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Abstract The complete classification of solutions to
the defocusing complex modified Korteweg-de Vries
(cmKdV) equation with the step-like initial condition
is given by Whitham theory. The process of study-
ing the solution of cmKdV equation can be reduced
to explore four quasi-linear equations, which predicts
the evolution of dispersive shock wave. The results
obtained here are quite different from the defocusing
nonlinear Schrödinger equation: the bidirectionality of
defocusing nonlinear Schrödinger equation determines
that there are two basic rarefaction and shock structures
while in the cmKdV case three basic rarefaction struc-
tures and four basic dispersive shock structures are con-
structed which lead to more complicated classification
of step-like initial condition, and wave patterns even
consisted of six different regions while each of wave
patterns is consisted of five regions in the defocusing
nonlinear Schrödinger equation. Direct numerical sim-
ulations of cmKdV equation are agreed well with the
solutions corresponding to Whitham theory.
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1 Introduction

The Whitham theory was first formulated by G.B.
Whitham in his seminal publication [1] in which he
gave the Whitham modulation equations based on the
averaged conservation laws to describe some physical
phenomena such as undular bore in water and formed
the basis of impressive development of dispersive
hydrodynamics. The first application of Whitham the-
ory toKorteweg-deVries (KdV) equationwas achieved
by Gurevich and Pitaevskii [2] who studied the self-
similar solutions for dispersive shock wave (DSW),
called collisionless shock in [2], whose evolution can
be described by the diagonalWhitham equation.One of
its edge appears to be a soliton wave, and the harmonic
wave for its opposite. The simplest expanding oscillat-
ing structure described by a Jacobian elliptic function
was obtainedwith a step-like initial jumpknownasRie-
mann problem in [2]. Another analytical description of
DSW that transformed theWhitham equation to Euler–
Poisson–Darboux equation for KdV equation and non-
linear Schrödinger (NLS) equation has been presented
in Refs. [3–7]. Different from the approaches in soliton
theory [8–17], the Whitham theory is an efficient way
to investigate the DSWs and rarefaction wave (RW) of
nonlinear systems with discontinuous initial data.
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From other perspective of studying DSW, the devel-
opment of the inverse scattering technique [18] or
Riemann-Hilbert problem [19–22] for investigating
integrable systems has received lots of results. Particu-
larly, the nonlinear steepest descent method proposed
byDeift andZhou [23] allows one to get the full asymp-
totic expansions of the solutions of integrable systems
in various asymptotic limits. The Whitham theory is
closely related to the nonlinear steepest descentmethod
when studying the Cauchy problems of integrable sys-
tems [24].

The Riemann problem has been discussed in vari-
ous important physical fields [25–31]. In photon fluid,
all the possible wave patterns propagating in the nor-
mal fiber have been discussed with account of steep-
ening effects [25]. Ref. [26] gives the classification
of possible flows in two-component Bose–Einstein
condensate, and the solutions of Riemann problem
for Gardner equation (related to modified KdV equa-
tion) are completely classified in [27] which appear
some new structures and more complicated cases com-
pared to the KdV case. This can also be found in the
case of defocusing complex modified KdV (cmKdV)
equation with step-like initial data for one variable of
dispersionless limit form (another one to be a con-
stant) [28]. However, the works for both of them
to be step-like in cmKdV equation are even more
complicated.

Hereweanalyze the self-similar solutions of cmKdV
equation by the cmKdV–Whitham equation with step-
like initial condition except the region of genus-2. We
study the solutions from a single RW and a single dis-
persive shock wave which we call it basic structures
below, and the basic types of RW and DSW are more
than defocusing NLS equation. The critical condition
we will analyze in Sect. 2.1 plays an important role
in distinguishing RW or DSW solutions. The complete
classification of solutions to the defocusing cmKdV
equation is given, which needs to be more detailed
classification than defocusing NLS equation. All of
the solutions we present here are compared with direct
numerical solution, which have excellent agreement.

We are interested in how does the defocusing
cmKdV evolve from the step-like initial data

qt − 6|q|2qx + ε2qxxx = 0, (1)

where q represents the complex wave envelope and ε is
a small modulation scale. The Whitham equations for

cmKdV are neither strictly hyperbolic nor genuinely
nonlinear systems [28]. In the past year, self-similar
solutions in such kind of systems have been found and
discussed in KdV hierarchy [35], mKdV [27], Landau–
Lifshitz equation [26], etc.

Utilizing madelung transformation

q(x, t) = √
ρeiφ/ε, φx = v, (2)

the hydrodynamic system can be found by plugging (2)
into Eq. (1)

⎧
⎨

⎩

ρt − (3ρ2 + 3v2ρ)x = −ε2[4ρ3/4(ρ1/4)xx ]x
vt − (6ρv + v3)x = −ε2[3vρxx/2ρ − 3v(ρx )

2/4ρ2

+3vxρx/2ρ + vxx ]x ,
(3)

where ρ and v, analogs of density and velocity of the
hydrodynamics, are all real functions and have the step-
like initial data (7). System (3) suffices to give the
solutions as ε → 0 until it develops a shock formed
at once when muti-value region appears. After the
moment when muti-value region appears, these limits
can be expressed into genus-1 cmKdV–Whitham mod-
ulation equation obtained via some manipulations by
the method of finite-gap integration [36]

∂λi

∂t
+ vi (λ1, λ2, λ3, λ4)

∂λi

∂x
= 0, i = 1, 2, 3, 4, (4)

where

vi = V + (s + 2λi )(∂ ln L/∂λi )
−1,

s =
4∑

j=1

λ j , i = 1, 2, 3, 4, (5)

with four slowly varying variablesλ1 > λ2 > λ3 > λ4.
Here L = εK (m)/

√
(λ1 − λ3)(λ2 − λ4), K (m) is the

complete elliptic integrals of the first kind, the modu-
lus m = [(λ1 − λ2)(λ3 − λ4)]/[(λ1 − λ3)(λ2 − λ4)]
and V = 2

∑
i< j λiλ j − 3

2 (
∑4

j=1 λ j )
2. The Whitham

system can also be derived from the method of mul-
tiple scales expansion regardless of the integrability
of the systems [30–32,34]. The boundaries connecting
genus-1 and genus-0 region included in system (4) are
exactly the same with the diagonal Riemann form of
dispersionless limit of system (3). The periodic solution
of cmKdV can be expressed as
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ρ = 1

4
(λ1 − λ2 − λ3 + λ4)

2 + (λ1 − λ2)(λ3 − λ4)sn
2

×
(√

(λ1 − λ3)(λ2 − λ4)

ε
(ξ − ξ0),m

)

, (6)

where sn is the Jacobian elliptic function and ξ0 is the
phase shift which is actually equal to zero in this paper
[28]. But we choose ξ0 here so that the deviation arising
due to the procedure in numerical simulation from ρ =
const increases to wave crest can be eliminated. The
procedure which is not be considered in the Whitham
theory will be vanished as ε → 0 theoretically.

This paper is constructed as follows. In Sect. 2,
we will give the self-similar solutions of basic struc-
tures which are components of general cmKdV solu-
tions with initial conditions (7). In Sect. 3, we will
solve theWhitham equation obtained in Sect. 2 numeri-
cally and make the whole classification under step-like
initial conditions. Some typical scenarios have been
compared to direct numerical simulation of cmKdV
with remarkable agreement. We conclude this paper in
Sect. 4.

2 Basic structure

In this paper, we are interested in the solution (2) of
Eq. (1) whose initial data have a discontinuity at origin
for both its intensity and wave number

ρ(x, 0) =
{

ρr , x > 0
1, x < 0

and v(x, 0) =
{

vr , x > 0
0, x < 0,

(7)

since it gives the foundation for the more complicated
scenarios. We find that the structures of the solutions
evolving from (7) are so complicated that we shall
investigate basic structures which are the components
of the wave patterns first.

2.1 Rarefaction wave

The rarefactionwave (RW) can be solved by the disper-
sionless limit of Eq. (3) as ε → 0 due to the property
of smoothness. The systems governing the rarefaction
wave satisfy the non-strictly hyperbolic system

{
ρt − (3ρ2 + 3v2ρ)x = 0
vt − (6ρv + v3)x = 0.

(8)

This limit provides the solution correct up to the
moment of wave breaking, and the system can be trans-
formed into the diagonal form

∂r±

∂t
+ V±(r+, r−)

∂r±

∂x
= 0, (9)

where we have introduced the Riemann invariants

r+ = v

2
+ √

ρ, r− = v

2
− √

ρ. (10)

So we transform the initial value problem (7) from
physical variables to the Riemann invariants form by
means of the transformation (10)

r+(x, 0) =
{
r+
r , x > 0
1, x < 0

and r−(x, 0) =
{
r−
r , x > 0

−1, x < 0.

(11)

The Riemann velocities in terms of the Riemann invari-
ants can be expressed as

V+ = −
[
15

2
(r+)2 + 3r+r− + 3

2
(r−)2

]

,

V− = −
[
15

2
(r−)2 + 3r+r− + 3

2
(r+)2

]

. (12)

The initial condition determines that the systems (9)
have the self-similar solution depending on the variable
τ = x/t , then we have

(V+ − τ)
dr+

dτ
= 0, (V− − τ)

dr−

dτ
= 0. (13)

The bidirectionality of defocusingNLSdetermines that
there are two basic rarefaction structures to defocusing
NLS [37], either r+ or r− to be constant. However,
the characteristic of cmKdV propagates along single
direction which divides the basic rarefaction structures
into three types under condition (11). The solutions of
(9) first type can be easily derived as

r+ = r+
0 = const, r−

= −1

5
r+
0 − 1

15

√

−36(r+
0 )2 − 30 · x

t
, (14)

with the characteristic velocity V− = V−(r+
0 , r−). The

second case

r+ = −1

5
r−
0 + 1

15

√

−36(r−
0 )2 − 30 · x

t
, r−

= r−
0 = const, (15)

123



694 L.-Q. Kong et al.

Fig. 1 (Color online) Sketches of Riemann invariants of three basic RWs

with the velocity V+ = V+(r+, r−
0 ). The third case

with the meaningful solution

r+ = 1√
6

√

− x

t
, r− = − 1√

6

√

− x

t
, (16)

with the velocity V+ = V+(r+, r−). It is clear that
evolution of Riemman invariants of any choice for RW
will be on the parabola 15

2 r
2 + 3r(r0) + 3

2 (r0)
2 + τ =

0 for (14) and (15) or 6r2 + τ = 0 for (16) plotted
in blue dashed line in Fig. 1. As we shall see, there
will be the case when two Riemann invariants change
simultaneously at the same spatial space which result
from the property of complex modified KdV equation,
i.e., not genuinely nonlinear [28], while this won’t be
appear in the NLS. The pure rarefaction or the plateau,
exclude any type of dispersive shock wave, will occur
in the situations 1 � r+

r � r∗ � r−
r � −1 where r∗ =

−r±
0 /5 represents the point in which ∂V±/∂r± change.

Otherwise the oscillating region will appear which will
be discussed in Sect. 2.2. The three basic structures of
Riemann invariants distributions of RWs are shown in
Fig. 1. We may denote them as {RW− I}−{RW− III}.
Note that formation of the third type degenerates to
linearity.

2.2 Dispersive shock wave

As followed from the analysis in Sect. 2.1, the rarefac-
tion wave solutions is valid under condition 1 � r+

r �
r∗ � r−

r � −1. Outside the condition, one of the Rie-
mann invariants in (9) develops into three branches gov-
erned by the averaging mKdV–Whitham Eqs. (4) and
(5). For the case of self-similar solution, the regions for

DSW or RW can be determined once we give the ini-
tial data. In this subsection, six basic DSW structures
that may appear evolving from the initial data (11) in
Eq. (1) will be listed.

Let us recall the basic DSW structures that part of
them have been proved rigorously in Ref. [28]. The first
two types and the third two types of DSWs in Fig. 2
are similar to NLS case in which three of the Riemann
invariants are constant and another one changes, either
λ2 or λ3. The second two types in Fig. 2 of DSWgiving
rise to the not genuine nonlinear system (4) satisfy the
solution in which two of the Riemann invariants are
constant and the other two change.Wemaydenote them
as {DSW− I}, . . . , {DSW−VI}. The two dashed lines
in Fig. 2 represent two distinct speeds characterized the
DSW which is known as leading and trailing speed.
The leading and trailing speed of two edges are found
from Eq. (5) by the limitation m → 1, when λ3 = λ2,
and m → 0, when λ3 = λ4 or λ2 = λ1, respectively.
Note that the distributions of Riemann invariants are
obtained numerically [33,34] via the scheme of two-
step variant of Lax–Wendroff with nonlinear filter for
the step-like function [38].

One may note that {DSW − I} and {DSW − II} are
very similar to defocusing NLS case. And the reason of
appearing {DSW− III} and {DSW− IV} are the same
as those for {RW− III}. {DSW−V} and {DSW−VI}
are the extension of {DSW − III} and {DSW − IV}. If
we adjust the r+

r to be larger in {DSW − III} or to be
smaller in {DSW− IV}, {DSW−V} and {DSW−VI}
will appear naturally.

It is their appearance thatmakes the solution of defo-
cusing cmKdV so complicated. It’s obvious to find that
{DSW− I} and {DSW− II} are symmetric with respect
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Fig. 2 (Color online) Sketches of Riemann invariants of six basic DSWs

to x axiswhich results in the same speed fromWhitham
velocity [see (22)]. So we only give two of its solutions
and boundary speeds. For {DSW − I}, we have from
Eq. (5)
x

t
= v3(1,−1, λ3, r

−
r ),

v|left = v3|λ3=λ4 , v|right = v3|λ3=λ2 . (17)

For {DSW − III}
x

t
= v3(1, r

−
r , λ3, λ4),

x

t
= v4(1, r

−
r , λ3, λ4),

v|left = v3|λ3=λ2 , v|right = v3|λ3=λ4 . (18)

In fact, due to the given initial value on the left side
of this paper, {DSW − V} and {DSW − VI} will not
appear separately. So we temporarily modify the initial
value on the left to illustrate this type of solution.

For {DSW − V}
x

t
= v3(1, r

−
r , λ3, 0),

v|left = v3|λ3=λ2 , v|right = v3|λ3=λ4 . (19)

All of the cases are obviously the extension of
rarefaction waves solutions. The vertex of parabola
where the sign of ∂v/∂r changes plays an important

role in distinguishing {DSW − I} − {DSW − II} and
{DSW − III} − {DSW − IV}. The vertex connecting
the two Riemann invariants can be determined by the
formulas (20) or (21).

3 Classification of step-like initial condition

As is known to all, the self-similar solution of defocus-
ing NLS equation with the step-like initial condition is
divided into six categories. However, the solutions of
defocusing cmKdV equation almost need to be divided
again under each categories. Due to the diverse basic
structure, the types of defocusing cmKdV solutions are
more abundant than defocusing NLS case. One wave
pattern is even consisted of six different regions while
in the defocusing NLS case, each of wave patterns is
composed of five regions.

Here, the initial condition of any basic structures
discussed before have the common feature that one
of the initial condition is to be constant, i.e., either
r+|left = r+|right or r−|left = r−|right. In fact, a combi-
nationof aRWandaDSWsolution can also beobtained
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Fig. 3 (Color online)
Example of self-similar
solution of Eq. (1). The
initial condition is given by
r+
r = 0.8, r−

r = 0.5. a
Distributions of Riemann
invariants; b Comparison of
numerical simulation and
Whitham theory solution of
Eq. (1) with time t = 1 and
ε = 0.1

(a) (b)

by setting one of them to be constant. We do not dis-
play it in Sect. 2 as one of the basic structure of cmKdV
equation, since it can be interpreted as the combination
solutions. Let us now discuss the initial conditions con-
sisting of four different values.

3.1 (A): 1 > r+
r > r−

r > −1

Three scenarios will appear under condition (A). We
start with condition (A.1) where two RWs and a DSW
are produced.

(A.1) : 1 > r+
r > r−

r > −1, r−
r > r∗

A1,

where r∗
A1 satisfies

∂v3(r+
r , r−

r , r∗
A1, r

∗
A1)

∂r∗
A1

= 0. (20)

Wenote that ifweput r−
r = r∗

A1 into (20)wehave r
∗
A1 =

−r+
r /5which is the critical condition we have obtained

from Sect. 2.1, and 1 > r+
r locates in the upper part of

parabola developing a rarefaction wave. We shall give
the solutions for specific regions under this condition
(A.1) in details. In case of (A.1), the solutions of Eq. (1)
divided into five regions are expressed as below: (see
Fig. 3)

(I) For x/t � v1(1, r−
r , r−

r ,−1):

r+ = 1, r− = −1.

(II) For v1(1, r−
r , r−

r ,−1) < x/t < v1(r+
r , r−

r , r−
r ,

−r+
r ):

r+ = 1√
6

√

− x

t
, r− = − 1√

6

√

− x

t
.

(III) For v1(r+
r , r−

r , r−
r ,−r+

r ) � x/t � v3(r+
r , r−

r ,

r−
r , r∗∗

A1):

r+=r+
r , r−=−1

5
r+
r − 1

15

√

−36(r+
r )2−30 · x

t
,

where r∗∗
A1 satisfies v3(r+

r , r−
r , r−

r , r∗∗
A1) = v4

(r+
r , r−

r , r−
r , r∗∗

A1) located in the interval (−1, r∗
A1).

(IV) For v3(r+
r , r−

r , r−
r , r∗∗

A1) < x/t < v3(r+
r , r−

r , r∗
A1,

r∗
A1):

λ1 = r+
r , λ2 = r−

r ,
x

t
= v3(r

+
r , r−

r , λ3, λ4),

x

t
= v4(r

+
r , r−

r , λ3, λ4).

(V) For x/t � v3(r+
r , r−

r , r∗
A1, r

∗
A1) :

r+ = r+
r , r− = r−

r .

So the solutions are composed of plateau, {RW −
III}, {RW− I}, {DSW− III} and a plateau, respec-
tively.

The boundary velocities of DSW x/t = v3(r+
r , r−

r ,

r−
r , r∗∗

A1) and x/t = v3(r+
r , r−

r , r∗
A1, r

∗
A1) are known

as leading edge and trailing edge, respectively. The
regions that outside the boundaries of DSW (genus-
1) are controlled by rarefaction waves (9). The Rie-
mann invariants matching of the zero-phase region and
single-phase region are given as follows: At trailing
edge where λ3 = λ4, (λ1, λ2) = the rarefaction wave
solution outside the oscillation region; at leading edge
where λ3 = λ2, (λ1, λ4) = the rarefaction wave solu-
tion outside the oscillation region. For simplicity, we
do not show Roman number in each region in the fol-
lowing content.

Now it’s natural to consider the condition

(A.2) : 1 > r+
r > r−

r > −1, r+
r < r∗

A2,

where r∗
A2 satisfies
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Fig. 4 (Color online) Same
as Fig. 3 except
r+
r = 0.5, r−

r = −0.1

(a) (b)

∂v2(r∗
A2, r

∗
A2, r

+
r , r−

r )

∂r∗
A2

= 0. (21)

The critical condition can also be obtained if we put
r+
r = r∗

A2 into (21), then we have r∗
A2 = −r−

r /5.
The results of Riemann distribution under (A.2) and
(A.1) are symmetric with respect to x-axis, i.e., λ

′
i =

−λ5−i , i = 1...4, so the density ρ under condition
(A.1) and (A.2) for each regions are exactly the same
(see [6)]. From (5), we have

v j (λ
′
1, λ

′
2, λ

′
3, λ

′
4) = V + (s + 2λ j )(∂ ln L/∂λ j )

−1

= V + (−s − 2λi )(−∂ ln L/∂λi )
−1

= V + (s + 2λi )(∂ ln L/∂λi )
−1

= vi (λ1, λ2, λ3, λ4), j = 5 − i,
(22)

which means that the boundaries for each region under
(A.2) are the same as those which are under (A.1).

In both (A.1) and (A.2), which we have discussed
before, shock waves are produced. Then we shall dis-
cuss final cases under that only rarefaction wave pro-
duced under the condition 1 > r+

r > r−
r > −1.

(A.3) : 1 > r+
r > r−

r > −1, r+
r � r∗

A2, r
−
r � r∗

A1

The solutions evolving from condition (A.3) are all
the combination of RWs which is easier to analysis
than before. Condition (A.3) only gives three possible
Riemann distributions: (A.31): r+

r > −r−
r ; (A.32):

r+
r = −r−

r ; (A.33): r+
r < −r−

r . Indeed, the density
of (A.31) and (A.33) is the same due to the symmetric
of their Riemann distributions. (A.32) is actually the
case of {RW − III}. So we only list the case (A.31)
as an example in Fig. 4. In Fig. 4, the wave consists of
{RW−III} and {RW−I}whose solutions and velocities

have been given in Sect. 2.1, so we here neglect the
detailed description to Fig. 4.

3.2 (B) : 1 > r+
r � −1 > r−

r

Two scenarios will appear under condition (B): (B.1):
r+
r � r∗

B ; (B.2): r+
r < r∗

B , where r∗
B satisfies

∂v1(r∗
B, r∗

B, r+
r , r−

r )/∂r∗
B = 0. In (B.1), a DSW and

a rarefaction are produced which also appear in NLS
case [37]. So we only give the discussion under the
condition (B.2) here.

(B.21) : 1 > r+
r � −1 > r−

r , r+
r < r∗

B, r+
r > r∗∗

B

We notice that the choice of r+
r influences the lead-

ing edge speed of {DSW − IV} which is marked as
VDSW in Fig. 5a, VRW represents the leading speed of
{RW− II} before {DSW− IV}. Obviously, there exists
a point r∗∗

B that makes the speed of {DSW−IV} exactly
the same with {RW − II}, that is

v1(1, r
∗∗
B , r∗∗

B , r−
r ) = v2(1, r

∗∗
B , r∗∗

B , r−
r ). (23)

So we have r∗∗
B = −3/2−r−

r /2.We shall give the case
where the propagation speed of {DSW− IV} is slower
than {RW − II}’s first.

In Fig. 5,wepresent theRiemanndistributions under
condition (B.21) in (a) and the corresponding self-
similar solution where two DSWs are produced for
cmKdV equation in (b). The intermediate state con-
necting two DSWs are composed of a plateau and a
rarefaction, the deviation of the plateau in (b) results
from the plane oscillation during numerical simulation.
The boundaries of those regions are also plotted by
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Fig. 5 (Color online) Same
as Fig. 3 except
r+
r = −0.3, r−

r = −1.2

(a) (b)

five black dashed lines in Fig. 5. The solutions of the
cmKdV equationwhich are divided into six regions can
be expressed as follows:

For x/t � v3(1,−1, r−
r , r−

r ) :
r+ = 1, r− = −1.

Forv3(1,−1, r−
r , r−

r ) < x/t < v3(1,−1,−1, r−
r ) :

λ1 = 1, λ2 = −1, x/t = v3(1,−1, λ3, r
−
r ), λ4 = r−

r .

Forv3(1,−1,−1, r−
r ) � x/t < v1(1, r+

r , r+
r , r−

r ) :
r+ = 1, r− = r−

r .

For v1(1, r+
r , r+

r , r−
r ) � x/t < v1(r∗∗∗

B , r+
r , r+

r ,

r−
r ) :

r+ = −1

5
r−
r + 1

15

√

−36(r−
r )2 − 30 · x

t
, r− = r−

r ,

where r∗∗∗
B satisfies v1(r∗∗∗

B , r+
r , r+

r , r−
r ) = v2(r∗∗∗

B ,

r+
r , r+

r , r−
r ) located in the interval (r∗

B, 1).
For v1(r∗∗∗

B , r+
r , r+

r , r−
r ) � x/t � v2(r∗

B, r∗
B, r+

r ,

r−
r ) :
x/t = v1(λ1, λ2, r

+
r , r−

r ),

x/t = v2(λ1, λ2, r
+
r , r−

r ), λ3 = r+
r , λ4 = r−

r .

For x/t > v2(r∗
B, r∗

B, r+
r , r−

r ) :
r+ = r+

r , r− = r−
r .

So the solutions are composed of plateau, {DSW −
I}, plateau, {RW − II}, {DSW − IV} and a plateau,
respectively.

(B.22) : 1 > r+
r � −1 > r−

r , r+
r < r∗

B, r+
r = r∗∗

B

As we analyzed in (B.21), r+
r = r∗∗

B means {RW−
II} is covered totally by {DSW − IV} due to the same
speed. In other words, the leading edge and trailing
edge of the {RW − II} are the same which leads to

the region of {RW − II} disappear (see Fig. 6a). The
case of (B.22) and (B.21) is much similar, so we do not
repeat the same description of each region but only give
the Riemann distribution and wave profile. In Fig. 6a,
we choose r+

r = r∗∗
B = −3/2 − r−

r /2 = −0.9. The
deviation of the intermediate plateau in (b) results from
the plane oscillation during numerical simulation.

(B.23) : 1 > r+
r �−1 > r−

r , r+
r < r∗

B,−1 < r+
r < r∗∗

B

An example of (B.23) is displayed in Fig. 7a. The
plateau connecting {DSW − I} and {DSW − IV} in
Fig. 6a is split into a smaller plateau and a small
{DSW − VI}. The solutions of cmKdV under (B.23)
can be expressed as follows:

For x/t � v3(1,−1, r−
r , r−

r ) :
r+ = 1, r− = −1.

Forv3(1,−1, r−
r , r−

r ) < x/t < v3(1,−1,−1, r−
r ) :

λ1 = 1, λ2 = −1, x/t = v3(1,−1, λ3, r
−
r ), λ4 = r−

r .

Forv3(1,−1,−1, r−
r ) � x/t < v2(1, r+

r , r+
r , r−

r ) :
r+ = 1, r− = r−

r .

For v2(1, r+
r , r+

r , r−
r ) � x/t < v1(1, r4∗B , r+

r , r−
r ) :

λ1 = 1, x/t = v2(1, λ2, r
+
r , r−

r ), λ3 = r+
r , λ4 = r−

r ,

where r4∗B satisfies v1(1, r4∗B , r+
r , r−

r ) = v2(1, r4∗B , r+
r ,

r−
r ).
Forv1(1, r4∗B , r+

r , r−
r ) � x/t � v2(r∗

B, r∗
B, r+

r , r−
r ):

x/t = v1(λ1, λ2, r
+
r , r−

r ),

x/t = v2(λ1, λ2, r
+
r , r−

r ), λ3 = r+
r , λ4 = r−

r .

For x/t > v2(r∗
B, r∗

B, r+
r , r−

r ) :
r+ = r+

r , r− = r−
r .

(B.24) : 1 > r+
r � −1 > r−

r , r+
r < r∗

B, r+
r = −1
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Fig. 6 (Color online) Same
as Fig. 3 except
r−
r = −1.2, r+

r = −0.9

(a) (b)

Fig. 7 (Color online)
Self-similar solutions of
Riemann distributions. The
initial conditions are
r−
r = −1.2 : ar+

r =
−0.95; br+

r = −1

(a) (b)

An example of (B.24) is displayed in Fig. 7b in
order to make a comparison with (B.23). The plateau
connecting {DSW − I} and {DSW − IV} in (a) is cov-
ered totally by a {DSW − VI} in (b). We find that
v3(1,−1,−1, r−

r ) = v2(1,−1,−1, r−
r ), so we can get

the solution in this case as long as the left and right
speeds of the third area in Fig. 6b to be equal. The
wave profile of cmKdV under (B.24) is composed of
plateau, {DSW − I}, {DSW − VI}, {DSW − IV} and
plateau.

The solutions of (B.22)–(B.24) are much similar,
and the only difference between them is the changes of
intermediate plateau. So we only present the Riemann
distributions under condition (B.23) and (B.24).

3.3 (C) : r+
r > 1 > −1 > r−

r

The solution under (C) has three possibilities: (C.1) :
r+
r < −r−

r ; (C.2) : r+
r = −r−

r ; (C.3) : r+
r > −r−

r .

Obviously, theRiemanndistributions of (C.1) and (C.3)
are symmetric and the formation of the profile for ρ

is the same. From the condition (C) : r+
r > 1 >

−1 > r−
r what we see here in not self-similar case

is emergence of the genus-2 regions due to the colli-
sion of two DSWs, which can’t be described by the
genus-1 Whitham system (4) and (6) definitely. One
example corresponding to case (C.3) that the genus-2
region surrounded by two genus-1 regions is shown in
Fig. 8. In Fig. 8a, we leave the blank for the region of
collision (genus-2 region) where we do not study tem-
porary. And the boundary of genus-2 region between
x = s1t and x = s2t is plotted in dashed lines in
Fig. 8a where s1 = v3(1,−1, r−

r , r−
r ) = −11.28, s2 =

v2(r+
r , 1, 1,−1) = −8.375. In Fig. 8b, we present

the numerical simulation under the same condition of
Fig. 8a, four white lines represent the boundaries of
each region corresponding to four black dotted line in
Fig. 8a. From the numerical simulation, we see that
amplitude of genus-2 region is oscillating for eachwave
crest as time increases, while for genus-1 region the
amplitude is invariable.
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Fig. 8 (Color online) The
initial conditions are given
by r+

r = 1.5, r−
r = −1.2. a

Riemann distributions under
(C.3) for genus = 0 region
and genus = 1 region. b
Numerical results under
(C.3). White lines represent
the boundary of each region
corresponding the black
dashed lines in a

(a) (b)

Fig. 9 (Color online) Same
as Fig. 8 except
r+
r = −1.2, r−

r = −1.5

(a) (b)

The more complicated cases that the region for
genus-1 will be overlapped totally by genus-2 region
under the condition (C.2) are not present here.

In fact, the boundaries of genus-2 region obtained
depending on genus-1 Whitham equation are actually
not precisely. The detailed discussion of the genus-2
region here is beyond the scope of this article, and we
will discuss it in the future.

3.4 (D) : 1 > −1 > r+
r > r−

r

The genus-2 region also appears due to the collision of
two DSWs under condition (D). Again, we do not dis-
cuss here in detail, but only give the solutions for genus-
1 and genus-0. An example including the three regions
has been shown in Fig. 9. In fact, the situations for (C)
and (D) are the same to some extent except the type
of DSWs for collision is different. The form to exhibit
the solution is the same as Fig. 8. The boundaries of
genus-2 region are s3 = v2(1,−1, r+

r .r−
r ) ≈ −13.4,

s4 = v3(1,−1, r+
r .r−

r ) ≈ −6.53.

3.5 (E) : r+
r > r−

r > 1 > −1, (F) : r+
r > 1 �

r−
r > −1

The solutions under (E), (F) are the same as thosewhich
are under (D), (B). Indeed, ifwe set r+

r E = −r−
r D, r−

r E =
−r+

r D where subscripts (D) and (E) represent the param-
eter under condition (D) and (E), respectively, we have
at once 1 > −1 > r+

r D > r−
r D which is exactly coin-

cided with the condition (D). This kind of transforma-
tion do not have any effect on expression (6). The same
procedure could also be applied in (F).

4 Conclusion

In this paper, the Riemann problem of the complex
mKdV equation has been solved. The process of clas-
sification needs to be more detailed than the NLS case
due to its property of not genuinely nonlinear, but the
symmetry indeed simplifies the classification. We give
the solutions for each conditions except the regions for
genus-2. Some of the cases have been compared with
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the direct numerical simulation,which exhibits remark-
able agreement.
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