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Abstract A dual family of dissipative structure-
dependent integration methods is proposed for struc-
tural nonlinear dynamics. It not only can be a family
of two-step integration methods but also can be a fam-
ily of one-step integration methods correspondingly.
This family of methods is derived from an ingenious
arrangement of the displacement difference equation,
where the previous step data are applied to replace
the previous two-step data by means of the asymp-
totic equation of motion. It has desirable properties,
such as unconditional stability, explicitness of each
time step, second-order accuracy and high-frequency
numerical damping. In addition, it has no adverse prop-
erties that have been found in some structure-dependent
integration methods, such as weak instability, condi-
tional stability for stiffness hardening systems, high-
frequency overshooting in steady-state responses and
poor capability of seizing high nonlinearity. This fam-
ily of methods contains most current semi-explicit,
structure-dependent integration methods as it is a fam-
ily of two-step integrationmethods although it also cov-
ers many brand-new members of two-step integration
methods, and it is a brand-new family of one-step inte-
gration methods. It has the same properties as those
of the generalized-α method for linear elastic systems.
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However, it saves many computational efforts for solv-
ing inertial problems due to no involvement of nonlin-
ear iterations per time step.
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1 Introduction

Time integration methods are often applied to solve
the discretized equations of motion. Many integra-
tion methods have been successfully developed for
structural dynamics applications, such as the Houbolt
method [1], Newmark method [2], Wilson-θ method
[3], Park method [4], HHT-α method [5], WBZ-
α method [6], generalized-α method [7], Chang α-
functionmethod [8], themethods developed by Tamma
et al. [9–12] and many other methods [13–21]. An inte-
gration method must be a convergent method [22–24]
and the convergence is referred to stability and con-
sistency based on the Lax equivalence theory [25].
In general, numerical damping can be used to extin-
guish the spurious oscillations of the unresolved high-
frequency modes caused by spatial discretization. In
addition, the convergence of nonlinear iterations can
be improved if numerical damping is used to remove
the spurious growth of the high-frequency modes in
solving highly nonlinear problems. As a result, it is
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advantageous for an integration method to have con-
trollable numerical dissipation to solve inertial prob-
lems, where the total response is governed by low-
frequency modes, while the high-frequency responses
are of no interest. Some integration methods have been
developed to have desired numerical damping, such as
the Wilson-θ method [3], HHT-α method [5], WBZ-α
method [6], the generalized-α method [7], Chang α-
function method [8], and the methods developed by
Tamma et al. [9–12].

The numerical properties, such as explicitness,
unconditional stability, second-order accuracy, high-
frequency numerical damping, and no overshoot, are
often desired for an integration method. However, it
was shown by Dahlquist [26] that there is no explicit,
unconditionally stable method among the linear multi-
step methods. Hence, there is no conventional integra-
tionmethods,whose coefficients of the difference equa-
tions are scalar constants, that can combine explicit
formulation and unconditional stability together. This
Dahlquist barrier is inapplicable to structure-dependent
integration methods because their coefficients of the
difference equations methods are no longer limited
to be scalar constants but can be matrices of the ini-
tial structural properties and time step. In fact, some
structure-dependent integration methods have been
proposed for time integration. They not only have
unconditional stability but also explicit formulation
[27–34] although they possess no numerical damp-
ing. Some families of the structure-dependent inte-
gration methods were developed to have desirable
numerical damping in addition to unconditional stabil-
ity and explicit formulation [35–37]. The main draw-
back of the Chang family methods [35,36] is that
they are two-step methods, and a distinct starting pro-
cedure is needed for time integration. Although the
KR-α method [37] is a one-step method, it possesses
some adverse properties [38], such as a weak instabil-
ity, a conditional stability for stiffness hardening sys-
tems, and a high-frequency overshoot in steady-state
responses.

Two adverse properties are generally found for
structure-dependent integration methods. One is that
unconditional stability can be achieved only for lin-
ear elastic and stiffness softening systems but not for
stiffness hardening systems [39] and the other is that an
adverse overshootmay occur in high-frequency steady-
state responses [40]. A stability amplification factor
has been employed to improve the conditional stability

property for stiffness hardening systems [39]. Besides,
a loading term has been introduced into the displace-
ment and/or velocity difference equations to get rid
of the adverse high-frequency overshoot in steady-
state responses [40]. In this work, both techniques are
used to develop a dual family of structure-dependent
integration methods, which can be a family of one-
step or two-step integration methods. This family of
methods covers most structure-dependent integration
methods proposed by Chang [27–30,35,36]. It can
inherit the favorable properties from general structure-
dependent integration methods, such as a second-order
accuracy, the explicitness of each time step, an uncon-
ditional stability for linear elastic and stiffness soften-
ing systems and an efficient computing, while it has
no adverse properties, such as a conditional stabil-
ity for stiffness hardening systems, a high-frequency
overshoot in steady-state responses and no weak insta-
bility. The basic assumptions and details for devel-
oping a new family of structure-dependent integra-
tion methods are presented. Numerical properties of
this family of methods are explored for both linear
and nonlinear systems. In addition, nonlinear examples
are also applied to confirm the feasibility, numerical
properties and computational efficiency. Finally, one
non-dissipative subfamily and two dissipative subfam-
ilies of this family of methods are also presented and
discussed.

2 Development

In structural dynamics or earthquake engineering, the
differential equation of motion for a single degree of
freedom can be expressed as:

mü + cu̇ + ku = f (1)

where f , k, c, and m are the external force, stiff-
ness, viscous damping coefficient, and mass, respec-
tively; and ü, u̇ and u are the acceleration, velocity,
and displacement, respectively. In general, an initial-
value problem is to find a solution of this equation to
satisfy the specified initial conditions. An integration
method can be applied to solve Eq. (1), and it generally
consists of the equation of motion and two difference
equations, where one is for displacement and the other
is for velocity. This structure is adopted in this work
for developing a new family of methods.
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2.1 Prerequisite techniques

Two techniques will be applied to develop the new
family of methods. One is a loading term [40] and the
other is a stability amplification factor [39]. Structure-
dependent integration methods in early development
involve no loading term in either displacement or veloc-
ity difference equation, and thus an overshoot in steady-
state responses is found, and it becomes significant
as the product of the natural frequency and step size
increases. A remedy has been proposed by introducing
a loading term into the displacement and/or velocity
difference equation to eliminate the adverse overshoot
in steady-state responses. In general, this loading term
can be determined from the local truncation error of an
integration method.

Most structure-dependent integration methods [27–
33,35,36] can have unconditional stability for lin-
ear elastic and stiffness softening systems, while they
become conditionally stable for stiffness hardening
systems. A parameter has been introduced to moni-
tor the stiffness change and called the instantaneous
degree of nonlinearity [28–30]. It is defined as ratio
δi+1 = ki+1/k0, where ki+1 is the stiffness at the end
of the (i + 1)th time step. A case of δi+1 = 1 indicates
the instantaneous stiffness at the end of the (i + 1)th
time step equal to the initial stiffness. A stiffness hard-
ening of δi+1 > 1 implies that the instantaneous stiff-
ness is larger than the initial stiffness at the end of the
(i + 1)th time step, and a stiffness softening case of
0 < δi+1 < 1 implies that the instantaneous stiffness
is less than the initial stiffness. In general, a structure-
dependent integration method can only have an uncon-
ditional stability in the interval of δi+1 ≤ 1 while it
becomes conditionally stable as δi+1 > 1. This prop-
erty will cause an inconvenience or limitations since
δi+1 might not be known as a priori before dynamic
analysis [27–33,35,36]. Hence, a stability amplifica-
tion factor σ has been used to augment an uncondi-
tional stability interval. The concept to propose such
a technique originates from the virtual enlargement of
k0 [39]. This is because that an unconditional stability
interval can be augmented if the initial stiffness is vir-
tuallymodified from k0 to σk0. Thus, the unconditional
stability interval will be amplified from ki+1 ≤ k0 to
ki+1 ≤ σk0 because a structure- dependent integration
method generally has an unconditional stability inter-
val of δi+1 ≤ 1.

2.2 Two-step method

Since a structure-dependent integration method can
generally combine unconditional stability and explicit
formulation together [27–36], it is chosen for this
development. An asymptotic equation of motion and
the velocity difference equation involved in the New-
mark family method have been used to successfully
develop many families of dissipative integration meth-
ods, such as the HHT-α method, WBZ-α method
and generalized-α method. Thus, both are adopted
herein for developing a new family of dissipative,
structure-dependent integration methods. Meanwhile,
two prerequisites must be assumed for the proposed
displacement difference equation so that the devel-
oped family of structure-dependent integration meth-
ods is semi-explicit and dissipative. One is to have an
explicit formulation and the other is to have structure-
dependent coefficients. In the pilot study, a one-step,
structure-dependent displacement difference equation
is assumed at first. However, it is unable to yield such
a displacement difference equation to form a family
of structure-dependent integration methods that has
desired numerical properties. As an alternative, a two-
step displacement difference equation is assumed. In
fact, the proposed family of methods is expressed as:

(1 − α1)mai+1 + α1mai + (1 − α2) cvi+1

+α2cvi + (1 − α3) kdi+1 + α3kdi

= (1 − α3) fi+1 + α3 fi

di+1 = di + β1 (�t) vi + β2 (�t)2 ai

+β3

[
α1 (�t)2 ai−1 + α22ξ	i−1 (�t) vi−1

+α3	
2
i−1di−1 − α3Fi−1

]
+ pi+1

vi+1 = vi + (�t)
[
(1 − γ ) ai + γ ai+1

]
(2)

where 	i−1 = ωi−1 (�t) and the natural frequency
ωi−1 = √

ki−1/m is determined from the stiffness
ki−1 at the end of the of (i − 1)th time step; and fi ,
ai , vi , and di are the nodal external force, accelera-
tion, velocity and displacement, respectively. In addi-
tion, Fi−1 = 1

m (�t)2 fi−1 is defined for brevity and
ξ is a viscous damping ratio. Notice that pi+1 is a
function of dynamic loading and thus it is a loading
term, which has never been found in a conventional
difference equation and can be used to remove a high-
frequencyovershoot in steady-state responses [40]. The
parameters α1 to α3 are scalar constants, while β1 to
β3 are structure-dependent coefficients. Although α2 is
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assumed to be different from α3 at first, it was man-
ifested from the local truncation error that the choice
of α2 = α3 can have a better order of accuracy. Thus,
α2 = α3 is adopted subsequently.

It is seen in Eq. (2) that the displacement difference
equation is a two-step difference equation since the pre-
vious two-step data are involved. Notice that an inge-
nious arrangement of the step data of the (i −1)th time
step is intended to transform the two-step displacement
difference equation into a one-step displacement differ-
ence equation by applying the asymptotic equation of
motion. In fact, the asymptotic equation ofmotion after
adopting α2 = α3 can be alternatively written as:

α1 (�t)2 ai−1 + α22ξ	i−1 (�t) vi−1

+α2	
2
i−1di−1 − α2Fi−1 = − (1 − α1) (�t)2 ai

− (1 − α2) 2ξ	i (�t) vi

− (1 − α2) 	2
i di + (1 − α2) Fi (3)

where ci = 2ξωim and 	2
i = (�t)2(ki/m) are used

to replace the expressions of m, c and k in Eq. (1). The
left and right sides of Eq. (3) involve only the data at
the end of the (i −1)th and i th time steps, respectively.
After substituting Eq. (3) into the second line of Eq.
(2), it becomes:

di+1 =
[
1 − (1 − α2) β3	

2
i

]
di

+ [β1 − (1 − α2) β32ξ	i ] (�t) vi

+ [β2 − (1 − α1) β3] (�t)2 ai

+ (1 − α2) β3Fi + pi+1 (4)

This equation only involves the i th time step data, and
thus the second line of Eq. (2) reduces to a one-step
difference equation. As a result, a family of one-step
integration methods is achieved.

The next step is to appropriately determine the
structure-dependent coefficients β1 to β3. At first, these
coefficients are assumed to be functions of the time step
and initial structural properties, i.e., 	0 = ω0(�t) and
ω0 = √

k0/m, where k0 is an initial stiffness. This
assumption is intended to avoid the recalculation of
these coefficients during time integration. In addition,
each of β1 to β3 is assumed to be a fractional of 	0,
i.e., βi = Ni/D, i = 1, 2, 3, and the order of 	0 for
Ni must be less than that of D so that an uncondi-
tional stability can be obtained. This is because that
an overshoot or even instability will experience in the
response if the order of 	0 for Ni is equal to or larger
than that of D. It is appropriate to assume that D is a
quadratic polynomial function of	0, which are learned

fromconventional implicit integrationmethods and can
be expressed as:

D = (1 − α1) + (1 − α2) γ 2ξ	0 + (1 − α2) βσ	2
0

(5)

where the choice of 2ξ	0 as a base of the linear poly-
nomial term of 	0 is because it is related to c0 since
c0 = 2ξ	0m/(�t), and the choice of 	2

0 as a base of
the quadratic polynomial term of 	0 is because it is
related to k0 since 	2

0 = (�t)2(k0/m). Besides, β and
γ are undetermined scalar constants for governing the
numerical properties. Notice that σ is a stability ampli-
fication factor,which canmagnify an unconditional sta-
bility interval [39]. This choice of D is intended to have
an unconditional stability and a second-order accuracy.
On the other hand, Ni = xi + yi2ξ	0, i = 1, 2, 3 can
be taken, where Ni is assumed to be a linear polyno-
mial function of	0. Hence, the highest order of	0 for
Ni is only 1 and is less than that of D, which is 2. This
assumption of βi can achieve two goals. One is that the
coefficient βi will become a constant of xi/(1− α1) in
the limit 	0 → 0 and the other is that it will tend to
zero in the limit 	0 → ∞. Hence, for a small 	0 or a
low-frequency mode, the assumed structure-dependent
displacement difference equation will degenerate into
a conventional displacement difference equation form
while for a large	0 or a high-frequencymode, the coef-
ficient βi approaches zero, which leads to di+1 ≈ di ,
and thus there will be no abnormal amplitude growth or
even numerical instability in responses. As a result, the
proposed family of methods can accurately integrate
low-frequency modes as using a conventional integra-
tion method while no instability for high-frequency
modes can be guaranteed because di+1 ≈ di is found.

Convergence is a prerequisite for a numerical
method. Hence, the assumed coefficients β1 to β3 must
be determined to meet this requirement. A local trun-
cation error can be used to determine an order of accu-
racy and thus the proof of consistency [22]. At the
early development stage, a local truncation error is con-
structed from a free vibration response for determining
the order of accuracy. Thus, zero dynamic loading is
assumed for simplicity, which means fi = fi+1 = 0
and thus pi+1 = 0. In addition, σ = 1 is also taken
for simplifying the determinations of β1 to β3. The
derivation of a local truncation error E for a structure-
dependent integration method can be found in [35,36].
Using the local truncation error, β1 to β3 are appropri-
ately determined so that the requirement of consistency
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and thus a first-order accuracy are met. As a result, they
are found to be:

β1 = 1

D

[
(1 − α1) + (1 − α2) γ 2ξ	0

]

β2 = β

D

1 − α1

1 − α2
+ 1

D

[
1

2
(1 − α1)

−β − (1 − α2)

(
β − 1

2
γ

)
2ξ	0

]

β3 = β

D

1

1 − α2
(6)

After determining these coefficients, the corresponding
local truncation error E can be used to reveal the order
of accuracy of the proposed family of methods. As a
result, it is simplified to be:

E = − 1

D

(
α1 − α2 + γ − 1

2

)[
(�t)

...
u i + 1

2
(�t)2

....
u i

]

+ 1

D
β	2

0üi

+ 1

D

(
1

2
γ − 1

12

)
2ξ	0 (�t)

...
u i

+ 1

D

(
α2γ − 1

2
α2 + 1

12

)
(�t)2

....
u i + O

[
(�t)3

]

(7)

A minimum order of accuracy 1 can be obtained and
thus the consistency is verified for any α1, α2, β, γ

and ξ . Besides, a second-order accuracy can be fur-
ther yielded if α1 − α2 + γ − 1

2 = 0 is met. Since a
second-order accuracy is generally required for an inte-
gration method, the attention of this family of methods
is restricted to the values of α1, α2 and γ for which
α1 − α2 + γ − 1

2 = 0 is satisfied in the subsequent
study.

A stability amplification factor σ can be applied to
multiply the terms related to 	2

0 in the displacement
difference equation to magnify an unconditional sta-
bility interval. As a result, Eq. (5) is used to define
the denominator of βi . Based on this displacement dif-
ference equation, a loading term will be further deter-
mined. A local truncation error derived from a forced
vibration case can be applied to determine the load-
ing term. For this purpose, the local truncation error of
the proposed family of methods, where σ , fi , fi+1 and
pi+1 are included in the formulation, is found to be:

E = − 1

D

(
α1 − α2 + γ − 1

2

)[
(�t)

...
u i + 1

2
(�t)2

....
u i

]

+ 1

D
β	2

0üi + 1

D

(
1

2
γ − 1

12

)
2ξ	0 (�t)

...
u i

+ 1

D

(
α2γ − 1

2
α2 + 1

12

)
(�t)2

....
u i

+ 1

BD
(1 − α2) β (σ − 1) 2ξ	0	0ω0u̇i

+ 1

BD
(1 − α2) β (σ − 1) [1 + (−α2

+γ + 1

2

)
2ξ	0

]
	2
0üi − p̈i+1

− 1

B

(
pi+1 − pi

) − 1

B
2ξ	0 pi+1

+ 1

B
(α2 − γ ) 2ξ	0

(
pi+1 − pi

)

− 1

BD
α2β

[
1 − (α2 − γ ) 2ξ	0

] 1

m
(�t)2 f̈i

+ 1

BD
β

[
1 − (2α2 − γ ) 2ξ	0

] [
1

m
(�t) ḟi

+1

2

1

m
(�t)2 f̈i

]
+ 1

BD
β2ξ	0

1

m
fi+1

+O
[
(�t)3

]
(8)

where B = (1 − α1) + (1 − α2) γ 2ξ	0. Apparently,
this equation will reduce to Eq. (7) for the case of
σ = 1, fi = fi+1 = 0 and pi+1 = 0. In general, the
proposed family of methods can only possess a first-
order accuracy for any combination of α1, α2, β, γ ,
ξ , σ and the dynamic loading of fi as well as fi+1 in
addition to pi+1 = 0. It can be found that the satis-
faction α1 − α2 + γ − 1

2 = 0 is, in general, unable
to have a second-order accuracy except for free vibra-
tion cases. It can be found that the term β	2

0üi/D will
become a dominant error term for a large 	0 or a high-
frequency mode as σ = 1 and ξ = 0 since it is the only
quadratic and also the highest term of 	0. On the other
hand, for the case of σ �= 1 and ξ �= 0, the error
terms of (1 − α2) β (σ − 1) 2ξ	0	0ω0u̇i/BD and
(1 − α2) β (σ − 1)

[
1 + (−α2 + γ + 1

2

)
2ξ	0

]
	2

0üi/
BD might also become significant. Consequently, it
is very important to determine an appropriate loading
term pi+1 to remove these error terms. As a result, the
loading term is found to be:

pi+1 = 1

D
(1 − α2) βσ

1

m
(�t)2 ( fi+1 − fi ) (9)

After substituting this term into Eq. (8), it is largely
simplified to be:

E = − 1

D

(
α1 − α2 + γ − 1

2

) [
(�t)

...
u i + 1

2
(�t)2

....
u i

]

+ 1

D

(
α2γ − β − 1

2
α2 + 1

12

)
(�t)2

....
u i

− 1

D

(
β − 1

2
γ + 1

12

)
2ξ	0 (�t)

...
u i
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− 1

BD
(1 − α2) β (σ − 1)

[
(2ξ	0)

2 üi

+2 (2ξ	0) (�t)
...
u i + (�t)2

....
u i

]
+ O

[
(�t)3

]
(10)

Clearly, the local truncation error involves no loading
terms and a second-order accuracy can be generally
obtained only if α1 − α2 + γ − 1

2 = 0 is satisfied.
After determining the loading term pi+1 as shown

in Eq. (9), the formulation of the proposed family of
methods is completely yielded and it is a two-step inte-
gration method. It will reduce to the first Chang dissi-
pativemethod [35] ifα1 = 0 andα2 = −α are adopted.
On the other hand, it will degenerate into the second
Chang dissipative method [36] if α1 = α and α2 = 0
are chosen. The case of α1 = α2 = 0 can denote the
non-dissipative Chang family method [30], where the
member of β = γ = 1

2 is the improved Chang explicit
method [29] and themember ofβ = 1

4 and γ = 1
2 is the

Chang explicit method [27]. Hence, most semi-explicit
structure-dependent integration methods developed by
Chang are covered by the proposed family of methods.
For brevity, the proposed family of methods is referred
as the Chang α-controlled method and is abbreviated
as CAM herein. In general, the non-dissipative Chang
family method is a one-step method, while the two
Chang dissipative methods are two-step methods.

2.3 One-step method

A one-step method is generally preferred over a two-
step method. Clearly, Eq. (2) is a two-step method and
it can be converted to a one-step method if Eq. (4) is
employed to replace the second line of Eq. (2). In Eq.
(3), all the terms on the left side are the data at the
(i − 1)th time step, while those on the right side are
the data at the i th time step. Thus, the use of the right
side to replace the left side implies that the data at the
(i − 1)th time step, i.e., the terms of di−1, vi−1 and
ai−1, will disappear from the displacement difference
equation as shown in Eq. (4). As a result, a family of
one-step integration methods can be obtained and is:

(1 − α1)mai+1 + α1mai + (1 − α2) cvi+1 + α2cvi

+ (1 − α2) kdi+1 + α2kdi = (1 − α2) fi+1 + α2 fi

di+1 = di − β̄1	
2
i di + β̄2 (�t) vi

− β̄12ξ	i (�t) vi + β̄3 (�t)2 ai + p̄i+1

vi+1 = vi + (�t)
[
(1 − γ ) ai + γ ai+1

]
(11)

where

β̄1 = (1 − α2) β3 = 1

D
β

β̄2 = β1 = 1

D

[
(1 − α1) + (1 − α2) γ 2ξ	0

]

β̄3 = β2 − (1 − α1) β3 = 1

D

{[
1

2
(1 − α1) − β

]

− (1 − α2)

(
β − 1

2
γ

)
2ξ	0

}

p̄i+1 = (1 − α2) β3Fi + pi+1

= 1

mD
(1 − α2) βσ (�t)2 ( fi+1 − fi )

+ 1

mD
β (�t)2 fi (12)

The coefficients β̄1 to β̄3 and p̄i+1 are functions of
ξ	0 and 	2

0, which can be obtained after solving an
eigenvalue problem. However, it will cost much time
for solving an eigenvalue problem for a matrix of large
order, and therefore, it is prohibited. There is an alter-
native way to avoid solving an eigenvalue problem by
using c0 = 2ξω0m and 	2

0 = (�t)2 (k0/m) to replace
ξ	0 and 	2

0 in Eq. (12). As a result, it becomes:

β̄1 = 1

D
βm

β̄2 = 1

D

[
(1 − α1)m + (1 − α2) γ (�t) c0

]

β̄3 = 1

D

{[
1

2
(1 − α1) − β

]
m

− (1 − α2)

(
β − 1

2
γ

)
(�t) c0

}

p̄i+1 = 1

D
(1 − α2) βσ (�t)2 ( fi+1 − fi )

+ 1

D
β (�t)2 fi (13)

whereD = (1 − α1)m+(1 − α2) γ (�t) c0+(1 − α2)

βσ (�t)2 k0. Apparently, the coefficients β̄1 to β̄3 and
p̄i+1 are functions of the time step and initial struc-
tural properties, i.e.,m, c0 and k0. Thus, they are struc-
ture dependent andwill remain invariant for a complete
step-by-step integration procedure.

3 Appropriate parameters

Because the numerical properties of CAM are dom-
inated by parameters α1, α2, β and γ , it is needed
to identify their limitations so that desired numerical
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properties can be obtained. Notice that a stability anal-
ysis is generally required for the proof the convergence
of an integration method. The application of CAM to
calculate a forced vibration response for a linear elas-
tic, single-degree-of-freedom system can be written in
a recursive matrix form as:

Xi+1 = AXi + L
[
(1 − α2) fi+1 + α2 fi

]
(14)

where Xi+1 = [
di+1, (�t)vi+1, (�t)2ai+1

]T
is

defined; A is an amplification matrix and L is a load
vector. The characteristic equation of the matrix A can
be derived from |A − λI| = 0 and is:

λ3 − A1λ
2 + A2λ − A3 = 0 (15)

where λ is an eigenvalue of the matrix A and the coef-
ficients A1, A2 and A3 are found to be:

A1 = 2 − 1

D

[
α1 + (1 − α2 + α2γ ) 2ξ	0

+
(

α2β − α2γ − 1

2
α2 + γ + 1

2

)
	2

0

]

− 1

BD

[
α1 + (1 − α2 + α2γ ) 2ξ	0

]

× (1 − α2) β (σ − 1)	2
0

A2 = 1 − 1

D

[
2α1 + (1 − 2α2 + 2α2γ ) 2ξ	0

+
(
2α2β − 2α2γ + γ − 1

2

)
	2

0

]

− 1

BD

[
2α1 + (1 − 2α2 + 2α2γ ) 2ξ	0

]

× (1 − α2) β (σ − 1)	2
0

A3 = − 1

D

[
α1 − α2 (1 − γ ) 2ξ	0

+α2

(
β − γ + 1

2

)
	2

0

]

− 1

BD

[
α1 − (1 − γ ) α22ξ	0

]

× (1 − α2) β (σ − 1)	2
0 (16)

Clearly, these coefficients will be largely reduced for
the case of σ = 1.

It is complicated to analytically obtain the three
eigenvalues of Eq. (15) for a general value of	0 and σ .
Therefore, to avoid the very complex algebraic manip-
ulations, stability conditions for the limiting cases of
	0 → 0 and 	0 → ∞ in addition to σ = 1 are exam-
ined first. Although only the case of σ = 1 is consid-
ered, it will be shown later that the obtained results are
applicable to a general value of σ . Both limiting cases

can be applied to determine the limitations on α1, α2,
β and γ for CAM. Notice that the three eigenvalues
of the characteristic equation for a general 	0 can be
numerically calculated. After obtaining the asymptotic
values of the coefficients A1, A2 and A3 in the limit
	0 → 0, the characteristic equation reduces to:
(

λ + α1

1 − α1

)
(λ − 1)2 = 0 (17)

The principal roots are λ1,2 = 1 and the spurious root
is λ3 = −α1/(1 − α1). Based on |λ3| ≤ 1, an interval
of −∞ ≤ α1 ≤ 1/2 is found. Besides, Eq. (15), in the
limit 	0 → ∞, becomes:
(

λ + α2

1 − α2

) [
λ2 −

(
2 − γ + 1

2

β

)
λ

+
(
1 − γ − 1

2

β

)]
= 0, (18)

and its roots are found to be:

λ1,2 = 1 − γ + 1
2

2β
±

√√√√
(

γ + 1
2

2β

)2

− 1

β
,

λ3 = − α2

1 − α2
(19)

where λ3 only depends on α2 and is independent of β

and γ while λ1,2 are functions of β and γ . A simple
way can be used to determine the relationship between
β and γ by assuming that the two principal eigenvalues
are identical and real. As a result, it leads to:

β = 1

4

(
γ + 1

2

)2

= 1

4
(1 − α1 + α2)

2 (20)

where γ = 1/2 − α1 + α2 is employed since it is
required to have a second-order accuracy. Hence, the
principal roots are found to be λ1,2 = (−1 − α1 +
α2)/(1 − α1 + α2) in addition to the spurious root of
λ3 = −α2/(1 − α2) after substituting β and γ into
Eq. (19). These eigenvalues will be further applied to
determine the parameters α1 and α2 next.

There is a great idea to simplify the stability condi-
tions in the limit 	0 → ∞ by assuming that

∣∣λ1,2
∣∣ =

|λ3| = ρ∞, which implies that the characteristic equa-
tion of CAM possesses a triple root, and its absolute
value is equal to the spectral radius in correspondence
to 	0 → ∞. The spectral radius of an integration
method is defined as ρ = max

( |λ1| , |λ2| , |λ3|
)
and

the amount of numerical dissipation is closely related
to its value. Clearly, ρ∞ is a special case of ρ, which
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is the spectral radius for a general value of 	0. As a
result, the parameters α1 and α2 are found to be:

α1 = −1 + 2ρ∞
1 + ρ∞

, α2 = ρ∞
1 + ρ∞

(21)

where ρ∞ can vary in the interval of 0 ≤ ρ∞ ≤ 1 so
that the stability conditions can be met. This interval
of ρ∞ leads to −1 ≤ α1 ≤ 1/2, which is in the inter-
val of −∞ ≤ α1 ≤ 1/2 that is required by the limiting
case of	0 → 0. Notice that ρ∞ can provide a measure
of numerical damping for high-frequency modes. This
stability analysis in conjunction with the proof of con-
sistency implies convergence.As a summary, CAMcan
have an unconditional stability, a second-order accu-
racy and a desired numerical damping if the following
relationships are satisfied:

β = 1

4
(1 − α1 + α2)

2 , γ = 1

2
− α1 + α2 (22)

where α1 and α2 are determined from Eq. (21). Clearly,
CAM only has a free parameter ρ∞.

4 Numerical properties

After applying the limiting cases of 	0 → 0 and
	0 → ∞ to determine the relationships for the param-
eters α1, α2, β and γ , it is of interest to assess the
numerical properties of CAM for a general value of	0.
Because Eq. (15) with the coefficients given in Eq. (16)
for the case of σ = 1 for CAM possesses exactly the
same characteristic equation as that of the generalized-
αmethod, the numerical properties ofCAMwithσ = 1
for one-step and two-step methods for linear elastic
systems will be the same as those of the generalized-
α method, such as stability conditions, relative period
error, and numerical damping if these properties are
derived from the same characteristic equation. Conse-
quently, there is no need to re-evaluate the basic numer-
ical properties of CAM for linear elastic systems. How-
ever, the analytical results are summarized for brevity.
In addition, the other properties will be thoroughly
explored for both linear elastic and nonlinear systems,
such as stability, overshoot and weak instability.

4.1 Basic numerical properties

The basic numerical properties of CAM with σ = 1,
such as the spectral radius, relative period error and

numerical damping, are summarized in Fig. 1. The vari-
ation of the spectral radius versus �t/T0 for different
ρ∞ is shown in Fig. 1a. It is revealed by each curve that
the spectral radius ρ tends to become the same as ρ∞
when �t/T0 is large enough, say 1000. It is also seen
that the spectral radius goes down from1 toρ∞ for each
curve as 	0 goes up from zero to infinity. As a result,
CAM is unconditionally stable for linear elastic sys-
tems. This fact in conjunction with consistency implies
the convergence of CAM. Figure 1b shows variations
of relative period error versus �t/T0, while variations
of numerical damping ratio versus �t/T0 is displayed
in Fig. 1c. In Fig. 1b, the curve of ρ∞ = 1.0 has the
smallest relative period error. In general, the relative
period error rises with the decrease of ρ∞ for a given
�t/T0. The curve for ρ∞ = 1.0 has zero numerical
damping as shown in Fig. 1c. On the other hand, the
rest curves can possess a favorable numerical damping.
In fact, each curve has a zero tangent at the origin and
subsequently a controlled turn upward. Hence, CAM
can have adequate high-frequency numerical damp-
ing while the low-frequency responses are not affected
too strongly. In addition, the closer the value of ρ∞
approaching zero, the larger the numerical damping
and period distortion.

4.2 Improved stability by σ

To improve stability property for CAM, a stability
amplification factor σ is adopted to adjust the displace-
ment difference equation. Although a slight modifica-
tion is made for the displacement difference equation,
it might alter the numerical properties of CAM. As a
result, both the linear and nonlinear performances of
CAMwith σ should be further evaluated. For a nonlin-
ear system, the stiffness might vary per time step and
thus the amplification matrix varies accordingly. Thus,
the amplification matrixA in Eq. (15) must be replaced
by Ai+1, which is introduced to represent the amplifi-
cation matrix at the end of the (i + 1)th time step.
Hence, Ai+1 = [Amn], m, n = 1, 2, 3. The explicit
expressions of Amn are found to be:

A11 =
(
1 − β̄1	

2
i

)
A12 = β̄2 − β̄12ξ	i A13 = β̄3

A21 = − γ

B

[
	2
i+1 + (1 − α2) β̄1	

2
i 	

2
i+1

]

A22 = 1 − γ

B

[
2ξ	i+1 + (1 − α2)

(
β̄2 − β̄12ξ	i

)
	2
i+1

]
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Fig. 1 Numerical
properties for linear elastic
systems

A23 = 1 − γ − γ

B
{α1 + (1 − α2)

×
[
(1 − γ ) 2ξ	0 + β̄3	

2
i+1

]}

A31 = − 1

B

[
	2
i+1 + (1 − α2) β̄1	

2
i 	

2
i+1

]

A32 = − 1

B

[
2ξ	i+1 + (1 − α2)

(
β̄2 − β̄12ξ	i

)
	2
i+1

]

A33 = − 1

B
{α1 + (1 − α2)

×
[
(1 − γ ) 2ξ	i+1 + β̄3	

2
i+1

]}
(23)

where B = (1 − α1) + (1 − α2) γ 2ξ	0. In addition,
the relations of 	2

i = δi	
2
0 and 	2

i+1 = δi+1	
2
0 can

be found from the definitions of δi and δi+1. Similarly,
the characteristic equation of the matrix Ai+1 at the
end of the (i + 1)th time step can be obtained from
|Ai+1 − λI| = 0 and will have the same form as shown
in Eq. (15), where A1 = trace of Ai+1; A2 = sum
of principal minors of Ai+1 and A3 = determinant of
Ai+1. Although it is complicated to derive the mathe-
matical expressions of A1, A2 and A3 for evaluating the
numerical properties of CAM, it can be done numer-
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Fig. 2 Variation of upper
stability limit with δi+1 for
CAM

ically. Notice that the assessments of CAM for non-
linear systems are conducted only for a specific time
step but not for a whole integration procedure due to
the variation of stiffness. However, the results are still
indicative since a whole integration procedure consists
of each time step.

Using the characteristic equation of Ai+1, the three
eigenvalues of CAM can be obtained for given ξ , δi
and δi+1 for a specific 	0, which will start from a very
small to very large values. The upper stability limit	(u)

0
is the maximum value of 	0, whose spectral radius is
less than or equal to 1. A variety of nonlinear cases
will be simulated by the combinations of δi and δi+1

in the subsequent study. However, δi = δi+1 = δ is
generally assumed for brevity, since δi+1 is close to
δi for the consecutive time steps. To substantiate that
σ can enlarge an unconditional stability interval, the
variations of	(u)

0 versus δ are shown in Fig. 2 for CAM
with ρ∞ = 1.0 and 0.5. A part of the curve disappears
in each plot and this part is corresponding to an infinite
upper stability limit. An unconditional stability interval
of δ ≤ σ is found for CAM with ρ∞ = 1.0, while
it will become conditionally stable in the interval of
δ > σ for different ξ = 0, 0.1 and 0.2. Clearly, σ =
1 implies that the stability amplification factor is not
applied to CAM, and thus the curves in Fig. 2a reveal
that CAM can have an unconditional stability interval
of δ ≤ 1 and a conditional stability interval of δ > 1.
Whereas, an unconditional stability interval is extended
from δ ≤ 1 to δ ≤ 2 for σ = 2 and to δ ≤ 3 for σ = 3.

It is also found that the upper stability limit will rise
with increasing δ in the conditionally stable interval.
A very similar phenomenon is also seen in Fig. 2b as
ρ∞ = 0.5. However, it seems that σ can enlarge the
unconditional stability interval to be slightly larger than
that of δ ≤ σ for ρ∞ = 0.5. In fact, it can be expressed
as δ ≤ σ̄ , where σ̄ ≥ σ . It is evident from Fig. 2
that σ can alter the unconditional stability interval from
δ ≤ 1 to δ ≤ σ . Clearly, a large σ will lead to a
large unconditional stability interval and thus a stability
amplification factor is also applicable to CAM. There
is no need to choose σ > 2 since for a real structure
its instantaneous stiffness is rare to become larger than
twice of that of the initial stiffness. As a result, the case
of δ ≤ 2 is considered herein since this interval is large
enough for practical interest.

A two-degree-of-freedom spring–mass system is
applied to numerically confirm the stability properties
of CAM and the effectiveness of the stability amplifi-
cation factor. The spring constant in correspondence to
each lumped mass is assumed to be:

k = k0
[
1 + ε

√|�u|
]

(24)

where k0 is the initial spring constant;�u is the amount
of elongation of the spring and ε is a given constant.
The lumped mass of each degree of freedom is taken
as m1 = m2 = 1kg. Equation (24) is employed to
simulate three different stiffness types of systems S1 to
S3 if ε is appropriately chosen.
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Fig. 3 Responses to three 2-DOF systems with different stiffness types

S1 : ε1 = − 0.1, ε2 = − 0.5 stiffness softening

S2 : ε1 = 0, ε2 = 0 linear elastic

S3 : ε1 = 103, ε2 = 1.0 stiffness hardening

(25)

where ε1 and ε2 are the constants for the first and second
lumped masses, respectively. Besides, the initial spring
constants for the first and second lumped masses are
taken as k0 = 108 N/mand k0 = 102 N/m, respectively.
As a result, the initial natural frequencies of the system
are found to be 10 and 104 rad/s. The system is excited
by a sinusoidal acceleration of 10 sin(2π t) at its base.

In the subsequent study, CAM with ρ∞ = 0.5 and
σ = 1 is referred as CAM1 while that with ρ∞ = 0.5
and σ = 2 is referred as CAM2 for brevity. Both
CAM1 and CAM2 can have desired numerical damp-
ing, where CAM1 possesses an unconditional stability
interval of δi+1 ≤ 1 while for CAM2, it has δi+1 ≤ 2.
Both methods with �t = 0.01s are applied to cal-
culate the responses. In addition, the result obtained
from the Newmark explicit method (NEM) [2] with
�t = 0.0001s is considered as a reference solution.
The calculated results of u2, which is the displacement

response at the second degree of freedom, are shown in
Fig. 3a–c. In addition, the time histories of δi+1 for both
modes are shown in Fig. 3d–f. It is manifested from
Fig. 3a–c that CAM1 can provide reliable solutions for
S1 and S2, while for S3, it leads to instability very
rapidly, whereas CAM2 can give accurate solutions
for all the three systems. This can be explained next.
Figure 3d shows that δi+1 is close to 1 for the second
mode of S1 while it varies between about 0.6 and 1.0
for the first mode. Clearly, δi+1 is always equal to 1 for
bothmodes of S2 since it is a linear elastic system. It can
be seen in Fig. 3f for S3 that δi+1 roughly varies in the
intervals of 1 ≤ δi+1 ≤ 1.4 and 1 ≤ δi+1 ≤ 1.5 for the
first and second modes, respectively. Because CAM1
can only possess an unconditional stability interval of
δi+1 ≤ 1 it can give reliable solutions for S1 and S2.
Whereas, it becomes conditionally stable in the inter-
val of δi+1 > 1. Hence, the violation of the upper sta-
bility limit is responsible for the instability occurred
in S3 for using CAM1. In fact, it can be found from
Fig. 2b that the upper stability limit 	(u)

0 is only about
2.7 as δi+1 = 1.5 while the 	0 value for the second
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Fig. 4 Overshooting behavior of CAM in transient response

mode is found to be as large as 	0 = ω0(�t) = 102,
which is much larger than 	

(u)
0 = 2.7. In contrast,

CAM2 can have an unconditional stability interval of
0 < δi+1 ≤ 2, and thus, it can give reliable solutions for
the three systems, where δi+1 varies within the interval
of 0 < δi+1 ≤ 1.5.

Two important analytical results are thoroughly con-
firmed by this numerical example. One is that CAM
with σ = 1 only has an unconditional stability for lin-
ear elastic and stiffness softening systems, i.e., 0 <

δi+1 ≤ 1, while it becomes conditionally stable for
stiffness hardening systems, i.e., δi+1 > 1, and the
other is that a stability amplification factor can enlarge
the unconditional stability interval from 0 < δi+1 ≤ 1
to 0 < δi+1 ≤ 2 if σ = 2 is adopted.

4.3 Overshoot

A general structure-dependent integration method
might experience two types of overshoot although it
can have an unconditional stability. One is in high-
frequency transient responses and the other is in high-

frequency steady-state responses. Since an overshoot
might result in an inaccurate solution, it must be thor-
oughly explored for an integration method.

4.3.1 Overshoot in transient response

A high-frequency overshoot in transient response has
been found by Goudreau and Taylor [41] although the
integration method is unconditionally stable. A tech-
nique has been proposed by Hilber and Hughes [42]
to detect such an overshoot. To assess the overshoot
potential of an integration method, one can compute
the discrete displacement and velocity in terms of the
previous step data. In general, these results as	0 → ∞
can give an indication of the high-frequency behavior
of the integrationmethod.UsingEq. (14), the following
equations can be obtained in the limit 	0 → ∞.

di+1 =
[
1 −

1
2 (1 − α1)

(1 − α2) βσ

]
di ,

vi+1 =
(

γ

2βσ
− 1

)
	0ω0di +

(
1 − γ

βσ

)
vi (26)
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There is no overshoot in displacement for any mem-
ber of CAM, while it generally shows a tendency to
overshoot linearly in 	0 in the velocity equation.

The free vibration response of a single-degree-of-
freedom system for the initial conditions of d0 = 1 and
v0 = 0 can be employed to confirm the overshooting
behavior of CAM. A time step of �t = 10T0 is chosen
for each time history analysis and the results are plot-
ted in Fig. 4. The constant average acceleration method
(AAM) is also used to solve the same problem and the
results are also shown in the figure for comparison. The
velocity term is divided by the initial natural frequency
of the system so that it can have the same unit as dis-
placement. There is no overshoot in displacement for
both CAM1 and CAM2 in Fig. 4 while an overshoot in
velocity is found. These overshooting behaviors both
in displacement and velocity for CAM1 and CAM2 are
highly consistent with the analytical predictions shown
in Eq. (26).

4.3.2 Overshoot in steady-state response

A high-frequency overshoot in steady-state responses
has been found for a structure-dependent method [40]
although it has never been seen for a conventional inte-
gration method. The root cause of this overshoot is due
to the lack of a loading term in the displacement differ-
ence equation, i.e., p̄i+1 in Eq. (11) [40]. A numerical
example is used to illustrate the importance of using
the loading term p̄i+1 to remove this type of overshoot
for CAM. Thus, a forced vibration response to a linear
elastic, single-degree-of-freedomsystem is considered.
The equation of motion can be written as:

mü + k0u = k0 sin (ω̄t) (27)

where ω̄ is a driving frequency.An exact solution of this
equation for zero initial conditions can be theoretically
obtained and is:

u (t) = − w

1 − w2 sin (ωt) + 1

1 − w2 sin (ω̄t) (28)

wherew = ω̄/ω0 is a frequency ratio. On the right side
of this equation, the first and second terms are a tran-
sient and steady-state responses, respectively. Thus,
for a high-frequency mode or a large ω0, the ratio w

will tend to zero. As a result, Eq. (28) will reduce to
u(t) ≈ sin (ω̄t). This implies that the total response is
almost dominated by the steady-state response and the
transient response contributes insignificantly. Hence, a
forced vibration response of a high-frequency system

can be applied to reveal an adverse overshoot behavior
in high-frequency steady-state responses.

A high-frequency system is mimicked by choosing
m = 1kg and k0 = 108 N/m. Hence, the natural fre-
quency of the system is 104 rad/s. In addition, a driving
frequency of ω̄ = 1 rad/s is adopted. Thus, w = 10−4

is found. Clearly, an accurate solution can be achieved
if the steady-state response is reliably obtained. It has
been shown [43] that a harmonic load can be faithfully
captured if�t/T̄ is less than 1/12, where T̄ is the period
of the applied harmonic load. Thus,�t = 0.5s is capa-
ble to accurately integrate the steady-state response
since the value of �t/T̄ is as small as 1/(4π), where
T̄ = 2π/ω̄ = 2π . Both CAM1 andCAM2without and
with p̄i+1 are employed to calculate the forced vibra-
tion responses and the calculated results are plotted in
Fig. 5. The results obtained from CAM1 and CAM2
without p̄i+1 are shown in Fig. 5a, b, respectively; and
they exhibit a high-frequency overshoot in the steady-
state responses. On the other hand, the results calcu-
lated by using CAM1 and CAM2 with p̄i+1 are shown
in Fig. 5c, d, respectively, where the results overlap
the exact solution. Apparently, CAM without a load-
ing term will lead to a high-frequency overshoot in the
steady-state response, while this undesirable overshoot
can be taken out by adjusting the displacement differ-
ence equation with an appropriate loading term p̄i+1.
Hence, this loading term must be included in the for-
mulation of CAM.

5 No weak instability

A weak instability property has been found for some
structure-dependent integration methods, such as the
CR method, KR method and the method proposed by
Tang and Lou. Both analytical and numerical meth-
ods have been applied to explore the weak instability
property and can be found in [37,38,44,45]. A weak
instability may lead to an inaccurate solution or even
instability although an appropriate time step is used.
Thus, it is important to explore whether CAM has such
an undesirable weak instability. A technique has been
used to assess this adverse property by analytically
deriving a free vibration response of a linear elastic,
single-degree-of-freedom system [38,44,45].

Apparently, the application of CAM to analytically
obtain the free vibration response of an undamped,
linear elastic single-degree-of-freedom system can be
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Fig. 5 Steady-state response to sine load for CAM1 and CAM2

applied to disclosewhether CAMhas aweak instability
property or not.Hence, the equation ofmotion as shown
in Eq. (1) can be solved for this purpose. For simplic-
ity, zero viscous damping and zero dynamic loading
are taken. In addition, the initial conditions of the ini-
tial displacement of d0 and initial velocity of v0 are
assumed. The free vibration response can be analyti-
cally obtained from structural dynamics theory and is
found to be:

dn = cos (n	0) d0 + sin (n	0)

	0
(�t) v0 (29)

where dn = u (tn) and tn = n (�t). On the other hand,
CAM is also used to solve the same problem. This
integration procedure is analytically conducted but not
actually calculated by a computer. As a result, the com-
plete solutionprocedure forCAMcanbe also expressed
as shown in Eq. (14). Thus, after repeated substitutions
for the case of zero dynamic loading, it reduces to:

Xn = AnX0 (30)

where X0 = [
d0, (�t) v0, (�t)2 a0

]T
. The initial

acceleration a0 can be determined from the equation of

motion for the initial values of d0 and v0 and is found
to be (�t)2a0 = −	2

0d0 for zero viscous damping.
It is very hard to analytically derive the numerical

solution for using CAM for a general 	0 due to the
very complex characteristic equation. As an alterna-
tive, the limiting case of 	0 → ∞ is considered since
it can disclose high-frequency behaviors. In this case,
the characteristic equation of CAM has a triple root of
λ1,2,3 = −ρ∞ and has no three linearly independent
eigenvectors. Hence, the matrix A is not diagonaliz-
able and is unable to obtain A = ��n�−1, where
� is a diagonal matrix and its diagonal terms are λi ,
i = 1, 2, 3; and � is the corresponding eigenvector
matrix. However, it is possible to convert the matrix
A to a Jordan canonical form, such as A = �J�−1,
through a non-singular matrix �. Notice that J is the
Jordan form of the matrix A. As a result, Eq. (30) is
rewritten as:

Xn = AnX0 = �Jn�−1X0 (31)

where the eigenvector matrix is� = [
ψ1 ψ2 ψ3

]
; and

the eigenvectors of ψ1, ψ2 and ψ3 can be determined
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Fig. 6 Free vibration responses to 2-story shear-beam-type building

from (A−λ)ψ1 = 0, (A−λ)ψ2 = ψ1 and (A−λ)ψ3 =
ψ2, respectively. In addition, the matrices of J and Jn

are found to be:

J =
⎡
⎣

λ 1 0
0 λ 1
0 0 λ

⎤
⎦ , Jn =

⎡
⎣

λn nλn−1 n (n − 1) λn−2

0 λn nλn−1

0 0 λn

⎤
⎦

(32)

for a triple root λ. Consequently, Eq. (31) is applied to
analytically derive the numerical solution in a mathe-
matical form in correspondence to Eq. (29). As a result,
the numerical solution for CAM is found to be:

dn = (−ρ∞)n d0 (33)

For comparison, the result for KRM has been found in
[38] and is also listed below for comparison.

dn = − [(n + 1) ρ∞ + n] (−ρ∞)n−1 d0

+n (−ρ∞)n−1 (�t) v0 (34)

In Eq. (29), the coefficient of d0 is cos (n	0), which is
bounded in [−1, 1]; and that for (�t) v0 is sin (n	0)

/	0, which is bounded in [0, 1]. In Eq. (33), the coeffi-
cient ofd0 is equal to (−ρ∞)n ,which is always less than
or equal to 1; and there exists no (�t) v0 term. It is evi-
dent that there is no weak instability for CAM. Unlike
the coefficient shown in Eq. (33), the coefficients of
d0 and (�t) v0 in Eq. (34) for KRM increase with the
increase in n although they will diminish to zero as
|ρ∞| < 1 after a period of time. This indicates that dn
will increase with increase in n in the early response
although it might reduce to zero for |ρ∞| < 1. The
growth of dn is a linear function of n. A weak insta-
bility is, in general, applicable to polynomial growth
in n of arbitrary order. This type of growth is less sig-
nificant than that of the instability caused by a spec-
tral radius greater than 1. It is evident that KRM has
a weak instability, while CAM has no such an adverse
property.

To confirm that CAM has no weak instability, a lin-
ear elastic 2-story shear-beam-type building is consid-
ered. The equation of motion is simply expressed as:
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Fig. 7 Variation of spectral
radius with �t/T0 for
different ρ∞ and δ values

[
104 0
0 104

]{
ü1
ü2

}

+
[
5 × 1017 + 2 × 106 −5 × 1017

−5 × 1017 5 × 1017

] {
u1
u2

}
=

{
0
0

}

(35)

The natural frequencies of the system are found to be
ω1 = 10 and ω2 = 107 rad/s; and its modal shapes are
found to be:

φ1 =
{
1
1

}
, φ2 =

{
1
−1

}
(36)

An initial displacement vector u0 is made up of both
modes and is defined as:

u0 =
{
u1(0)
u2(0)

}
= φ1 + 1

100
φ2 =

{
1.01
0.99

}
(37)

The free vibration responses to u0 with a zero-velocity
vector are calculated by using CAM1 and CAM2 with
�t = 0.01s. In addition, KRMwith ρ∞ = 1.0 and 0.5
is also applied to compute the response for comparison.
The result calculated fromNEMwith�t = 0.0001s is
considered as a reference solution. The responses of u1
are shown in Fig. 6. It is revealed by Fig. 6a, b that
CAM1 and CAM2 give reliable results although an
initial displacement vector includes a high-frequency
mode. However, the results obtained from KRM either
with ρ∞ = 1.0 or 0.5 shows a very significant ampli-
tude growth due to a weak instability as shown in
Fig. 6c, d. It is evident that the amplitude growth effect
for KRM with ρ∞ = 1.0 is much greater than that of

KRM with ρ∞ = 0.5. This may be because that the
latter can have a high-frequency numerical damping
to repress the high-frequency response. However, it is
very important to note that an amplitude growth due to
a weak instability still appears and it cannot be taken
out by numerical damping.

6 Nonlinear performance

AlthoughCAMhas been explored for linear elastic sys-
tems, it is important to further study its nonlinear per-
formance. The analysis of a nonlinear system is based
on the von Neuman assumption of a solution in expo-
nential form. Notice that the analysis is performed only
for the (i+1)th time step but not for awhole integration
procedure. However, it can still give useful predictions
because an integration procedure consists of each time
step. In general, the cases of δi = δi+1 = δ = 0.5,
1.0, and 2.0 will be calculated so that the three dif-
ferent stiffness types of softening, linear elastic, and
hardening can be simulated.

6.1 Stability

Figure 7 shows the variation of spectral radius versus
�t/T0. In Fig. 7a, the spectral radius ρ is less than
or equal to 1 as δ ≤ 1 and finally tends to a certain
constant smaller than 1, while it will become greater

123



A dual family of dissipative structure-dependent integration 719

than 1 after a certain value of �t/T0 as δ > 1. This
implies that CAM can have an unconditional stability
interval of δ ≤ 1, and it becomes conditionally stable
in the interval δ > 1 if σ = 1 is adopted. Whereas,
the spectral radius is always less than or equal to 1
as δ ≤ 2 shown in Fig. 7b. This is consistent with
the analytical result that the application of the stability
amplification factor σ to CAM can effectively enlarge
the unconditional stability interval from δi+1 ≤ 1 to
δi+1 ≤ σ . In general, each curve has a unit spectral
radius for small�t/T0, while it goes down step by step
and finally tends to a certain constant smaller than 1.
For given δ and�t/T0, the spectral radiuswill decrease
with the decrease of ρ∞, whereas for given ρ∞ and
�t/T0, it will decrease with the increase of δ.

6.2 Period distortion and numerical dissipation

A bounded oscillatory response can be obtained from
an integration method if its two principal eigenvalues
λ1,2 are complex conjugates in addition to

∣∣λ1,2
∣∣ ≤ 1.

Thus, the numerical properties of CAM at the (i +1)th
time step can be assessed afterwriting the complex con-
jugate eigenvalues of the matrixAi+1 in an exponential
form as:

λ1,2 = a ± jb = e−ξ̄ 	̄i+1± j	̄D
i+1 (38)

where j = √−1, 	̄i+1 = ω̄i+1 (�t) and 	̄D
i+1 =

	̄i+1
√
1 − ξ2. Based on this expression, the phase shift

of 	̄D
i+1 and the numerical damping ratio of ξ̄i+1 can

be computed by

	̄D
i+1 = tan−1

√
b

a
, ξ̄i+1 = − ln

(
a2 + b2

)

2	̄i+1
(39)

where ξ̄i+1 is known as a numerical damping ratio. A
relative period error is a measure of period distortion
and is defined as:

Pi+1 = T̄i+1 − Ti+1

Ti+1
= ωi+1

ω̄i+1
− 1,

T̄i+1 = 2π

ω̄i+1
, Ti+1 = 2π

ωi+1
(40)

where Ti+1 and T̄i+1 are the true and computed periods
of the system. In general, ξ̄i+1 and ω̄i+1 can be consid-
ered as the quantities corresponding to ξi+1 and ωi+1

in an integration procedure.
Figure 8 shows variations of relative period errors

versus �t/T0 for σ = 1 and 2. In general, the relative
period error rises with increasing �t/T0 for given δ

and ρ∞. Period elongation is found for CAM and the
amount rises with decreasing ρ∞ for a given δ while it
lessens with the increase of δ for a given ρ∞. Compar-
ing Fig. 8a, b for each corresponding curve, the relative
period error for σ = 2 is, in general, larger than that of
σ = 1 for a small �t/T0. In fact, it can be shown by
numerical experiments that the increase in σ will lead

Fig. 8 Variation of relative
period error with �t/T0 for
different ρ∞ and δ values
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Fig. 9 Variation of
numerical damping ratio
with �t/T0 for different ρ∞
and δ values

to the increase of period distortion. Thus, although a
large value of σ can extend the unconditional stability
interval from δi+1 ≤ 1 to δi+1 ≤ σ , it also results in
more period distortion. It is seen in both plots of Fig. 8
that the relative period error is small as �t/T0 ≤ 0.05
when ρ∞ roughly varies in the interval of [0.5, 1]. This
implies that CAMwith 0.5 ≤ ρ∞ ≤ 1 either for σ = 1
or 2 can give a reliable solution with an acceptable
accuracy for a nonlinear system if �t/T0 ≤ 0.05 is
met for the modes of interest. As a result, the choice of
σ = 2 is recommended for CAM with 0.5 ≤ ρ∞ ≤ 1
for practical applications. This is because that CAM
with σ = 2 can have an unconditional stability inter-
val of δi+1 ≤ 2 and a negligible period distortion as
�t/T0 ≤ 0.05 if ρ∞ is chosen to be in the interval of
[0.5, 1].

The variation of numerical damping ratio versus
�t/T0 for CAM with σ = 1 and 2 is plotted in
Fig. 9. There is zero numerical damping for the case of
ρ∞ = 1 for both σ = 1 and 2, whereas the numerical
damping ratio generally rises with �t/T0 and finally
tends to a constant for CAM with ρ∞ = 0.5 and 0.0
as δi+1 ≤ 1. In addition, it also rises with the decrease
in ρ∞ for a given �t/T0 as δi+1 ≤ 1. However, dif-
ferent phenomena are found for the different values
of σ = 1 and 2 for the case of δ = 2. In Fig. 9a,
the three curves for ρ∞ = 1, 0.5 and 0.0 will stop at
their bifurcation points as δ = 2, where the complex
conjugate roots become real roots. On the other hand,

in Fig. 9b, the curve for ρ∞ = 1 has zero numerical
damping, and the curves for ρ∞ = 0.5 and 0.0 can still
have desired numerical damping. In summary, CAM
can have a desired numerical damping property if ρ∞
is chosen from the interval [0, 1] with σ ≥ 1, where the
choice of σ = 2 is generally good enough for practical
applications.

Notice that Eqs. (21) and (22) can be applied to
define the members of CAM not only for the family
of one-step methods but also for the family of two-step
methods. Although both equations are derived from the
assumption of a triple eigenvalue of −ρ∞ in the limit
	0 → ∞ as σ = 1 for a linear elastic system, they
are applicable to nonlinear systems and other values of
σ since it is revealed by Figs. (7) to (9) that CAM can
still have the desired numerical properties for nonlinear
systems for the case of σ = 2.

7 Implementation

Analytical studies reveal that CAM can combine most
desirable numerical properties together and thus it
seems very competitive with other currently available
integration methods. Therefore, it is of great interest
to examine its actual performance in solving struc-
tural dynamics problems. Some numerical examples
are intentionally designed to address the promising
numerical properties, such as anunconditional stability,
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a second-order accuracy, a good capability of seizing
nonlinearity and a good computational efficiency. In
addition, the computational efficiency of CAM in con-
trast to the generalized-α method will be also inves-
tigated. For this purpose, a possible implementation
of CAM is sketched next for a multiple-degree-of-
freedom system. At first, the general formulation of
CAM can be simply expressed as:

(1 − α1)Mai+1 + α1Mai + (1 − α2)Cvi+1

+α2Cvi + (1 − α2)Ki+1di+1 + α2Kidi
= (1 − α2) fi+1 + α2fi

di+1 = di − B1 (�t)2Kidi + B2 (�t) vi
−B1 (�t)Civi + B3 (�t)2 ai + pi+1

vi+1 = vi + (�t)
[
(1 − γ ) ai + γ ai+1

]
(41)

where

B1 = D−1β

B2 = D−1 [
(1 − α1)M + (1 − α2) γ (�t)C0

]

B3 = D−1
{[

1

2
(1 − α1) − β

]
M

− (1 − α2)

(
β − 1

2
γ

)
(�t)C0

}

pi+1 = D−1 (1 − α2) βσ (�t)2 (fi+1 − fi )

+D−1β (�t)2 fi (42)

where D = (1 − α1)M + (1 − α2)
[
γ (�t)C0 + βσ

(�t)2 K0
]
; K, C and M represent the stiffness, vis-

cous damping and mass matrices, respectively; fi , ai ,
vi and di are in correspondence to the vectors of the
external force, acceleration, velocity and displacement
at the end of the i th time step. The symbol K0 is used
to denote the initial stiffness matrix, and the stiffness
matrixKi in the first and second line of Eq. (41) is gen-
erally different from K0 for a nonlinear system since
it may vary with time. Consequently, a restoring force
vector ri is often introduced to replace the product of
Kidi in the step-by-step solution procedure.Notice that
a constant viscous damping matrix is often adopted
for structural dynamic analysis and thus C = C0 is
taken.

After completing the time integration of the i th time
step, one can have the data di , vi and ai . Hence, the
computation of the next step can proceed. At first, the
second line of Eq. (41) can be applied to determine the
next step displacement vector di+1, and this solution
equation can be alternatively written as:

D
(
di+1 − di

)

= −β (�t)2 ri + {(1 − α1)M

+ [
(1 − α2) γ − β

]
(�t)C0

}
(�t) vi

+
{[

1

2
(1 − α1) − β

]
M

− (1 − α2)

(
β − 1

2
γ

)
(�t)C0

}
(�t)2 ai

+ (1 − α2) βσ (�t)2
(
fi+1 − fi

) + β (�t)2 fi
(43)

After obtaining the displacement vector di+1, the cor-
responding restoring force vector ri+1 can be further
determined from a pre-assumed force–displacement
relationship.Notice that Eq. (43) can proceed after find-
ing a0 based on the initial values of v0, d0 and f0 for
the one-step family of methods. However, the second
line of Eq. (41) will involve the step data for both the
i th and (i − 1)th time step if using the two-step family
of methods. Clearly, it is not self-starting. In fact, it is
unable to calculate a1, v1 and d1 by using a0, v0 and d0
only. Alternatively, a one-step method must be used to
obtain a1, v1 and d1 first and then the two-step family
of methods can be applied, subsequently.

Next, the velocity vector vi+1 can be calculated after
substituting the first line into the third line in Eq. (41)
and is found to be:

[
(1 − α1)M + (1 − α2) γ (�t)C0

]
vi+1

= [
(1 − α1)M − α2γ (�t)C0

]
vi

+ (1 − α1 − γ )M (�t) ai
+γ (�t)

[
(1 − α2) fi+1 + α2fi

− (1 − α2) ri+1 − α2ri
]

(44)

Finally, the equation of motion, i.e., the first line of Eq.
(41), can be directly applied to calculate the accelera-
tion vector ai+1 and is:

(1 − α1)Mai+1 = (1 − α2) (fi+1 − C0vi+1 − ri+1)

+α2 (fi − C0vi − ri ) − α1Mai
(45)

In general, Eqs. (43) to (45) are solved by a direct
elimination method, which has two parts. First, “tri-
angulation” and then “substitution”. The triangulation
of D, (1 − α1)M+ (1 − α2) γ (�t)C0 or (1 − α1)M
can be conducted only once at the beginning of time
integration. This is because these matrices will remain
invariant for a whole integration procedure and thus the
factored results can be restored for the subsequent use.
It is manifested from an operation count that a trian-
gulation will involve much more operations than for a
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substitution in conducting a direct elimination. Hence,
the need of only one triangulation of these matrices is
the key issue for structure-dependent integration meth-
ods to compute efficiently in the nonlinear dynamic
analysis. Notice that there is no need to triangulate the
matrixM in solving Eq. (45) if it is a diagonal matrix.
Similarly, the solution of Eq. (44) will involve no trian-
gulation ifM is a diagonalmatrix in addition toC0 = 0.

8 Numerical examples

To confirm the feasibility of CAM for general non-
linear dynamic analysis, CAM1 and CAM2 will be
applied to solve some structural dynamics problems.
These numerical results can also attest to some numer-
ical properties of CAM. In general, the results calcu-
lated fromCAMwill compare with the results obtained
from a conventional, second-order accurate integration
method to illustrate that CAM generally has a compa-
rable accuracy.

8.1 A mathematically nonlinear system

There is a mathematically nonlinear system, whose
instantaneous degree of nonlinearity highly depends
upon the specified initial conditions. This system is
very useful for assessing the capability of an integration
method for seizing the rapid variation of nonlinearity.
The governing equation of motion for the nonlinear
system can be simply expressed as:

ü + u

1+ |u| = A sin (ω̄t) (46)

The stiffness has an initial natural frequency ω =
1 rad/s and will be softening after the system deforms.
In addition, a large initial displacement or velocity will
result in a large reduction in the stiffness. The sys-
tem has an initial structural period of 2π s. Free vibra-
tion responses to the initial conditions of u (0) = 0,
u̇ (0) = 100 and A = 0 are displayed in Fig. 10a
and the time history of δi+1 is plotted in Fig. 10b.
Besides, the frequency response curves for A = 0.3
with 0 < ω̄ ≤ 0.5 are also calculated and the results

Fig. 10 Responses to mathematically nonlinear system
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are plotted in Fig. 10c. The result obtained from NEM
with�t = 0.01s is treated as a reference solution. Both
CAM1 and CAM2 are applied to conduct time integra-
tion. It is seen in Fig. 10a that the solutions obtained
from CAM1 and CAM2 are reliable and have a com-
parable accuracy with that obtained from NEM. Fig-
ure 10b reveals that the system has been experienced a
high stiffness softening since δi+1 varies in the interval
of [10−4, 1]. Notice that not all the structure-dependent
integration methods can have such a good capability of
seizing the rapid variation of the structural nonlinear-
ity. In fact, some of them do not possess such a good
capability as shown in the reference [38,44–47], such
as the CR explicit method [31] and KR-α method [37].
It is manifested from Fig. 10c that CAM1 and CAM2
can also give comparable solutions in contrast to NEM
in calculating the frequency response curves, where a
peak response is close to ω̄ = 0.1. It is indicated that
the system experiences significantly stiffness softening
since the resonant response occurred around ω̄ = 0.1,
which implies that the natural frequency of the system

varies from ω = 1 rad/s to roughly about ω = 0.1 rad/s
due to stiffness softening.

8.2 An elastoplastic system

A one-story shear-beam-type building is excited by the
earthquake record of TCU084, which was recorded
during the main shock of Chi–Chi earthquake in Tai-
wan. This building is simulated by a single-degree-of-
freedom system and its lumped mass and stiffness are
assumed to be 105 kg and 106 N/m, respectively. As a
result, the natural frequency of the system is found to
be 3.16 rad/s before it deforms. An elastoplastic behav-
ior is assumed for the building during vibration and the
yielding strength is taken as 3×104 N for both tension
and compression. Zero viscous damping is considered
for the building and the peak ground acceleration of the
seismic input of TCU084 was scaled to 0.5 g.

Figure 11 shows the calculated seismic responses.
The results obtained from NEM with a time step of
�t = 0.005s are considered as reference solutions.

Fig. 11 Responses to TCU084 for one-story shear-beam-type building
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Meanwhile, NEM, CAM1, and CAM2 with a time
step of �t = 0.02 s are also applied to compute the
responses. It is seen in Fig. 11a, c that the results
obtained from NEM, CAM1, and CAM2 overlap the
reference solutions. Thus, either CAM1 or CAM2 can
capture the rapid changes of the stiffness and ground
shaking caused by an earthquake, and then it gives the
results that have a comparable accuracy with NEM.
An elastoplastic behavior of the building is found in
Fig. 11d, where the hysteresis loops are very compli-
cated. The variation of spectral displacement Sd with
natural frequency ω is also plotted in Fig. 11e. It is evi-
dent that both CAM1 and CAM2 can provide reliable
seismic responses for different natural frequencies of
the systems as each system experiences an elastoplastic
behavior.

8.3 A 7-story building

To illustrate that CAM can have desired numeri-
cal damping to suppress or even eliminate the high-
frequency responses, a 7-story shear-beam-type build-
ing is intentionally designated to have a relatively high-
frequency mode. The stiffness of each story generally
consists of a linear part and a nonlinear part. A constant
stiffness is taken for the linear part and the nonlinear

Fig. 12 A 7-story building and its vibration properties

part is assumed to be a function of the story drift. The
explicit expression of the stiffness for each story can
be written in the form of:

k = k0
(
1 + q

√|�u|
)

(47)

where k0 is the initial stiffness;q is an arbitrary constant
and �u is a story drift. Clearly, the choice of a positive
value of q will result in stiffness hardening. The struc-
tural properties of the building are shown in Fig. 12. As
a result, the lowest and the highest initial natural fre-
quencies of the building are 13.96 and 3178.21 rad/s,
and their corresponding mode shapes are found to be
φ1 = [0.44, 0.80, 0.99, 0.99, 1.00, 1.00, 1.00]T and
φ7 = [0.00, 0.00, 0.00, 0.00, 0.00, −0.01, 1.00]T.

The free vibration responses of two different combi-
nations of initial conditions are calculated from using
CAM1 and CAM2. This is intended to illustrate that
both integration methods can have a desired numerical
damping to repress high-frequency responses, while
low-frequency responses can still be very accurately
integrated. For this purpose, two combinations of ini-
tial conditions of C-1 and C-2 are considered:

C-1 : u (0) = φ1/10 and u̇ (0) = 0
C-2 : u (0) = (φ1+φ7) /10 and u̇ (0) = 0

(48)

where φ1 and φ7 are the 1st and 7thmodal shapes of the
building as shown in Fig. 12. Clearly, C-1 has the pure
first mode only, while C-2 consists of the first mode and
seventh mode with equal weight. The component from
the 7th mode can be considered as a high-frequency
disturbance. In this study, q = 1.5 is chosen for each
story to mimic a stiffness hardening system. The free
vibration response of C-1 obtained from AAM with
�t = 0.001s is treated as a reference solution since it
involves no response contribution from the 7th mode
and can be very accurately integrated. This time step
canmeet the upper stability limitω(7)

0 (�t) = 1.59 < 2
and thus a stable result can be achieved. In addition,
it is also small enough to accurately integrate the 1st
mode and thus gives reliable solutions. On the other
hand, the free vibration responses of C-2 are computed
by using AAM, CAM1 and CAM2 with a time step
of �t = 0.01s. Notice that CAM1 and CAM2 can
have desired numerical damping while AAM is non-
dissipative.

It is recognized that a nonlinear multiple-degree-
of-freedom system cannot be decomposed into uncou-
pled single-degree-of-freedom systems for a complete
integration procedure. However, it can be done for
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Fig. 13 Free vibration responses of 7-story building

each time step. Hence, the numerical properties of
an integration method for solving a nonlinear single-
degree-of-freedom system are applicable to the uncou-
pled single-degree-of-freedom systems. This applica-
tion requires the natural frequencies of the modes of
interest for each time step and the corresponding instan-
taneous degree of nonlinearity of thesemodes. The nat-
ural frequencies of each time step can be used to deter-
mine the instantaneous degrees of nonlinearity for the
modes of interest correspondingly. In fact, the follow-
ing formula can be used to compute the instantaneous
degree of nonlinearity at the (i + 1)th time step for the
j th mode:

δ
( j)
i+1 =

[
ω

( j)
i+1

ω
( j)
0

]2

(49)

where ω
( j)
0 is the natural frequency of the j th mode

based on the initial stiffness and ω
( j)
i+1 is that based on

the stiffness at the end of the (i + 1)th time step. The
extreme value of δ

( j)
i+1 plays a key role for determining

the upper stability limit for CAMas shown in Fig. 2 and

the numerical properties of CAM for nonlinear systems
can be found from Figs. 7 to 9. Hence, these proper-
ties can be applied to thoroughly explain the numerical
solutions of this problem.

The free vibration responses obtained from CAM1
and CAM2 are shown in Fig. 13a, b, respectively. In
addition, the time variation of instantaneous degree of
nonlinearity for each mode is also calculated by using
Eq. (49) and is plotted in Fig. 13c. In Fig. 13a, AAM
and CAM2 can give reliable solutions for the first story
while an instability occurs for the results obtained from
CAM1. Different phenomena are found in Fig. 13b,
where AAM no longer gives reliable results although
CAM1 also leads to an instability and CAM2 can still
give acceptable results. Figure 13c reveals that each
mode experiences stiffness hardening. Thus, an insta-
bility occurred in the results obtained from CAM1
is caused by the violation of the upper stability limit
since CAM1 only has a conditional stability for stiff-
ness hardening systems, i.e., for δ

( j)
i+1 > 1. In contrast,

CAM2 can have an unconditional stability in the inter-
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Fig. 14 Frequency
response curves for 7-story
building

val of 0 < δ
( j)
i+1 ≤ 2 and thereby there is no instability

since 0 < δ
( j)
i+1 ≤ 1.3 is found. Notice that AAM can

provide accurate results for the first story while a very
significant error is found for the seventh story response.
This is mainly because that the seventh mode only sig-
nificantly contribute to the 7th storywhile it contributes
insignificantly to the other stories. This can be mani-
fested from the 7th mode shape φ7. Clearly, the first
story response is unaffected by the initial disturbance
of φ7/10, while the seventh story response is contam-
inated by it since AAM has no numerical damping to
filter out the high-frequency disturbance. It is mani-
fested fromFig. 13b thatCAM2has adesirednumerical
damping to take out the high-frequency disturbance.

In addition to the free vibration analysis, the forced
vibration analysis of the building is also conducted,
where the building is excited by a ground acceleration
of 10 sin(ω̄t) at its base. As a result, the variation of
the spectral displacement at the bottom and top stories
versus the applied frequency ω̄ is plotted in Fig. 14.
The frequency response curve obtained from AAM
with the time step of �t = 0.001s is considered as
a reference solution. Whereas, �t = 0.01s is adopted
for AAM, CAM1, and CAM2. Clearly, both CAM1
and CAM2 also have comparable solutions when com-
pared to AAM. Notice that the first peak response
occurs at ω̄ = 17.5 rad/s but not the initial first mode
ω1 = 13.96 rad/s is due to the stiffness hardening.

8.4 An elastic pendulum

An elastic pendulum is considered, where
l = √

(u1)2 + (u2)2 denotes the instantaneous length
of the pendulum and l0 is the length of the unstretched
pendulum. In general, the equation of motion [48] can
be generally expressed as:
[
m 0
0 m

]{
�ü1
�ü2

}

+
⎡
⎣ k

[
1 − l0

l + l0(u1)2

l3

]
k l0u1u2

l3

k l0u1u2
l3

k
[
1 − l0

l + l0(u2)2

l3

]
⎤
⎦

×
{

�u1
�u2

}
=

{
0
0

}
(50)

where m = 1kg, k = 30N/m, l0 = 1m and
g = 10m/s2 are assumed. Clearly, these equations of
motion are highly nonlinear since the pendulum length
is deformable in its axial direction. The initial values
are taken to be u1(0) = 1.5m, u2(0) = 0, u̇1(0) = 0
and u̇2(0) = 0. The numerical solution obtained from
AAM with �t = 0.001s is considered as a reference
solution. In addition, AAM, CAM1, and CAM2 with
�t = 0.01s is also applied to compute the responses
and the results are plotted in Fig. 15. It is seen in
Fig. 15a, b that CAM1 and CAM2 result in compara-
ble solutions as those obtained from AAM. Figure 15c
shows the trajectory of the pendulum, where u1 varies
within ±1.65m while u2 is bounded in the interval of
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Fig. 15 Responses of
elastic pendulum

0 ≤ u2 ≤ 2.35m. Thus, it is evident that CAM can be
generally applied to solve highly nonlinear systems.

8.5 Computational efficiency

A very important characteristic of a general structure-
dependent integration method is that it not only has
unconditional stability but also explicit formulation.
An unconditional stability allows selecting a time step

without considering stability problem, and an explicit
formulationwill involve nononlinear iterations.Hence,
many computational efforts are expected to be saved
for solving an inertial problem. A spring–mass sys-
tem with arbitrarily specific degrees of freedom can be
applied to substantiate this prediction. The system is
schematically shown in Fig. 16, where mi = 102 kg
and ki = 108

(
1 − √|ui − ui−1|

)
N/m. In general,

the spring stiffness ki will decrease after the system
deforms due to the nonlinear term −108

√|ui − ui−1|.
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Fig. 16 A
n-degree-of-freedom
spring–mass system

Constant acceleration ga

1k 2k nk

1u

1m

2u

2m

nu

nm

Table 1 The lowest and highest natural frequencies and time integration data

n ω
(1)
0 (rad/s) ω

(n)
0 (rad/s) ag (m/s2) �t (s) td (s) N

200 7.83 2000.00 16.0 0.02 4 200

400 3.92 2000.00 4.0 0.04 8 200

800 1.96 2000.00 1.0 0.08 16 200

1600 0.98 2000.00 0.25 0.16 32 200

As a result, the case of δ
( j)
i+1 < 1 is generally found for

each mode at each time step.
Four different n values of 200, 400, 800, and 1600

are specified for the spring-mass system so that four
different systems with the degrees of freedom of 200,
400, 800, and 1600 can be simulated. A constant accel-
eration ag will be inputted into each system at its
base. This simple external force is intended to avoid
the difficulty in faithfully seizing the applied dynamic
loading. The lowest and highest initial natural fre-
quencies and constant acceleration for each system
are listed in Table 1. This is a typical inertial prob-
lem and the highest natural frequency of each sys-
tem is as large as 2000.0 rad/s. A dissipative, explicit,
unconditionally stable integration method is promis-
ing for solving such an inertial problem. As a result,
the generalized−α method with ρ∞ = 1/2 (GAM)
and CAM2 are selected for the numerical calculations.
In addition, NEM with �t = 0.001s is also adopted
to calculate the response for each system. The criterion
for choosing this time step is to satisfy the upper sta-
bility limit, i.e., ω(n)

0 (�t) = 2000 × 0.001 = 2 ≤ 2.
Clearly, this time step ismuch smaller than that required
by accuracy consideration and thus the result obtained
from NEM can be considered as a reference solution

for each system. In contrast to NEM, there is no lim-
itation on the step size for GAM and CAM2 since
they are unconditionally stable. Hence, a time step
can be selected based on accuracy consideration. In
these numerical experiments, the total number of time
steps of N = 200 is taken for each system. Hence,
the loading duration of each system is found to be
td = 200 × (�t). For each system, the step size �t ,
loading duration td and the conducted total number of
time steps N are also listed in Table 1.

The responses of the four systems are shown in
Fig. 17. Comparing the results obtained fromGAMand
CAM2 to the reference solutions for each plot of this
figure, it seems that �t = 0.02, 0.04, 0.08 and 0.16s
are the maximum allowable time steps to yield reli-
able results corresponding to the 200-DOF, 400-DOF,
800-DOF, and 1600-DOF systems. The result obtained
from CAM2 is in good agreements with those obtained
from GAM for each system using the same step size.
This attests thatCAM2canhave a comparable accuracy
with GAM. In addition, the unconditional stability of
CAM2 is also indicated in this example since the value
of ω

(n)
0 (�t) for the highest mode of each system is as

large as 40, 80, 160, and 320 corresponding to the 200-
DOF, 400-DOF, 800-DOF, and 1600-DOF systems.
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Fig. 17 Displacement responses of four systems subject to constant acceleration

For each dynamic analysis, the consumed CPU time
is recorded and listed in Table 2 forGAMandCAM2 so
that the computational efficiency of CAM2 can be eval-
uated and compared with that of GAM. The third col-
umn reveals that CAM2 consumesmuch less CPU time
when compared with GAM. The difference between
CAM2 and GAM is that CAM2 involves no nonlinear
iterations for each time step while an iteration proce-
dure is needed for GAM and it costs a lot of CPU time
for amatrix of large order as shown in the 2nd columns.
This attests that CAM2 is very computationally effi-
cient in contrast to GAM. A consumed CPU time ratio
is defined as the CPU time involved by CAM2 over that
consumed by GAM. The last column shows that the
ratio lessens with increasing number of the degrees of
freedom. Thus, the computational efficiency of CAM2
increases as the total number of the degrees of freedom
of the system increases. In general, the ratio as shown
in the last column is 1% for the 200-DOF system, while
it is as small as 0.26% for the 1600-DOF system.

Table 2 Comparison of CPU time

N-DOF GAM CAM2 CAM2
GAM

200 22.86 0.23 0.0100

400 176.17 1.17 0.0066

800 1917.34 7.67 0.0040

1600 17, 732.14 45.33 0.0026

The computations that involve main computational
efforts at each time step of GAM and CAM are exam-
ined so that the drastic difference in CPU time between
these two methods can be revealed. The Newton–
Raphson method is often applied to iteratively com-
pute the current step displacement vector for an implicit
method, such as the generalized-α method adopted in
this work. In general, a direct elimination method is
applied to solve a system of linear equations for each
iteration, where a triangulation, a substitution and a
stiffness matrix update might be involved. As a result,
the total number of the triangulation, substitution and
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stiffness matrix updates are equal to the total number
of the nonlinear iterations per time step. In contrast,
for a structure-dependent integration method, such as
CAM, the triangulation is conducted only once at the
start of time integration. Thus, only a substitution and
a stiffness matrix update are generally needed for each
time step. Notice that for a large system a triangula-
tion will consume much more CPU time than that of
a substitution. In fact, the cost of a substitution might
be negligible in contrast to a triangulation for a large
system.

The total number of the triangulation, substitution
and stiffness matrix update are summarized in Table 3
for comparison for both GAM and CAM. It is seen
in columns 5 and 9 that the total number of triangula-
tion for GAM is about 600 for each system, where a
convergent solution can be obtained after about three
iterations for each time step, while it is only 1 for CAM.
In addition, the total number of substitution and stiff-
ness update for GAM is also about 600 for each sys-
tem while it is 200 for CAM. Clearly, the difference in
the total number of the triangulation is the root cause
to the drastic difference in CPU time. In addition, the
total number of the substitution or stiffness update for
CAM is only about one-third of that required by GAM.
Consequently, CAM is very computationally efficient
in contrast to GAM.

9 Subfamily of CAM

A free parameter ρ∞ can be applied to control the
numerical properties of CAM and it can be considered
as an index of the amount of the high-frequency numer-
ical damping. Clearly, ρ∞ = 1 implies no numerical
damping. Hence, ρ∞ close to 1 implies a small numer-
ical damping while a large numerical damping is indi-
cated as ρ∞ close to 0. In addition, CAM can degener-
ate into two subfamilies of one-step, dissipative meth-
ods and a subfamily of non-dissipative methods.

In general, the First Subfamily Method (FSM) can
be reduced from CAM by simply taking α1 = 0 and
α2 = −α. As a result, Eq. (11) becomes:

mai+1 + (1 + α) cvi+1 − αcvi + (1 + α) kdi+1

−αkdi = (1 + α) fi+1 − α fi

di+1 = di − β̄1	
2
i di + β̄2 (�t) vi

− β̄12ξ	i (�t) vi + β̄3 (�t)2 ai + p̄i+1

vi+1 = vi + (�t)
[
(1 − γ ) ai + γ ai+1

]
(51)
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where the coefficients of β̄1 to β̄3 and p̄i+1 can be
reduced from Eq. (12) and are:

β̄1 = 1

D
β

β̄2 = 1

D

[
1 + (1 + α) γ 2ξ	0

]

β̄3 = 1

D

[(
1

2
− β

)
− (1 + α)

(
β − 1

2
γ

)
2ξ	0

]

p̄i+1 = 1

D
(1 + α) βσ

1

m
(�t)2 ( fi+1 − fi ) fi+1

+ 1

D
β
1

m
(�t)2 fi (52)

where D = 1 + (1 + α)
(
2γ ξ	0 + βσ	2

0

)
. In addi-

tion, the following relationships can be determined
from the same procedure described in the subsection
of stability:

− 1

3
≤ α ≤ 0, β = 1

4
(1 − α)2 , γ = 1

2
− α (53)

The member of this subfamily generally has desired
numerical damping except for α = 0. Notice that
α = 0, which leads to β = 1/4 and γ = 1/2, gener-
ally denotes a non-dissipative integrationmethod. Both
CAM1 and CAM2 can be also treated as the members
of this subfamily of methods by taking α = −1/3 with
σ = 1 and σ = 2. Meanwhile, the second subfamily
method (SSM) can be also obtained from CAM by tak-
ing α1 = α and α2 = 0. As a result, Eq. (11) becomes:

(1 − α)mai+1 + αmai + cvi+1 + kdi+1 = fi+1

di+1 = di − β̄1	
2
i di + β̄2 (�t) vi

−β̄12ξ	i (�t) vi + β̄3 (�t)2 ai + p̄i+1

vi+1 = vi + (�t)
[
(1 − γ ) ai + γ ai+1

]
(54)

where

β̄1 = 1

D
β

β̄2 = 1

D

[
(1 − α) + 2γ ξ	0

]

β̄3 = 1

D

{[
1

2
(1 − α) − β

]
−

(
β − 1

2
γ

)
2ξ	0

}

p̄i+1 = β

D
σ
1

m
(�t)2 ( fi+1 − fi ) + β

D

1

m
(�t)2 fi (55)

where D = (1 − α) + 2γ ξ	0 + βσ	2
0. Similarly, the

following relationships can be also determined from
the same procedure:

− 1 ≤ α ≤ 0, β = 1

4
(1 − α)2, γ = 1

2
− α

(56)

Clearly, a non-dissipative integration method can be
obtained by taking α = 0, which also results in β =
1/4 and γ = 1/2, while the choice of α �= 0 generally
represents a dissipative integration method. Notice that
these two subfamilies no longer have a triple root of the
characteristic equation in the limit 	0 → ∞ but a pair
of principal roots in addition to a spurious root.

In general, the spectral radius ρ∞ in the limit	0 →
∞ can be considered as an indicator for the amount of
high-frequency numerical damping, it is of great inter-
est to construct the correlations between α and ρ∞ for
both FSM and SSM. As a result, they are found to be:

α = ρ∞ − 1

ρ∞ + 1
,

1

2
≤ ρ∞ ≤ 1 FSM

α = ρ∞ − 1

ρ∞ + 1
, 0 ≤ ρ∞ ≤ 1 SSM (57)

The variation of α from− 1/3 to 0 is in correspondence
to the variation of ρ∞ from 1/2 to 1 for FSM. Similarly,
the variation of α from − 1 to 0 is correspondent to the
variation of ρ∞ from 0 to 1 for SSM. It is evident that
both FSM and SSM can have a controllable numeri-
cal dissipation. Notice that a zero-damping ratio can
be generally obtained for both dissipative families of
methods.

Finally, a non-dissipative family of methods can be
further obtained from either FSM or SSM by taking
α = 0 and σ = 1. In addition, it can also be derived
from CAM by taking α1 = α2 = 0 and σ = 1. As a
result, it is found to be:

mai+1 + cvi+1 + kdi+1 = fi+1

di+1 = di − β̄1	
2
i di + β̄2 (�t) vi

−β̄12ξ	i (�t) vi + β̄3 (�t)2 ai + p̄i+1

vi+1 = vi + (�t)
[
(1 − γ ) ai + γ ai+1

]
(58)

Clearly, an asymptotic equation of motion is no longer
involved. Alternatively, an exact equation of motion is
involved for this non-dissipative family of methods. In
addition, the coefficients of β̄1 to β̄3 and p̄i+1 become:

β̄1 = 1

D
β

β̄2 = 1

D
(1 + γ 2ξ	0)

β̄3 = 1

D

[(
1

2
− β

)
−

(
β − 1

2
γ

)
2ξ	0

]

p̄i+1 = 1

D
β
1

m
(�t)2 fi+1

(59)
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where D = 1+ 2γ ξ	0 + β	2
0. In general, the param-

eters β and γ can be appropriately selected and are no
longer constrained by either Eqs. (53) or (56). After
substituting Eq. (59) into the second line of Eq. (58), it
will become:

di+1 = di + 1

D
(1 + 2γ ξ	0) (�t) vi

+ 1

D

[
1

2
−

(
β − 1

2
γ

)
2ξ	0

]
(�t)2 ai

+ β

D

1

m
(�t)2 ( fi+1 − fi )

− β

D

[
	2

i di + 2ξ	i (�t) vi

+ (�t)2 ai − 1

m
(�t)2 fi

]

= di + 1

D
(1 + 2γ ξ	0) (�t) vi

+ 1

D

[
1

2
−

(
β − 1

2
γ

)
2ξ	0

]
(�t)2 ai

+ β

D

1

m
(�t)2 ( fi+1 − fi ) (60)

where the second line of this equation is equal to zero
since the dynamic equilibrium must be met at the i th
time step. As a result, the third line of this equation
becomes the displacement difference equation of this
non-dissipative family of methods and then Eq. (59)
will be simplified to be:

β̄1 = 0

β̄2 = 1

D
(1 + 2γ ξ	0)

β̄3 = 1

D

[
1

2
−

(
β − 1

2
γ

)
2ξ	0

]

p̄i+1 = 1

D
β
1

m
(�t)2 ( fi+1 − fi ) (61)

This family of methods is the same as that presented
in [30]. In addition, the choice of β = 1/4 and γ =
1/2 reduces to the Chang explicit method [27] and the
choice of β = γ = 1/2 becomes the improved Chang
explicit method [29].

Although the study of CAM in this work focuses on
the family of one-step integration methods the results
are applicable to the corresponding family of two-step
integration methods. This is because that the second
line of Eq. (2) is numerically equivalent to Eq. (4) in
addition to the same asymptotic equation of motion
and velocity difference equation. This implies that each
member of CAM of the family of one-step integration

methods also corresponds to a member of the family of
two-step integration methods. Hence, CAM is a dual
family of integration methods.

10 Conclusions

A new family of structure-dependent integration meth-
ods is presented. This family of methods is generally
a two-step method at the development stage, which
covers most currently available semi-explicit structure-
dependent integration methods. It can be further trans-
formed into a one-step method by way of an ingenious
arrangement of the asymptotic equation ofmotion.As a
one-step integrationmethod, it is a brand-new family of
structure-dependent integration methods and thus it is
thoroughly explored herein. Two important techniques
have been used to develop this family of methods. A
loading term is added into the displacement difference
equation to eliminate an adverse high-frequency over-
shoot in steady-state responses,which is often found for
a structure-dependent integrationmethod. In addition, a
stability amplification factor is also applied to improve
stability properties so that there will be no constraint
on the step size for solving inertial problems. This is
because that structure-dependent integration methods
generally have unconditional stability for linear elas-
tic and stiffness softening systems, while they become
conditionally stable for stiffness hardening systems.
Hence, the proposed family of methods can have desir-
able numerical properties, such as unconditional sta-
bility, second-order accuracy, explicitness of each time
step, and numerical dissipation. The numerical proper-
ties are the same as those of the generalized-α method
for linear elastic systems for σ = 1. Notice that the
proposed family of methods has no adverse proper-
ties that have been found in some structure-dependent
integration methods, such as a weak instability, a high-
frequency overshoot in steady-state responses, a con-
ditional stability for stiffness hardening systems and a
poor capability of seizing the rapid variation of struc-
tural nonlinearity.

The proposed family of methods and its two dis-
sipative subfamilies of methods can have a favorable
numerical damping. In general, the amount of numer-
ical damping can be continuously controlled by a free
parameter and it is possible to achieve zero numer-
ical damping. This numerical damping can be used
to repress or even remove the spurious oscillations
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of high-frequency modes, while the low-frequency
responses are almost unaffected. In contrast to the
generalized-α method, the most important improve-
ment of this family of methods is that it is a semi-
explicit method. In general, it involves no nonlinear
iterations per time step, and thus it can save many com-
putationally efforts. An example shows that the CPU
time consumed by the proposed family of methods is
only about 1% of that consumed by the generalized-
α method for a 200-degree-of-freedom system, and it
reduces to about 0.26% for a 1600 degrees of freedom
system. Clearly, the computational efficiency gener-
ally increases with the total number of the degree of
freedom. The cause of this computational efficiency
is also fully explored by considering the computations
that consume major computational efforts at each time
step.
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