodic motion, as the attached mass
m increases, the vibration of the structure is increased,
untilm = 0.64 kg, then decreases, and finally increases
after a few bursts of aperiodic motions. The vibration
of the LNES is increased, till m = 0.64 kg, and then
decreases after a few complicated motions. It should be
noted that the LNES has a passive option mass to mini-
mize the vibration amplitude of the structure. Besides,
Figs. 3 and 4 show that the structure and the LNES have
the same dynamical behaviors. Specifically, when m is
1kg in Figs. 3a and 4a, the structure and the LNESs
are the period-1 motion. And when the m increases to
3.15kg in Figs. 3b and 4b, the structure and LNES are
the period-5 motion. Continually to increase m to 4kg
in Figs. 3c and 4c, the structure and the LNES change to
be the quasiperiodic motion. Finally, when m is 4.8kg
in Figs. 3d and 4d, the structure and the LNES turn
back to the period-1 motion.

Figure 5 presents the bifurcation diagrams of the
structure and the LNES varying the nonlinear stiff-
ness k for all other system parameters unchanged. The
structure and the LNESmainly exhibit periodic motion
excepting an interval of complicated aperiodic motion
with small and relatively sizeable nonlinear stiffness
k. As the nonlinear stiffness k increases, the vibration
of the structure is decreased and then increases after a
few bursts of aperiodic motion. However, the vibration
of the LNES decreases with the enhancement of the
stiffness k for the periodic motion. Samples of periodic
motion of the structure and the LNES are shown in
Figs. 6a and 7a. The aperiodic motions are quasiperi-
odic as depicted in Figs. 6b and 7b.

Figure 8 shows the bifurcation diagrams varying
the fulcrum location α for all other system parame-
ters unchanged. The numerical results reveal the peri-
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Fig. 3 Vibration of the structure varying the LNES mass under the description with time history response, phase portrait, Poincaré
map, and the power spectra

odic motion and complicated aperiodic motion of the
structure, and the LNESs are exchanged alternately.
When complex aperiodic motions suddenly disappear,
the periodic motion occurs again. With the gradual
increase in the fulcrum position, the vibration of the
structure and the LNES first decrease, then occurs ape-
riodic motion at α = 0.35 and 1.65, and then grad-
ually decreases at α = 2. After a short period of
aperiodic motion, the vibration amplitude is gradually
reduced again. Besides, Figs. 9 and 10 show the dynam-
ical behaviors of structure and the LNES. Specifically,
when α is 0.35 and 1.65 in Figs. 9a–c and 10a–c,
the structure and the LNES are quasiperiodic motion.
Continually to increase the fulcrum location α to 6 in
Figs. 9d and 10d, the structure and the LNES change
to be the period-1 motion. It can be seen that direct uti-

lization of the lever principle is not a suitable approach
to determine the fulcrum location for the LNES.

4 The tracking and stability of frequency response
curves

4.1 The basic step of harmonic balance method
coupled with the arc-length tracking continuation

This sectionmainly focuses on the periodic motion and
the bifurcation points from the perspective of the pri-
mary frequency response and the closed detached fre-
quency response curves. The harmonic balancemethod
is utilized to trace the curves. To apply the harmonic
balance process, Eq. (3) is simplified to dimensionless
forms as follows:
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Responses and bifurcations of a structure 893

Fig. 4 Vibration of the LNES varying the LNES mass under the description with time history response, phase portrait, Poincaré map,
and the power spectra

Fig. 5 Bifurcation analysis
for the system responses
with nonlinear stiffness k
changed: a the structure and
b LNES.

u′′
0 + u0 + (1 − α)βl2((1 − α)u0 − u)3

+ς0u
′
0+(1−α)ς((1−α)u′

0 − u′)+ f cos(γ τ) = 0

λu′′+βl2(u−(1−α)u0)
3+ς(u′−(1−α)u′

0) = 0,

(4)

where

u0 = x0
l

, u = x

l
, τ = ω0t, λ = m

m0
, β = k

k0
,

ς0 = c0
m0ω0

, ς = c

m0ω0
, γ = ω

ω0
, f = F

k0l
, (5)
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Fig. 6 Vibration of the structure varying the LNES nonlinear stiffness k under the description with time history response, phase portrait,
Poincaré map, and the power spectra

Fig. 7 Vibration of the LNES varying the LNES nonlinear stiffness k under the description with time history response, phase portrait,
Poincaré map, and the power spectra

Fig. 8 Bifurcation diagram
of the system response
varying the fulcrum α: a the
system and b LNES
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Responses and bifurcations of a structure 895

Fig. 9 Vibration of the structure varying the LNES fulcrum α under the description with time history response, phase portrait, Poincaré
map, and the power spectra

in which the static deformation l of linear stiffness k0
is 100 times as the gravity of m0.

The responses of dynamical Eq. (4) can be expressed
as follows:

u0(τ ) = a0,0 +
n∑

i=1

cos(iγ τ)a0,i +
n∑

i=1

sin(iγ τ)b0,i

(6)

u(τ ) = a0 +
n∑

i=1

cos(iγ τ)ai +
n∑

i=1

sin(iγ τ)bi (7)

G = [a0,0, a0,i , b0,i , a0, ai , bi ], (8)

where G is the coefficients to be defined for the corre-
sponding harmonic term and i is the harmonic order,
i = 1, 2. . .n.

Based on the method of harmonic balance, the har-
monic coefficients of Eq. (4) can be obtained by solving
a set of nonlinear algebraic equations with Newton–

Raphson iteration. However, the method of Newton–
Raphson will fail when passing cross the turning point,
especially for the closed detached frequency response,
because the iteration matrix is singular. To bridge over
the problem, the arc-length tracking is utilized to cover
with themethod of harmonic balance [18,58]. The non-
linear algebraic equations can be formulated as

f(λf ,G) = 0, (9)

where λf is an introduced parameter variable.
To track the solution branch ofEq. (9), the predictor–

corrector procedure is carried out to obtain a valid ini-
tial value (λf ,G)p from the starting point (λf ,G)0. The
tracing direction of the solution branch, namely the tan-
gent vector, can be assumed asR = {R1, R2. . .Rn+1}T.
The elements in vector R can be obtained as follows:

Ri = (−1)i+1det[C−j(λf ,G)], (10)
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896 J. Zang, Y.-W. Zhang

Fig. 10 Vibration of the LNES varying the LNES fulcrum α under the description with time history response, phase portrait, Poincaré
map, and the power spectra

where the Jacobian matrix C (λf ,G) = [∂f/∂λf , ∂f
/∂G] andC− j (λf , G) is a submatrix given by deleting
the jth column of the Jacobian matrix C(λf , G). The
det [.] is the determinant operator.

Then, the predictor value (λf , G)p can be given by
the unit tangent vector τR = R/‖R‖ as follows:

(λf ,G)p = (λf ,G)0 + τR((λf ,G))�s, (11)

in which �s is the basic increment of the arc-length.
The�s is a key factor to trace the solution branch of the
system.When the curvature of the branch curve is large,
especially if there is a closed detached response, the�s
should be small to ensure accuracy. The choice of the
�s is simple, namely�si = �si−1Np/Ii−1. Here,�si
is the increment arc-length in the ith prediction step, Np

is the presupposed number of the iterations, and Ii−1

is the actual number of iterations.

Once the predictor value is determined, theNewton–
Raphson iteration canbe carried out and if the equations
reach the iterative termination error value ε, the solution
branch can be given as

(λf ,G)i = (λf ,G)i−1 −
[
C(λf ,G)i−1

RT(λf ,G)i−1

]−1

×
[
f(λf ,G)i−1

0

]
(i = 1, 2 . . . n). (12)

4.2 The stability and bifurcation analysis via the
Floquet theory

The Floquet theory [60] is utilized to settle the stability
of periodic solutions above and determine the bifurca-
tion points in the frequency response. Introducing the
P = [u0, u′

0, u, u′] transforms Eq. (4) as follows:
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P′(τ ) = F(P(τ ), τ ). (13)

Superposing the �P to perturb the assumed periodic
solution P∗ of Eq. (13), we obtain

(P∗ + �P)′ = F(P∗ + �P, τ ). (14)

The stability of P∗ can be given with the linear stability
of the system as follows:

�P′ = (
∂F(P∗, τ )/∂P∗) · �P = A(P∗(τ ), τ ) · �P,

(15)

where A(P(τ ), τ ) = ∂F(P(τ ), τ )/∂P.
Based on the Hsu’s theory [61], the approximating

monodromy matrix of Eq. (15) can be expressed as
follows:

Q =
1∏

n=N

exp(An�T ) ≈
1∏

n=N

⎛

⎝I+
Nk∑

k

(An�T )k

k!

⎞

⎠ ,

(16)

where I is the identity matrix and the period T of the
solutions is segmented into N subintervals as �T . The
Nk is the number of terms in the approximation of An

exponential. Constant matrixAn = A(P∗(τn)) is taken
to substitute the time-varying matrix A(P∗(τ )) in the
nth time interval, where τn = n�T/N . If all the eigen-
values ofQ (Floquetmultipliers) arewithin a unit circle
in the complex plane, the periodic solutions are stable.
Otherwise, the periodic solutions are unstable, and the
bifurcation points can be determined along with three
regulations ruled under the Floquet multipliers [62].

(i) If a multiplier escapes the unit circle at +1 direc-
tion, the saddle-node (SN) bifurcation may occur.

(ii) If a multiplier leaves the unit circle at −1 direc-
tion, the period-doubling (PD) bifurcation may
occur.

(iii) If two complex conjugate multipliers cross out of
the unit circle, the Neimark–Sacker (NS) bifurca-
tion may occur.

Here, the SN bifurcation indicates a change in stability
and leads to amplitude jumps that may result in pos-
sible significant changes in system response. The PD
bifurcationmeans a new behavior with twice the period
of the original system that may lead to the dynamical
behaviors to chaos. The NS bifurcation represents the
transformation of the motion state, leading the transi-
tion from periodicmotion to quasiperiodicmotion. The
flowchart describing the arc-length continuity method
and stability analysis is shown in Fig. 11.

Fig. 11 Flowchart describing the arc-length continuity method
and stability analysis

Fig. 12 Comparison between the analytical solutions and
numerical results
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Fig. 13 Frequency
response curve of the
structure varying the LNES
mass λ: a λ = 0.0139, b
λ = 0.0264, c λ = 0.0278,
d λ = 0.0294, e λ = 0.0417
and f λ = 0.0694

To evaluate the dynamical behaviors of the structure
coupled with the LNES in the frequency domain, the
response of structure and LNES are redefined by the
root mean square [18].

u0r =
√
2a20,0 + a20,i + b20,i

2
(i = 1, 2 . . . n) (17)

ur =
√
2a20 + a2i + b2i

2
(i = 1, 2 . . . n). (18)

4.3 Numerical examples

In this paper, the harmonic term is chosen to be three
[58], the dimensionless parameters values are ω0 =
125.6649, l = 0.0621, ζ0 = 0.0663, λ = 0.0278,
β = 8.7951, ζ = 0.0111, f = 0.0567 and α = 3. Fig-
ure 12 presents the analytical solutions compared with
the numerical method. The black ball means numerical
solutions, and the solid blue line represents the ana-
lytical solutions. It can be seen the analytical solutions
highly correspondwith the numerical results, even only
an order 3 harmonic solution, and agree well with the
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Fig. 14 Frequency
response curve of the
LNES varying the LNES
mass λ: a λ = 0.0139, b
λ = 0.0264, c λ = 0.0278,
d λ = 0.0294, e λ = 0.0417
and f λ = 0.0694

numerical ones, which are used to check the accuracy
of Eqs. (17) and (18).

Figures 13 and 14 demonstrate the frequency
response curves varying the mass λ attached. For a tiny
mass λ, the response curves are analogous to the lin-
ear stable case, which are shown in Figs. 13a and 14a.
For a larger value of the mass λ in Figs. 13b and 14b,
the response curves are distorted around the resonance
frequency with two unstable branches. The first unsta-
ble branch is caused by SN bifurcation, within the fre-
quency ranging from 0.8679 to 0.8961. The NS bifur-
cation induces the second unstable branch instabil-
ity in the frequency interval of 1.003 to 1.079. For

Table 1 Ranges of bifurcation and the existence of closed
detached frequency response varying the mass λ

λ Ranges of SN
bifurcation

Ranges of NS
bifurcation

Existence of
closed detached
frequency
response

0.0139 None None None

0.0264 [0.8679, 0.8961] [1.003, 1.079] None

0.0278 [0.8685, 0.9049] [0.9888, 1.080] Yes

0.0294 [0.8747, 0.8849] [0.9694,1.080] Yes

0.0417 None [0.9260, 1.078] None

0.0694 None None None
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Fig. 15 Frequency
response curve of the
structure varying the LNES
nonlinear stiffness β: a
β = 0.0880, b β =
4.3975, c β = 8.4433, d
β = 8.7951, e β = 9.2348
and f β = 26.3852

a moderate larger value of the mass λ in Figs. 13c
and 14c, an outside closed detached frequency response
curve appears caused by SN bifurcation within the fre-
quency ranging from 0.8685 to 0.9049. The primary
response curve still has an unstable branch induced
by the NS bifurcation from 0.9888 to 1.0797. For
large amounts of attached mass in Figs. 13d and 14d,
the closed detached frequency response curve with
SN bifurcation from 0.8747 to 0.8849 leaves apart
from the primary response and turns to be small. The
unstable branch range of the primary response curve
induced by the NS bifurcation becomes larger from
0.9694 to 1.0799. For an extra increase in the value of

the mass λ in Figs. 13e and 14e, the external closed
detached frequency response disappears outside the
primary curve. The unstable branch range of the pri-
mary response curve induced by the NS bifurcation
continually becomes larger from 0.9260 to 1.0780. For
a much increased value of the mass λ in Figs. 13f
and 14f, the primary response curve turns to be sta-
ble without any bifurcation. It can be seen that as the
mass attached increases, the SN bifurcation and the NS
bifurcation may appear simultaneously in the system.
When closed detached frequency response curves dis-
appear, the NS bifurcation point of the structure char-
acterizes the systemwith a quasiperiodic response near
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Fig. 16 Frequency
response curve of the
LNES varying the LNES
nonlinear stiffness β: a
β= 0.0880, b β = 4.3975, c
β = 8.4433, d β = 8.7951,
e β = 9.2348 and f
β = 26.3852

the resonance frequency. The ranges of bifurcation and
the existence of closed detached frequency response
varying the mass λ are shown in Table 1.

Figures 15 and 16 show the frequency response
curves changing with the nonlinear stiffness β. In
Figs. 15a and 16a, the dynamic characteristics of the
system are stable. For a slightly larger stiffness shown
in Figs. 15b and 16b, the response curve has an unsta-
ble branch induced by the NS bifurcation ranging
from 0.9729 to 1.019. For a further larger stiffness
shown in Figs. 15c and 16c, a closed detached fre-
quency response curve with SN bifurcation ranging

from 0.8811 to 0.8941 appears outside the primary
response curve with NS bifurcation interval of 0.9844–
1.076. The closed detached frequency response with
SN bifurcation becomes larger and tends to attract
the primary response curve with NS bifurcation in
Figs. 15d and 16d. For a much increased stiffness
in Figs. 15e and 16e, the closed detached frequency
response merges with the primary response with two
unstable branches. The first unstable branch is caused
by the SN bifurcation ranging from 0.8590 to 0.8993,
and the second unstable branch is induced by the
NS bifurcation interval of 0.9947–1.083. Finally, in
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Table 2 Ranges of
bifurcation and the
existence of closed detached
frequency response varying
the stiffness β

β Ranges of SN
bifurcation

Ranges of NS
bifurcation

Existence of closed detached
frequency response

0.0880 None None None

4.3975 None [0.9729, 1.019] None

8.4433 [0.8811, 0.8941] [0.9844, 1.076] Yes

8.7951 [0.8685, 0.9049] [0.9888, 1.080] Yes

9.2348 [0.8590, 0.8993] [0.9947, 1.083] None

26.3852 [0.6987, 0.7094] [0.8879,
0.9429] [1.167, 1.169]

[1.083, 1.167] None

Fig. 17 Frequency
response curve of the
structure varying the LNES
fulcrum α: a α = 1.5, b
α = 1.65, c α = 2.5, d
α = 3, e α = 5 and f α = 7
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Fig. 18 Frequency
response curve of the LNES
varying the LNES fulcrum
α: a α = 1.5, b α = 1.65, c
α = 2.5, d α = 3, e α = 5
and f α = 7

Table 3 Ranges of
bifurcation and the
existence of closed detached
frequency response varying
the fulcrum α

α Ranges of SN
bifurcation

Ranges of NS
bifurcation

Existence of closed detached
frequency response

1.5 None None None

1.65 None [0.9908, 1.006] None

2.5 [0.9173, 0.9302] [1.010, 1.062] None

3 [0.8685, 0.9049] [0.9888, 1.080] Yes

5 [0.6147, 0.6360] [0.7556, 0.7728] [0.9611, 1.054] None

7 None None None
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Figs. 15f and 16f, the dynamics of the system turn to
be complex with three sections: SN bifurcation rang-
ing from 0.6987 to 0.7094, 0.8879 to 0.9429, and 1.167
to 1.169, and one section NS bifurcation ranging from
1.083 to 1.167. It should be concerned that with an
increase in the nonlinear stiffness, the dynamic behav-
ior of the system tends to be complicateddue tomultiple
sets of SN bifurcations and NS bifurcations, accompa-
nied by the appearance of closed detached frequency
response. Ranges of bifurcation and the existence of
closed detached frequency response varying the stiff-
ness β are shown in Table 2.

The last influencing factor of the frequency response
curves is the fulcrum location α, shown in Figs. 17
and 18. In Figs. 17a and 18a, when the fulcrum α is
1.5, the dynamic characteristics of the system are sta-
ble without any bifurcation. For a slightly increased
value α = 1.65 in Figs. 17b and 18b, an unstable
branch with NS bifurcation appears within the range
of 0.9908–1.006. With the increase in the fulcrum α to
2.5 in Figs. 17c and 18c, the frequency response curves
turn to be distorted with two unstable branches. The
first unstable branch is induced by the SN bifurcation
ranging from 0.9173 to 0.9302, and the second unsta-
ble branch is causedby theNSbifurcation 1.010–1.062.
For a further fulcrumα, for example,α = 3 in Figs. 17d
and 18d, a closed detached frequency response curve
with SN bifurcation ranging from 0.8685 to 0.9049
appears outside the primary response curve with NS
bifurcation interval of 0.9888 to 1.080. Further increas-
ing the fulcrum α to 5 in Figs. 17e and 18e, the closed
detached frequency response goes back and merges
with the primary response curve, with two sections SN
bifurcation ranging from 0.6147 to 0.6360 and 0.7556
to 0.7728 and one section NS bifurcation ranging from
0.9611 to 1.054. For a larger increase in fulcrum, α = 7
in Figs. 17f and 18f, the frequency response curves turn
back to stable. When the fulcrum position is small, the
dynamic characteristics of the system are more com-
plicated.However, when the fulcrumposition increases
to a certain extent, the dynamic region of the system
is stable. Particularly, based on the illustrations from
Figs. 13, 14, 15, 16, 17, and 18, it can be seen that
when SN bifurcation and NS bifurcation occur simul-
taneously, it is a sign that the closed detached frequency
response may appear. Ranges of bifurcation and exis-
tence of closed detached frequency response varying
the fulcrum α are shown in Table 3.

5 Conclusion

The dynamical behavior of a model combined with an
LNES is proposed. The global bifurcations are numer-
ically investigated by the Poincaré map. The time his-
tory response, phase trajectories, Poincaré maps, and
amplitude spectra are used to identify dynamical behav-
iors. The basic steps of the harmonic balance method
coupledwith arc-length tracking continuation are intro-
duced to trace the primary and close detached fre-
quency response curves. The stabilities and bifurcation
of frequency response curves have been settled via the
Floquet theory. The investigation yields the following
conclusions:

1. Thequasiperiodicmotionmayoccur.Actually, the
bifurcation diagrams reveal the responses of the
structure and LNESs are periodic motion except
for the intermittency of quasiperiodic motion.

2. For small attached masses, close fulcrum, and
large nonlinear stiffness, the dynamic behavior of
the system is complex due to multiple sets of SN
bifurcations and NS bifurcations.

3. When SN bifurcation and NS bifurcation occur
simultaneously, it is a sign that the closed detached
frequency response may appear.

4. When the closed detached frequency response
disappears, the NS bifurcation on the primary
branch of the system indicates that a quasiperi-
odic response occurs near the resonant frequency.

5. From the perspective of bifurcation, it can give
a prediction for the frequency response and a
base for the parameter optimization for the LNES
absorber in engineering.

Acknowledgements Thework presented in this paperwas sup-
ported by the National Natural Science Foundation of China
(11772205, 11902203) and Liaoning Revitalization Talents Pro-
gram (XLYC1807172).

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

1. Arena, A., Lacarbonara, W.: Nonlinear parametric mod-
eling of suspension bridges under aeroelastic forces: tor-
sional divergence and flutter. Nonlinear Dyn. 70, 2487–2510
(2012)

123



Responses and bifurcations of a structure 905

2. van Til, J., Alijani, F., Voormeeren, S.N., Lacarbonara, W.:
Frequency domain modeling of nonlinear end stop behav-
ior in tuned mass damper systems under single- and multi-
harmonic excitations. J. Sound Vib. 438, 139–152 (2019)

3. Li, X., Zhang, Y.-W., Ding, H., Chen, L.-Q.: Dynamics and
evaluation of a nonlinear energy sink integrated by a piezo-
electric energy harvester under a harmonic excitation. J. Vib.
Control 25, 851–867 (2019)

4. Ding, H., Lu, Z.-Q., Chen, L.-Q.: Nonlinear isolation of
transverse vibration of pre-pressure beams. J. Sound Vib.
442, 738–751 (2019)

5. Zhang,Y.-W., Su,C.,Ni, Z.-Y., Zang, J., Chen, L.-Q.:Amul-
tifunctional lattice sandwich structure with energy harvest-
ing and nonlinear vibration control. Compos. Struct. 221,
110875 (2019)

6. Song, Z.-G., Li, F.-M., Carrera, E., Hagedorn, P.: A new
method of smart and optimal flutter control for composite
laminated panels in supersonic airflowunder thermal effects.
J. Sound Vib. 414, 218–232 (2018)

7. Song, Z.-G., Li, F.-M.: Aeroelastic analysis and active flutter
control of nonlinear lattice sandwich beams. Nonlinear Dyn.
76, 57–68 (2014)

8. Feng, X., Jing, X.J.: Human body inspired vibration iso-
lation: beneficial nonlinear stiffness, nonlinear damping &
nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812
(2019)

9. Hu, F., Jing, X.J.: A 6-DOF passive vibration isolator based
on Stewart structure with X-shaped legs. Nonlinear Dyn. 91,
157–185 (2018)

10. Ding, H., Ji, J., Chen, L.-Q.: Nonlinear vibration isolation
for fluid-conveying pipes using quasi-zero stiffness charac-
teristics. Mech. Syst. Signal Process. 121, 675–688 (2019)

11. Ding, H., Chen, L.Q.: Nonlinear vibration of a slightly
curved beam with quasi-zero-stiffness isolators. Nonlinear
Dyn. 95, 2367–2382 (2019)

12. Vakakis, A.F.: Nonlinear Targeted Energy Transfer in
Mechanical and Structural Systems. Springer, Berlin (2008)

13. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A.,
Vakakis, A.F.: Frequency-energy plots of steady-state solu-
tions for forced and damped systems, and vibration isolation
by nonlinear mode localization. Commun. Nonlinear Sci.
Numer. Simul. 19, 2905–2917 (2014)

14. Gourdon, E., Lamarque, C.H., Pernot, S.: Contribution to
efficiency of irreversible passive energy pumping with a
strong nonlinear attachment. Nonlinear Dyn. 50, 793–808
(2007)

15. Charlemagne, S., Lamarque, C.-H., Savadkoohi, A.T.:
Dynamics and energy exchanges between a linear oscillator
and a nonlinear absorber with local and global potentials. J.
Sound Vib. 376, 33–47 (2016)

16. Gendelman, O.V., Lamarque, C.H.: Dynamics of linear
oscillator coupled to strongly nonlinear attachment with
multiple states of equilibrium. Chaos Solitons Fractals 24,
501–509 (2005)

17. Luongo, A., Zulli, D.: Dynamic analysis of externally
excited NES-controlled systems via a mixed multiple
scale/harmonic balance algorithm. Nonlinear Dyn. 70,
2049–2061 (2012)

18. Zang, J., Zhang, Y.W., Ding, H., Yang, T.Z., Chen, L.Q.: The
evaluation of a nonlinear energy sink absorber based on the

transmissibility. Mech. Syst. Signal Process. 125, 99–122
(2019)

19. AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock
mitigation bymeans of low- to high-frequency nonlinear tar-
geted energy transfers in a large-scale structure. J. Comput.
Nonlinear Dyn. 11, 021006 (2015)

20. Zulli, D., Luongo, A.: Nonlinear energy sink to control
vibrations of an internally nonresonant elastic string. Mec-
canica 50, 781–794 (2015)

21. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the
robustness of nonlinear energy sink in steady state dynamics
of linear beams with different boundary conditions. Com-
mun. Nonlinear Sci. Numer. Simul. 29, 50–71 (2015)

22. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.:
Steady state dynamics of a non-linear beam coupled to a
non-linear energy sink. Int. J. Non-Linear Mech. 79, 48–65
(2016)

23. Chen, J.E., Zhang,W., Yao,M.H., Liu, J., Sun,M.: Vibration
reduction in truss core sandwichplatewith internal nonlinear
energy sink. Compos. Struct. 193, 180–188 (2018)

24. Guo,C.,AL-Shudeifat,M.A.,Vakakis,A.F., Bergman, L.A.,
McFarland,D.M.,Yan, J.:Vibration reduction in unbalanced
hollow rotor systemswith nonlinear energy sinks. Nonlinear
Dyn. 79, 527–538 (2015)

25. Yang, K., Zhang, Y.W., Ding, H., Yang, T.Z., Li, Y., Chen,
L.Q.: Nonlinear energy sink for whole-spacecraft vibration
reduction. J. Vib. Acoust. 139, 021011 (2017)

26. Zhang, Y.W., Zhang, Z., Chen, L.Q., Yang, T.Z., Fang, B.,
Zang, J.: Impulse-induced vibration suppression of an axi-
allymoving beamwith parallel nonlinear energy sinks. Non-
linear Dyn. 82, 61–71 (2015)

27. Chen, J.E., He, W., Zhang, W., Yao, M.H., Liu, J., Sun, M.:
Vibration suppression and higher branch responses of beam
with parallel nonlinear energy sinks. Nonlinear Dyn. 91,
885–904 (2018)

28. Wei, Y., Wei, S., Zhang, Q., Dong, X., Peng, Z., Zhang, W.:
Targeted energy transfer of a parallel nonlinear energy sink.
Appl. Math. Mech. 40, 621–630 (2019)

29. Li, T., Gourc, E., Seguy, S., Berlioz, A.: Dynamics of two
vibro-impact nonlinear energy sinks in parallel under peri-
odic and transient excitations. Int. J. Non-Linear Mech. 90,
100–110 (2017)

30. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X.,
Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter.
Mech. Syst. Signal Process. 125, 52–64 (2019)

31. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial non-
linear energy sink. J. Sound Vib. 450, 199–213 (2019)

32. Haris,A.,Motato,E., Theodossiades, S.,Rahnejat,H.,Kelly,
P., Vakakis, A., Bergman, L.A., McFarland, D.M.: A study
on torsional vibration attenuation in automotive drivetrains
using absorberswith smooth and non-smooth nonlinearities.
Appl. Math. Model. 46, 674–690 (2017)

33. Motato, E., Haris, A., Theodossiades, S., Mohammadpour,
M., Rahnejat, H., Kelly, P., Vakakis, A.F., McFarland, D.M.,
Bergman, L.A.: Targeted energy transfer and modal energy
redistribution in automotive drivetrains. Nonlinear Dyn. 87,
169–190 (2017)

34. AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear
energy sink. J. Comput. Nonlinear Dyn. 10, 014502 (2014)

123



906 J. Zang, Y.-W. Zhang

35. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen,
L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437,
119–134 (2018)

36. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in
systems with a nonlinear energy sink: nonlinear damping. J.
Sound Vib. 324, 916–939 (2009)

37. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A
new way to introduce geometrically nonlinear stiffness and
damping with an application to vibration suppression. Non-
linear Dyn. 96, 1819–1845 (2019)

38. Habib, G., Cirillo, G.I., Kerschen, G.: Uncovering detached
resonance curves in single-degree-of-freedom systems.
Proc. Eng. 199, 649–656 (2017)

39. Habib, G., Cirillo, G.I., Kerschen, G.: Isolated resonances
and nonlinear damping. Nonlinear Dyn. 93, 979–994 (2018)

40. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated
response in forced 2DOF oscillatory system with essential
mass and potential asymmetry. Phys. D Nonlinear Phenom.
237, 1719–1733 (2008)

41. Gatti, G., Kovacic, I., Brennan, M.J.: On the response of
a harmonically excited two degree-of-freedom system con-
sisting of a linear and a nonlinear quasi-zero stiffness oscil-
lator. J. Sound Vib. 329, 1823–1835 (2010)

42. Gatti, G.: Uncovering inner detached resonance curves in
coupled oscillators with nonlinearity. J. Sound Vib. 372,
239–254 (2016)

43. Formica, G., Arena, A., Lacarbonara, W., Dankowicz, H.:
Coupling FEMWith parameter continuation for analysis of
bifurcations of periodic responses in nonlinear structures. J.
Comput. Nonlinear Dyn. 8, 021013 (2012)

44. Luongo, A.: On the use of the multiple scale method in
solving ‘difficult’ bifurcation problems.Math.Mech. Solids.
22, 988–1004 (2017)

45. Starosvetsky, Y., Gendelman, O.V.: Bifurcations of attrac-
tors in forced system with nonlinear energy sink: the effect
of mass asymmetry. Nonlinear Dyn. 59, 711–731 (2010)

46. Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient
harmonic balance method for the prediction of quasi-
periodic response in nonlinear systems. Mech. Syst. Signal
Process. 64, 233–244 (2015)

47. Chen, L.Q., Liu, Y.Z.: Amodified exact linearization control
for chaotic oscillators. Nonlinear Dyn. 20, 309–317 (1999)

48. Lacarbonara, W., Nayfeh, A.H., Kreider, W.: Experimental
validation of reduction methods for nonlinear vibrations of
distributed-parameter systems: analysis of a buckled beam.
Nonlinear Dyn. 17, 95–117 (1998)

49. Yan, Q.Y., Ding, H., Chen, L.Q.: Nonlinear dynamics of axi-
ally moving viscoelastic Timoshenko beam under paramet-
ric and external excitations. Appl. Math.Mech. 36, 971–984
(2015)

50. Yan, Q.Y., Ding, H., Chen, L.Q.: Periodic responses and
chaotic behaviors of an axially accelerating viscoelastic
Timoshenko beam. Nonlinear Dyn. 78, 1577–1591 (2014)

51. Zhang, Y.F., Yao, M.H., Zhang, W., Wen, B.C.: Dynam-
ical modeling and multi-pulse chaotic dynamics of can-
tilevered pipe conveying pulsating fluid in parametric reso-
nance. Aerosp. Sci. Technol. 68, 441–453 (2017)

52. Guo, X.Y., Zhang, W., Yao, M.H.: Multi-pulse orbits and
chaotic dynamics of a composite laminated rectangular
plate. Acta Mech. Solida Sin. 24, 383–398 (2011)

53. Zhang, W., Guo, X.Y.: Periodic and chaotic oscillations of a
composite laminated plate using the third-order shear defor-
mation plate theory. Int. J. Bifurc. Chaos 22, 1250103 (2012)

54. Zhang, Z.Y., Chen,Y.S., Cao,Q.J.: Bifurcations and hystere-
sis of varying compliance vibrations in the primary paramet-
ric resonance for a ball bearing. J. Sound Vib. 350, 171–184
(2015)

55. Zhang, Z.Y., Chen, Y.S.: Harmonic balance method with
alternating frequency/time domain technique for nonlinear
dynamical system with fractional exponential. Appl. Math.
Mech. 35, 423–436 (2014)

56. Hou, L., Chen, H.Z., Chen, Y.S., Lu, K., Liu, Z.S.: Bifurca-
tion and stability analysis of a nonlinear rotor system sub-
jected to constant excitation and rub-impact. Mech. Syst.
Signal Process. 125, 65–78 (2019)

57. Starosvetsky, Y., Gendelman, O.V.: Response regimes of
linear oscillator coupled to nonlinear energy sink with har-
monic forcing and frequency detuning. J. Sound Vib. 315,
746–765 (2008)

58. Zang, J., Chen, L.Q.: Complex dynamics of a harmonically
excited structure coupledwith a nonlinear energy sink. Acta.
Mech. Sin. 33, 801–822 (2017)

59. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The har-
monic balancemethod for bifurcation analysis of large-scale
nonlinear mechanical systems. Comput. Methods Appl.
Mech. Eng. 296, 18–38 (2015)

60. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear
Dynamics? Analytical, Computational, and Experimental
Methods. Wiley, Hoboken (1995)

61. Friedmann, P., Hammond, C.E., Woo, T.-H.: Efficient
numerical treatment of periodic systems with application to
stability problems. Int. J. Numer. Methods Eng. 11, 1117–
1136 (1977)

62. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and
Chaos. Wiley, Hoboken (2002)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Responses and bifurcations of a structure with a lever-type nonlinear energy sink
	Abstract
	1 Introduction
	2 A linear system coupled with an LNES
	3 Numerical explorations of global bifurcation
	4 The tracking and stability of frequency response curves
	4.1 The basic step of harmonic balance method coupled with the arc-length tracking continuation
	4.2 The stability and bifurcation analysis via the Floquet theory
	4.3 Numerical examples

	5 Conclusion
	Acknowledgements
	References




