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Abstract This paper considers the system modeling
problem for the Hammerstein nonlinear model with
unknown but bounded noise. A two-stage ellipsoid
filtering-based modeling algorithm is proposed and the
unknown noise term is wrapped in an ellipsoid during
each recursive step. The normalized ellipsoid is vary-
ing and its center, as well as its volume, is updated by
using the volumeminimization criteria of the ellipsoid.
Finally, the given simulations visually illustrate the fea-
sible parameter set variation process and the motion
trail of the ellipsoids, which shows the effectiveness
and the accuracy of the proposed algorithm.

Keywords Ellipsoid space · Filtering method ·
Hammerstein system · Nonlinear model · Unknown
noise term

1 Introduction

System modeling [1,2] is one of the most common
methods to find the true value of the complex mod-
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els and analyze the relation between the input and out-
put signals. However, it is commonly infeasible to find
the actual distribution law of the system disturbance,
which yields that the probability distribution function
of the noise term cannot be assumed facilely. The non-
probabilistic noise term results in that the distribution
law of the disturbance is hardly precise. Meanwhile,
since the unknown feasible solutions of the uncertainty
parameters are fitted in a convex set, it cannot directly
analyze its variation law for the recursive irregular fig-
ures. In the research field of the system modeling, the
unknown but bounded noise term are wrapped by some
recursively computable spaces [3–5].

In recent years, the set membership modeling algo-
rithm is studied for estimating the parameters of the
systems with unknown but bounded noise term [6–
8]. Some geometric spaces with regular structures
are commonly used for describing the bounded noise
terms, i.e., the ellipsoid space is usually adopted for
the simplicity of its formulation [9,10]. However, the
space sets listed in the previous works are commonly
fitted for the linear system identification field, rather
than in the system modeling for the nonlinear ones,
i.e., the Hammerstein system. Considering the compu-
tational complexity and the estimation accuracy, in this
paper, the ellipsoid space is employed for constructing
the known boundary of the noise term.

Differing from the proposed algorithms in [9,10], in
order to diminish the impact of unknown but bounded
colored noise term, this paper considers the model-
ing problem of Hammerstein models and a two-stage
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ellipsoid filteringmodeling algorithm is studied.Mean-
while, compared with the work in [11], this paper
derives a two-stage algorithm for solving the nonlinear
system identification problem under the disturbance of
unknown but bounded noise term. The main contribu-
tions of this paper are listed as follows: (1) A two-
stage filtering method is proposed for the Hammer-
stein system modeling by filtering the nonlinear model
with unknown noises into two different subsystems,
one contains the noise term and the other includes the
system parameters; (2) the minimization criteria are
adopted to determine the recursive step and find the
minimum value of the ellipsoid volume; (3) the simu-
lation results show the motion trail of the ellipsoid sets
via the sample time, which can directly illustrate the
parameter estimation process.

Briefly, the rest of this paper is organized as fol-
lows. Section 2 gives the Hammerstein system with an
unknown but bounded noise term and its identification
model. Section 3 presents a two-stage ellipsoid min-
imization volume-based filtering algorithm by adopt-
ing different ellipsoids to wrap the boundary of the
feasible parameter sets. Section 4 provides the simula-
tions to illustrate the accuracy and effectiveness of the
proposed algorithm. Finally, the conclusions and some
future works are offered in Sect. 5.

2 Problem statement

The following single input/single output nonlinear sys-
tem is further considered:

y(t) = B(z)
nc∑

i=1

ci fi (u(t)) + D(z)v(t),

‖v(t)‖ � δ, δ > 0, (1)

where {u(t), y(t)} is the pair of the signal sequences
at time t , v(t) is the unknown bounded noise term
with a priori bound δ. B(z) and D(z) are combina-
tions of negative powers that are defined by B(z) :=
1 + ∑nb

i=1 bi z
−i and D(z) := 1 + ∑nd

j=1 d j z− j in

the unit delay operator z−1 [z−1y(t) = y(t − 1)].
The nonlinear term in the model (1) is defined by
ū(t) := ∑nc

i=1 ci fi (u(t)).
The aim of identifying this nonlinear Hammerstein

system is to propose a geometrical recursive algo-
rithm to consistently estimate the unknown param-
eter vectors b := [b1, b2, . . . , bnb ]T ∈ R

nb , c :=
[c1, c2, . . . , cnc ]T ∈ R

nc , d := [d1, d2, . . . , dnd ]T ∈

R
nd , from the measured data {u(t), y(t)}Lt=1. From

Eq. (1), the identification model can be rewritten as

y(t) = B(z)ū(t) + D(z)v(t)

=
[
1 +

nb∑

i=1

bi z
−i

]
ū(t) +

[
1 +

nd∑

j=1

d j z
− j

]
v(t)

=
[ nb∑

i=1

bi z
−i

]
ū(t) + ū(t)

+
[ nd∑

j=1

d j z
− j

]
v(t) + v(t)

=
nb∑

i=1

bi ū(t − i) +
nc∑

i=1

ci fi (u(t))

+
nd∑

i=1

div(t − i) + v(t)

= ϕT(t)θ + v(t), (2)

where

ϕ(t) := [ū(t − 1), ū(t − 2), . . . , ū(t − nb), f1(u(t)),

f2(u(t)), . . . , fnc (u(t)), v(t − 1),

v(t − 2), . . . , v(t − nd)]T ∈ R
nb+nc+nd ,

θ := [bT, cT, dT]T ∈ R
nb+nc+nd .

From Eq. (2), since the error bound of the model is
known, the parameters belong to the membership set
S(L) := {θ |y(t)−δ � ϕT(t)θ � y(t)+δ, t ∈ [1, L]}.
In the geometry, the set S(L) is delimited by L pairs
of parallel hyperplanes, i.e., H1(t) := {θ |ϕT(t)θ =
y(t) − δ} and H2(t) := {θ |ϕT(t)θ = y(t) + δ}. In
the whole parametric space, the hyperplanes are the
boundaries of different subspaces. With the data length
L increases, the parametric space will be divided into
more blocks but only one narrower piece stands for the
parameter uncertainty set S(L).

The geometric space goes more flexible as the
input data length getting bigger, which rises a gor-
dian knot that it is hardly to form precisely the periph-
ery of the parameter feasible set. The objective of
this paper is to find a filtering-based recursive param-
eter feasible set �(t + 1) that contains the solution
θ(t+1) at time t+1 when given the parameter feasible
set �(t).
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3 The ellipsoid volume minimization-based
filtering algorithm

The unknown noise term w(t) := D(z)v(t) in Eq. (1)
at time t is determined by the input/output sampled
data. When the polynomial D(z) equals 1, the fea-
sible parameters of the nonlinear system is easy to
be filled in two parallel hyperplanes, as mentioned
before. However, the polynomial D(z) is commonly
constructed by some unknown parameters di that sat-
isfies

∏nd
i=1 di �= 0, i ∈ [1, nd ], which means the noise

term will not be a regular spatial graphic and it is dif-
ficult to use the traditional set estimation methods to
solve this type of system identification problem.

To avoid the irregular geometric construction and
reduce the computation complexity, the filtering idea
is adopted to transfer the nonlinear system into two
different parts in this section. Based on the input and
output signals, the identification model in Eq. (2) can
be changed into a controlled autoregressive model by
adopting the unknownfilter D−1(z). The filteredmodel
can be written as

yf(t) = B(z)ūf(t) + v(t), (3)

where ūf(t) := ∑nc
i=1 ciUi (t) and yf(t) := 1

D(z) y(t).
The intermediate variableUi (t) is defined byUj (t) :=
1

D(z) f j (u(t)), j = 1, 2, . . . , nc. Then, Eq. (3) can be
written as

yf(t) =
nc∑

i=1

ciUi (t) +
nb∑

i=1

bi ūf(t − i)

+v(t), ‖v(t)‖ � δ, δ > 0. (4)

Define the filtered information vector and two param-
eter vectors:

ϕf(t) := [ūf(t − 1), ūf(t − 2), . . . , ūf(t − nb),

U1(t),U2(t), . . . ,Unc (t)]T ∈ R
nb+nc , (5)

θ s := [bT, cT]T = [b1, b2, . . . , bnb , c1, c2,
. . . , cnc ]T ∈ R

nb+nc , (6)

θn := d = [d1, d2, . . . , dnd ]T ∈ R
nd . (7)

From Eq. (4), the parameters ci and b j are deter-
mined by a feasible set and the two parallel hyperplanes
H1,f(t), H2,f(t) that divide the n-dimensional space,
are listed as follows:

H1,f(t) =
{

θ s|
nc∑

i=1

ciUi (t)

+
nb∑

i=1

bi ūf(t − i) = yf(t) + δ

}
,

H2,f(t) =
{

θ s|
nc∑

i=1

ciUi (t)

+
nb∑

i=1

bi ūf(t − i) = yf(t) − δ

}
.

However, the true values of the parameters are all in
part of the space instead of the whole space, i.e.,

H+
f (t) = H+

1,f(t) ∩ H+
2,f(t), (8)

H+
1,f(t) =

{
θ s|

nc∑

i=1

ciUi (t)

+
nb∑

i=1

bi ūf(t − i) � yf(t) + δ

}
, (9)

H+
2,f(t) =

{
θ s|

nc∑

i=1

ciUi (t)

+
nb∑

i=1

bi ūf(t − i) � yf(t) − δ

}
. (10)

Since the unknown but bounded noise term v(t) =
yf(t)−ϕT

f (t)θ s determines the spatial distance between
the two parallel hyperplanes H1,f(t), H2,f (t), the ellip-
soid set membership idea can be adopted in estimating
θ̂(t) as the first stage in solving all the parameter esti-
mates. The filtered model in Eq. (4) can be rewritten in
a vector form:

yf(t) = ϕT
f (t)θ s + v(t), (11)

or

v(t) = yf(t) − ϕT
f (t)θ s, (12)

where yf(t) = y(t)−∑nd
i=1 di yf(t − i). Because of the

unknown parameters di , it is impossible to use ūf(t) to
construct the known parameter vector ϕf(t) in Eq. (5).
The solution here is to use their estimates to derive the
following filtering-based ellipsoid recursive algorithm
for the Hammerstein models.

For the filtered model in Eq. (11), the normalized
ellipsoidal set is

E(P−1
s , θ̂ s) = {θ s ∈ R

ns : (θ s − θ̂ s)
T

P−1
s (θ s − θ̂ s) � σ 2

s }, (13)
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where Ps is the symmetric, positive definite shape
matrix for ellipsoidal set E(P−1

s , θ̂ s). The priori
assumed noise bound σs also represents the radius of
the ellipsoid E(P−1, θ̂ s) and the error bound of feasi-
ble parameter θ s is lower than the θ , that is, σs � σ .
The estimates B̂(t, z) and D̂(t, z) are constructed by
B̂(t, z) := 1 + ∑nb

i=1 b̂i (t)z
−i and D̂(t, z) := 1 +∑nd

j=1 d̂ j (t)z− j , respectively.
In the first stage, the intermediate variable estimates

are ŵ(t) := ϕ̂
T
n (t)θ̂n(t − 1) + v̂(t), where the ϕ̂n(t) is

determined by the estimates v̂(t − i), i = 1, 2, . . . , nd .
Similarly to the procedure of forming the normalized
ellipsoid inEq. (13), the set of feasible parameter vector
θn is defined as follows:

E(P−1
n , θ̂n) = {θn ∈ R

nn : (θn − θ̂n)
T

P−1
n (θn − θ̂n) � σ 2

n }, (14)

where Pn is also a symmetric, positive definite shape
matrix that determines the position of the normal-
ized ellipsoid.Using the ellipsoid volumeminimization
principle, we list the ellipsoid volume minimization-
based filtering (EVMF for short) algorithm in the first
stage to compute θ̂n(t):

θ̂n(t) = θ̂n(t − 1) + βn(t)Pn(t)ϕ̂n(t)rn(t),

rn(t) = ŵ(t) − ϕ̂
T
n (t)θ̂n(t − 1),

Pn(t) = 1

αn(t)
[Pn(t − 1)

−βn(t)Pn(t − 1)ϕ̂n(t)ϕ̂
T
n (t)Pn(t − 1)

αn(t) + βn(t)gn(t)

]
,

σ 2
n (t) = 1 + qn(t) − αn(t)βn(t)r2n (t)

αn(t) + βn(t)gn(t)
,

gn(t) = ϕ̂
T
n (t)Pn(t − 1)ϕ̂n(t),

αn(t) = 1

σ 2
n (t − 1)

,

βn(t) = qn(t)

δ2(t)
.

The intermediate variable qn(t) is the positive real root
of the equation

λn,2(t)q
2
n (t) + λn,1(t)qn(t) + λn,0(t) = 0, (15)

where λn,2(t) := (nd − 1)σ 4
n (t − 1)g2n(t), λn,1(t) :=

[(2nd−1)δ2(t)−σ 2
n (t−1)gn(t)+r2n (t)]σ 2

n (t−1)gn(t),
λn,0(t) := [nd(δ2(t) − r2n (t)) − σ 2

n (t − 1)gn(t)]δ2(t).
If Eq. (15) does not have any positive real root, i.e.,
the sampling data at time t do not update the ellipsoid
E(P−1

n , θ̂n), let qn(t) = 0 at time t .

In the second stage, the other ellipsoidal set in
Eq. (13) is to be formed. The filter D̂−1(t, z) is obtained
after running the first stage of the EVMF algorithm and
it is easy to compute the estimates, such as ˆ̄uf(t) =∑nc

i=1 ĉi (t)Ûi (t), ŷf(t) = −∑nd
j=1 d̂ j (t)ŷf(t − j) +

y(t). The intermediate term Ûk(t) can be computed by
Ûk(t) := 1

D(z) fk(u(t)) = −∑nd
l=1 d̂l(t)Ûk(t − l) +

fk(u(t)). Construct the estimate of ϕf(t) with ˆ̄uf(t)
and Û j (t):

ϕ̂f(t) = [ ˆ̄uf(t − 1), ˆ̄uf(t − 2),

. . . , ˆ̄uf(t − nb), Û1(t), Û2(t), . . . , Ûnc (t)]T.

Similarly to the first stage of EVMFalgorithm, by using
the ellipsoid volume minimization principle, the esti-
mation of θ̂ s(t) can be obtained in the second stage.
By replacing v(t), yf(t), ϕf(t) and θ s in Eq. (12) with
their estimates v̂(t), ŷf(t), ϕ̂f(t) and θ̂ s(t) at time t , the
filtered noise vector can be computed as

v̂(t) = ŷf(t) − ϕ̂
T
f (t)θ̂ s(t).

In conclusion, the two-stage ellipsoid filtering-based
system modeling algorithm for Hammerstein models
can be summarized.

Algorithm 1 Framework of the two-stage ellipsoid
filtering-based system modelling algorithm.
Input: The initial values of the parameter estimation variables

and covariance matrices, such as θ̂ s(i) = 1nb+nc/p0, θ̂n(i) =
1nd /p0, ŷf (i) = 1/p0, ŵ(i) = 1/p0, ˆ̄uf (i) = 1/p0, ˆ̄u(i) =
1/p0, v̂(i) = 1/p0 for i � 0, Û j (i) = 1/p0 for i � 0 and
j = 1, 2, . . . , nc, p0 = 106, and give the basis functions
f j (·).

Output: The parameter estimates, θ̂ := {θ̂ s; θ̂n};
1: k ← 0;
2: L ← Constant;
3: for k = 1 : L
4: Collect the sampling data {u(k), y(k)} at time k;
5: Construct the information vectors ϕ̂s(k), ϕ̂n(k). Compute

ŵ(t);
6: Compute ρn(k), αn(k), find the first ellipsoid via the Pn(k)

and σ 2
n (k). Update parameter vector θ̂n(k);

7: Construct the filtered information factor ϕ̂f (k) and calculate
the undetermined coefficients;

8: Find the second ellipsoid via the Ps(k) and σ 2
s (k) and and

get the parameter vector θ̂ s(k);
9: Compute the filtered input ˆ̄uf (k) and the filtered noise term

v̂(k);
10: endfor
11: return θ̂ ;
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Fig. 1 Variation of the feasible parameter ellipsoid sets by the
EVMF algorithm

4 Examples

Example 1 In order to verify the feasibility of the pro-
posed method in this paper, a finite impulse response
system is studied. Themathematicalmodel can bewrit-
ten as:

y(t) = [1 − 0.6786z−1][−0.0176u(t)]
+[1 + 0.0286z−1 + 0.0202z−2]v(t),

where θ s = [−0.6786,−0.0176]T and θn = [0.0286,
0.0202]T are, respectively, the system term parame-
ter vector and the noise term parameter vector. The
unknown but bounded noise term ‖v(t)‖ � 1. In this
simulation, the input and noise signals are uniform ran-
dom numbers that are randomly distributed in the inter-
val [−1, 1]. By using the proposed EVMF algorithm,
the ellipsoid set of noise term in stage one and the other
ellipsoid set of the system noise term parameters are
changing their positions during the recursive steps. The
noise term ellipsoid sets and estimation errors via sam-
pling time are shown in Figs. 1 and 2, respectively.

From Figs. 1 and 2, it can be seen that

1. The volumes of the ellipsoids reduce increasing
slower as the sampling time goes, which shows the
good convergence of the proposed algorithm;

2. The unknown parameter vectors can be directly
obtained from the centers of the ellipsoids;

3. The elliptical track illustrates the feasible set at each
time instant, and the proposed ellipsoids are hardly
changing their positions, which means the param-
eter estimates are converging to the true values.
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Fig. 2 The estimation errors via sampling time by the EVMF
algorithm

Example 2 Consider the mathematical model:

y(t) = [1 + bz−1][cu(t)] + [1 + d1z
−1 + d−2

2 ]v(t),

where θ s = [b, c]T = [0.2582,−0.8415]T, and θn =
[d1, d2]T = [0.0865, 0.0427]T are the system term
parameter vector and the noise term parameter vec-
tor, respectively. The noise term for this example is
narrow-band random noise v(t), which defined by a
unified model [12]:

v(t) = h cos[	t + γW (t)] (16)

where h is the intensity of the random excitation, 	 is
the center frequency of the random excitation, W (t) is
the standard Wiener process, and γ � 0 is the band-
width of the random excitation. When the bandwidth γ

is small, v(t) is a narrow-band random noise. The ran-
dom process v(t) defined by Eq. (16) can be rewritten
as follows:

v(t) = h cosϕ(t)

ϕ̇(t) = 	 + γ ζ(t)

ζ(t) = Ẇ (t)

where the formal derivative ζ(t) of the unitWiener pro-
cess is a Gaussian white noise. Similarly to the works
in [12], let the spectral density Sv(w) of noise term v(t)
be 1 when 0 < w � 2w0, and 0 at the rest. Then, ζ(t)
can be simulated by:

ζ(t) =
√
4w0

N

N∑

k=1

cos
[w0

N
(2k − 1)t + ϕk

]

where ϕk is a sequence of independent and identically
distributed random variables that uniformly distributed
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Fig. 3 Variation of the feasible parameter ellipsoid sets by the
EVMF algorithm under narrow-band random noise disturbance

over (0, 2π ], where N is a larger integer. Take	 = 2.0,
w0 = 1.0, γ = 0.01, h = 1.0, N = 3100, and set
the input signal be uniform random numbers that are
randomly distributed in the interval [−1, 1]. By using
the proposed EVMF algorithm, the noise term ellipsoid
sets via sampling time are shown in Fig. 3. From Fig. 3,
it can be concluded that the EVMF algorithm is also
effective in estimating the system parameters under the
narrow-band random noise disturbance.

5 Conclusions

This paper presents a two-stage ellipsoid estimation
algorithm for the Hammerstein nonlinear system with
unknown noises. The probability distribution of the
noise term is unknown, and ellipsoidal sets are formed
to contain the feasible noise parameters. This work can
be also extended to deal with other types of nonlinear
systemmodeling problems, such as theWiener nonlin-
ear system modeling and parameter estimation for the
error-in-variables systems.
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