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Abstract With the inhomogeneities of media taken
into account, a generalized variable-coefficient
Kadomtsev–Petviashvili (vcKP) equation is proposed
to model nonlinear waves in fluid mechanics and
plasma physics. Based on Hirota bilinear method and
symbolic computation, we present lump and lump–
soliton interaction solutions of the vcKP equation.
These local solutions are derived by taking the aux-
iliary function as the positive quadratic function or
the linear combination of the positive quadratic func-
tion and the exponential function. Compared with the
results allowed by the constant-coefficient KP equa-
tion, lump and lump–soliton solutions for the vcKP
equation possess more abundant properties. It is shown
that the velocity, moving path, and maximum height of
the lump are completely characterized by the time func-
tions rather than the constant parameters. The inter-
action between a lump and one line soliton are still
nonelastic, but the track of the lump obeys the con-
trollable function of time. The lump interacting with
resonance soliton pairs exhibits a kind of special rogue
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wave in which the peak emerges and evolves with the
varying path. The detailed analysis and discussion of
these solutions are provided and illustrated.
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1 Introduction

Nonlinear evolution equations (NLEEs) have impor-
tant applications in plasma physics, ocean dynamics,
physiology, biology and other fields [1–4], and a lot
of researchers have been engaged in exploring exact
solutions of these equations. Among these solutions,
the soliton solution is given by the exponential func-
tion which is exponentially localized in a certain direc-
tion, while the lump solution is expressed by the ratio-
nal function which is localized in all directions in
the space. Over the years, researchers have discov-
ered many powerful methods for these solutions, such
as the Hirota bilinear method [5], the inverse scat-
tering method [6], the Bäcklund transform [7] and
the Darboux transform [8,9]. Recently, Ma has pro-
posed a direct method to obtain the lump solution of
the Kadomtsev–Petviashvili (KP) equation [10]. Soon
later, many lump and interaction solutions of NLEEs
were successfully obtained by symbolic computation
[11–22]. Up to now, most of lump and interaction solu-
tions are investigated only for NLEEs with constant
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coefficients. There are few studies concerning NLEEs
with variable coefficients. However, when the media
are inhomogeneous and/or the boundaries are nonuni-
form, the variable-coefficient NLEEs are able to model
various situations more realistically than the constant-
coefficient one [23–26]. In this work, we will focus on
the generalized variable-coefficient KP (vcKP) equa-
tion

PvcKP(u) := (ut + f (t)uux + g(t)uxxx )x + l(t)ux

+m(t)uyy + n(t)uxy + q(t)uxx = 0,

(1)

where f (t) �= 0, g(t) �= 0, l(t),m(t), n(t), q(t) are all
arbitrary functions of t and represent the nonlinearity,
dispersion, perturbed effect, and disturbed wave veloc-
ity along the y direction, respectively. The vcKP equa-
tion (1) can describe many physical phenomena, such
as long waves in turbulent flow over a sloping bottom
[27], long waves on the surface of a three-dimensional
fluid domain bounded below by slowly varying topog-
raphy [28], and surface waves propagation in shallow
seas and marine straits with varying depth and width
[29,30]. General line and parabola solitons of the vcKP
equation (1) have recently been constructed for two-
temperature ions in dusty plasma and the shallowwater
wave in fluids [31–33]. Indeed, the vcKP equation (1)
contains several KP models with variable coefficients
which appear in various branches of physics, including
Korteweg-de Vries (KdV) equation, cylindrical KdV
equation, KP equation and cylindrical KP equation.
Some integrable properties of Eq. (1), namely theBäck-
lund transformation, the bilinear form, themulti-soliton
solution, the Grammian solution, and the Lax pair have
been deduced [26,34]. However, to our knowledge, the
lump solution and the interaction solution of the vcKP
equation (1) have not yet been given.

As mentioned above, the Hirota bilinear method [5]
is direct and effective for constructing exact nonlinear
wave solutions, in which the given nonlinear equation
is converted to the bilinear form for the auxiliary vari-
able through the appropriate transformation. With the
different types of ansatz for the auxiliary function, a
variety of such as soliton, rational, and periodic solu-
tions can be derived. This kind of technique usually
involves a lot of tedious algebraic computations, but
the symbolic computation softwares such as Maple
and Mathematica could quickly deal with this. More
specifically, when the ansatz is taken as the quadratic
function and the combination of quadratic and expo-

nential functions, lump and lump–soliton interaction
solutionswere presented for variousNLEEs such as the
(2 + 1)-dimensional KP equation [10,11,35], reduced
p-gKP and p-gBKP equations [12], generalized KP-
Boussinesq equation [14], BKP equation [16], gener-
alized KdV equation [20,22], generalized KP equation
[36], Ito equation [19], and the (3 + 1)-dimensional
Jimbo–Miwa equation [18]. Until now, this treatment
is only applied to the constant-coefficient equation, in
which by vanishing the coefficients of variables x, y, z
and t , one just need to solve a set of algebraic equa-
tions. However, when the original model is a variable-
coefficient equation, we have to modify this kind of
direct method. For example, there are several arbitrary
functions of t in the (2 + 1)-dimensional vcKP equa-
tion (1). Hence, the ansatz is changed as one including
the functions of t , and only the coefficients of variables
x and y are required to be zero, which yields a mixed
system of algebraic equations and ordinary differen-
tial equations. With the aid of symbolic computation,
solving this system leads to exact solutions with some
constraint conditions. These solutions usually exhibit
more abundant properties than ones in the constant-
coefficient case.

The structure of this work is as follows. In Sect. 2,
the bilinear form of Eq. (1) is given, and then the aux-
iliary function is taken as a positive quadratic function
to construct the lump solution. In Sect. 3, the posi-
tive quadratic function is combined with the exponen-
tial function to derive the interaction solution of lump
and line solitons. In Sect. 4, by combining the positive
quadratic function with the hyperbolic cosine function,
the interaction solution between the lump and the linear
soliton pair is obtained. Conclusions are given in last
section.

2 Lump solution

For the vcKP equation (1), it has a truncated Painlevé
expansion [37],

u = u0
φ2 + u1

φ
+ u2, (2)

where φ, u0, u1, u2 are functions of x , y, t . Substitut-
ing (2) into the vcKP equation (1) and collecting the
coefficients of φ−6 and φ−5 yields

φ−6 : u0 = −12g(t)φ2
x

f (t)
, φ−5 : u1 = 12g(t)φxx

f (t)
. (3)
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If we take u2 = 0, solution (2) can be rewritten as

u = −12φ2
x g(t)

f (t)φ2 + 12g(t)φxx

f (t)φ
= 12

g(t)

f (t)
(ln φ)xx ,

(4)

which leads to the bilinear form of vcKP equation (1):

BvcKP(φ) := (Dx Dt + g(t)D4
x + q(t)D2

x + n(t)Dx Dy

+m(t)D2
y)φ · φ = 0, (5)

with the conditions

g(t) = g0 f (t)e
− ∫

l(t)dt ,m(t) = m0 f (t)e
− ∫

l(t)dt .

(6)

Here g0 and m0 are two arbitrary nonzero constants,
and the Hirota bilinear operators Dx , Dy and Dt in Eq.
(5) are defined as [38]

Dα
x D

β
y D

γ
t ( f · g)

=
(

∂

∂x
− ∂

∂x ′

)α(
∂

∂y
− ∂

∂y′

)β

(
∂

∂t
− ∂

∂t ′

)γ

f (x, y, t)g(x ′, y′, t ′)
∣
∣
∣
∣
x=x ′,y=y′,t=t ′

.

The transformation (4) is also a characteristic trans-
formation of the Bell polynomial theory of soliton
equation [39,40], and the vcKP equation (1) has a rela-
tionship with the bilinear equation (5),

PvcKP(u) = 6
g(t)

f (t)

(
BvcKP(φ)

φ2

)

xx
. (7)

Therefore, if φ is solved from the bilinear vcKP equa-
tion (5), then the transformation (4) gives rise to a solu-
tion of the vcKP equation (1).

To search for the lump solution of the vcKP equation
in Eq. (5), we start with

φ = h2 + k2 + a7, h = a1x + a2y

+
∫

s1(t)dt + a3, k = a4x + a5y

+
∫

s2(t)dt + a6, (8)

where ai (i = 1, 2 . . . 7) are real parameters, and
si (t)(i = 1, 2) are two functions of t , they will be
determined later. Substituting (8) into the bilinear vcKP
equation (5), and taking all coefficients of the different
polynomials of x and y be zero, then solving a set of
algebraic equations for si (t)(i = 1, 2) and a7 gives the
following parameters’ relations:

s1(t) = (a1a25 − a1a22 − 2a2a4a5)m(t)

a21 + a24
− a2n(t) − a1q(t),

s2(t) = (a22a4 − a4a25 − 2a1a2a5)m(t)

a21 + a24
− a5n(t)

− a4q(t),

a7 = − 3g0(a21 + a24)
3

m0(a1a5 − a2a4)2
, (9)

which need to meet the following conditions

(a) a21 + a24 �= 0, (b) m0g0 < 0,

(c) Δ := (a1a5 − a2a4) =
∣
∣
∣
∣
a1 a2
a4 a5

∣
∣
∣
∣ �= 0. (10)

Then a set of positive quadratic function solutions of the
bilinear vcKP equation (5) can be obtained as follows:

φ =
[

a1x + a2y +
∫ (

(a1a25 − a1a22 − 2a2a4a6)m(t)

a21 + a24

−a2n(t) − a1q(t)

)

dt + a3

]2

+
[

a4x + a5y +
∫ (

(a22a4 − a4a25 − 2a1a2a5)m(t)

a21 + a24

−a5n(t) − a4q(t)

)

dt + a6

]2
− 3g0(a21 + a24)

3

m0(a1a5 − a2a4)2
.

(11)

Further, we get a class of lump solutions of the vcKP
equation (1)

u = −48g(t)(a1h + a4k)2

f (t)φ2 + 24g(t)(a21 + a24)

f (t)φ
,

(12)

where the functions h and k are defined by

h = a1x + a2y +
∫ (

(a1a25 − a1a22 − 2a2a4a6)m(t)

a21 + a24

− a2n(t) − a1q(t)

)

dt + a3, (13)

k = a4x + a5y +
∫ (

(a22a4 − a4a25 − 2a1a2a5)m(t)

a21 + a24

− a5n(t) − a4q(t)

)

dt + a6. (14)

In this class of lump solutions, the arbitrary param-
eters ai (i = 1 . . . 6) need to satisfy (10) to ensure that
the solution (12) iswell defined. The condition (c) leads
to a1a4 �= 0 or a21 + a24 �= 0. The lump solution u in
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Fig. 1 Profiles of the lump solution (20): a three-dimensional graph at t = 0; b three-dimensional graph at x = 0; c three-dimensional
graph at y = 0

(12) is analytic if and only if a7 > 0, that is to say, the
conditions a1a5 − a2a4 �= 0 and m0g0 < 0 guarantees
both analyticity and localization of the solutions in the
(x, y)- plane. For any given time t , the lump solution u
approaches 0 if and only if h2 + k2 → +∞, or equiva-
lently, x2+ y2 → +∞. In order to describe themoving
path of the lump, let ux = uy = 0, all the critical points
of u can be calculated as below

x = a2(a6 + ∫
s2(t)dt) − a5(a3 + ∫

s1(t)dt)

a1a5 − a2a4
,

y = a4(a3 + ∫
s1(t)dt) − a1(a6 + ∫

s2(t)dt)

a1a5 − a2a4
, (15)

and

x = ±
√

3a7
a21 + a24

−a5(a3 + ∫
s1(t)dt) − a2(a6 + ∫

s2(t)dt)

a1a5 − a2a4
, (16)

y = a4(a3 + ∫
s1(t)dt) − a1(a6 + ∫

s2(t)dt)

a1a5 − a2a4
. (17)

Then one can find moving velocity of the lump

V =
√

(a2s2(t) − s1(t)a5)2 + (a1s2(t) − s1(t)a4)2

(a1a5 − a2a4)2
,

(18)

and the maximum and minimum amplitudes

Amax = −8m0e− ∫
l(t)dt (a1a5 − a2a4)2

(a21 + a24)
2

,

Amin = m0e− ∫
l(t)dt (a1a5 − a2a4)2

(a21 + a24)
2

. (19)

In order to analyze the propagation characteristics
of the lumpmore specifically, four illustrated examples

are listed to show more abundant structure due to the
existence of variable coefficients in the vcKP equation
(1).

For the first example, we choose the following func-
tions and parameters,

a1 = 1, a2 = 2, a3 = 0, a4 = 1, a5 = −1, a6 = 0,

g(t) = 1,m(t) = −1, f (t) = 6, l(t) = 0,

n(t) = 0, q(t) = 0.

This trivial case corresponds to the classical KP equa-
tion [10] and the lump solution reads

u = −48(12x2 + 12xy − 48xt − 24y2 − 78yt + 21t2 − 16)

(12x2 + 12xy − 48xt + 30y2 + 30yt + 75t2 + 16)2
.

(20)

Figure 1a–c displays the lump (20) at time t = 0, and
x = 0, y = 0, respectively. This lump moves along the

straight line y = − 2
5 x with the velocity v =

√
29
2 , and

the maximum and minimum amplitudes are 3 and − 3
8 ,

respectively.
For the second example, by selecting the functions

and parameters as

a1 = 1, a2 = 2, a3 = 0, a4 = 1, a5 = −1, a6 = 0,

g(t) = 6t,m(t) = −6t, f (t) = 6t, l(t) = 0, n(t) = t, q(t) = t,

we can obtain the following lump solution

u = − 2304(6x2 + 6xy − 81xt2 − 12y2 − 108yt2 + 189t4 − 8)

(24x2 + 24xy − 324xt2 + 60y2 + 108yt2 + 1431t4 + 32)2
.

(21)

Figure 2a–c exhibits the lump (21) at time t = 0, and
x = 2, y = 2, respectively. This lump moves along the
straight line y = − 5

16 x with the velocity v = √
281t ,
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Fig. 2 Profiles of the lump solution (21): a three-dimensional graph at t = 0; b three-dimensional graph at x = 2; c three-dimensional
graph at y = 2

and the maximum andminimum amplitudes are 18 and
− 9

4 , respectively.
The functions and parameters in the third example

are taken as

a1 = 1, a2 = 2, a3 = 0, a4 = 1, a5 = −1,

a6 = 0, g(t) = cos(t),

m(t) = − cos(t), f (t) = cos(t), l(t) = 0,

n(t) = cos(t), q(t) = cos(t).

Then one can get the lump solution

u = −288(12x2 + 12xy − 84x sin(t) − 24y2 − 42y sin(t) + 147 sin2(t) − 16)

(12x2 + 12xy − 84x sin(t) + 30y2 − 42y sin(t) + 147 sin2(t) + 16)2
. (22)

Figure 3a–c illustrates the lump (22) at time t = 0, and
x = 0, y = 0, respectively. This lump moves along
the straight line y = 0 with the velocity v = 7 cos(t)

2 ,
and the maximum andminimum amplitudes are 18 and
− 9

4 , respectively.
For the last example, the functions and parameters

are selected as follows:

a1 = 1, a2 = −2, a3 = 0, a4 = −2, a5 = 1,

a6 = 0, g(t) = 6t,m(t) = −6t, f (t) = 6t,

l(t) = 0, n(t) = t2, q(t) = t2,

which yields the lump solution

u = 216[t4(200t2 + 7110t + 42687) − 150xt2(63 − 5t) − 30yt2(396 + 65t) − 25(225x2 + 63y2 − 360xy − 1875)]
[t4(10t2 + 234t + 2025) + 3xt2(126 − 10t) − 30yt2(36 + t) + 225(x2 + y2) − 360xy + 1875]2 . (23)

Figure 4a–c shows the lump (23) at time t = 0, and
x = 0, y = 1, respectively. This lump moves along
the track l0: x = 3t2 + t3

3 , y = 24t2
5 + t3

3 with the

velocity v =
√
2t2 + 156

5 t + 3204
25 t , and the maximum

andminimum amplitudes are 72
25 and− 9

25 , respectively.
In above four examples, the first one represents the

classical constant-coefficient KP equation. Hence it
gives a traditional lumpwhichmoves along the straight
line with the fixed velocity. But the last three examples
involve the KP equation with the variable-coefficient
case, the lumps exhibit some novel characteristics.
More specifically, one can see that the velocity, moving
path and maximum height of the lump are completely

characterized by the time functions. This suggests that
the lump solution in the vcKP equation is able to model
more various nonlinear phenomena.

3 Interaction solution between a lump and one line
soliton

In soliton theory, soliton collision is an important phe-
nomenon. It is known that the lump will keep its shape,
velocity, and amplitude after the collision with the soli-
ton solution, which means that the collision is com-

pletely elastic [41,42]. However, for some integrable
equations, the interactions are not completely elastic
[43–45]. In this section, we consider the interaction
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Fig. 3 Profiles of the lump solution (22): a three-dimensional graph at t = 0 ; b three-dimensional graph at x = 0; c three-dimensional
graph at y = 0

Fig. 4 Profiles of the lump solution (23): a three-dimensional graph at t = 0 ; b three-dimensional graph at x = 0; c three-dimensional
graph at y = 1

solution between a lump and one line soliton of the
vcKP equation (1). To this end, we redefine the func-
tion φ as follows

φ = h2 + k2 + a7 + a0e
ξ , h = a1x + a2y

+
∫

s1(t)dt + a3, k = a4x + a5y +
∫

s2(t)dt

+ a6, ξ = k1x + k2y +
∫

ω1(t)dt, (24)

where ai (i = 0, 1 . . . 7) and ki (i = 1, 2) are real
parameters, and s1(t), s2(t), and ω1(t) are three func-
tions of t , they will be determined later. It is obvious
that the rational function and the exponential function
correspond to a lump and one line soliton, respectively.
More specifically, the exponential term is dominant if
ξ � 0 and one line soliton exists, while the rational
term is dominant if ξ � 0 and the lump appears. Sub-
stituting (24) into the bilinear vcKP equation (5), one
can derive the parameters’ relations:

k1 =
√

− m0
3g0

(a1a5 − a2a4)

a21 + a24
,

k2 =
√

− m0
3g0

(a1a5 − a2a4)(a1a2 + a4a5)

(a21 + a24)
2

,

s1(t) = (a1a25 − a1a22 − 2a2a4a5)m(t)

a21 + a24
−a2n(t) − a1q(t),

s2(t) = (a22a4 − a4a25 − 2a1a2a5)m(t)

a21 + a24
−a5n(t) − a4q(t),

ω1(t) = −k21[g(t)k21 + q(t)] + k2[k2m(t) + n(t)k1]
k1

,

a7 = − 3g0(a21 + a24)
3

m0(a1a5 − a2a4)2
. (25)

These parameters need to satisfy the following condi-
tions
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Fig. 5 Profiles of the interaction solution (29): a–d are three-dimensional graphs at time t = − 2, t = − 1, t = 0, t = 3, respectively

(a) a1a4 �= 0, (b) a1a5 − a2a4 �= 0,

(c) m0g0 < 0, (d) a0 > 0. (26)

The interaction solution of u can be written as

u = −12g(t)(2a1h + 2a4k + a0k1eξ )2

f (t)φ2

+12g(t)(2a21 + 2a24 + a0k21e
ξ )

f (t)φ
; (27)

the condition (26) guarantees that the solution (27) is
well defined. To study the interaction solution in detail,
we choose the following set of parameters

a0 = 1, a1 = 1, a2 = 1, a3 = 1,

a4 = 1, a5 = −1, a6 = 1, a7 = 3,

g(t) = 6t, m(t) = −12t, f (t) = 6t,

l(t) = 0, n(t) = t, q(t) = t,

s1(t) = −14t, s2(t) = −12t, ω1(t) = 5
√
6t

3
,

k1 = −
√
6

3
, k2 = 0, (28)

which gives rise to the interaction solution

u = 8eξ [2x2 + 2y2 + (85t2 − 26x − 2y − 26
√
6 − 26)t2 + 4(1 + √

6)x + 11 + 4
√
6]

(85t4 − 26xt2 − 2yt2 + 2x2 + 2y2 − 26t2 + 4x + 5 + eξ )2

− 48[2x2 − 2y2 + 2t2(42t2 − 13x + y − 13) + 4x − 1]
(85t4 − 26xt2 − 2yt2 + 2x2 + 2y2 − 26t2 + 4x + 5 + eξ )2

, (29)

with

ξ = −
√
6x

3
+ 5

√
6t2

6
. (30)

As shown in Fig. 5, the interaction between a lump
and one line soliton are still nonelastic but the track
of the lump obeys the controllable function of time. It
can be seen that the lump and the line soliton firstly are
separated completely (Fig. 5a at t = −2). Then two
local waves meet at a certain time and the amplitude

of the lump decreases (Fig. 5b at t = −1, c at t =
0). The lump is absorbed by the line soliton gradually
and their collision is show to be nonelastic. When the
time increases, twowaves separate from each other and
move in their respective directions (Fig. 5d at t = 3).
Figure 5c, d exhibits the fusion and fission of this lump
from the line soliton, respectively. Compared the vcKP
equation (1) with the classical KP equation, the lump
in fusion case in Ref. [46] moves along the straight
line and finally is switched off when it leaves from the
induced line soliton. However, the lump shown in Fig. 5
separate from the line soliton again eventually. Since
in the expressions h and k corresponding to the lump,
there are quadratic functions rather than line ones of
time, and the track of the lump obeys the parabola.

4 Interaction solution between a lump and line
soliton pairs

Based on the collision between a lump and one line
soliton, we start to discuss the interaction between a

lump and line soliton pairs. To this end, the function φ

is supposed as

φ = h2 + k2 + a7 + a0e
ξ + b0e

−ξ ,

ξ = k1x + k2y +
∫

ω1(t)dt,

h = a1x + a2y +
∫

s1(t)dt + a3,

k = a4x + a5y +
∫

s2(t)dt + a6, (31)
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Fig. 6 Profiles of the interaction solution (36): a–g are three-dimensional graphs at time t = − 4, t = − 1.8, t = − 0.5, t = 0, t = 1,
t = 1.6, t = 3, respectively

where ai (i = 0, 1 . . . 7), ki (i = 1, 2) and b0 are real
parameters to be determined. Similarly, the rational
function supports a lump and the exponential functions
are responsible for the line soliton pairs respectively.
For ξ � 0 and ξ � 0, the exponential terms are dom-
inant and the line soliton pairs exists, while the lump
only arises at the middle time. Substituting (31) into
the bilinear vcKP equation (5) yields the following set
of parameters’ relations:

k1 =
√

− m0
3g0

(a1a5 − a2a4)

a21 + a24
,

k2 =
√

− m0
3g0

(a1a5 − a2a4)(a1a2 + a4a5)

(a21 + a24)
2

,

s1(t) = (a1a25 − a1a22 − 2a2a4a5)m(t)

a21 + a24
−a2n(t) − a1q(t),

s2(t) = (a22a4 − a4a25 − 2a1a2a5)m(t)

a21 + a24
−a5n(t) − a4q(t),

ω1(t) = −k21[g(t)k21 + q(t)] + k2[k2m(t) + n(t)k1]
k1

,

a7 = −3g0(a21 + a24) [k41a0b0 + (a21 + a24)
2]

m0(a1a5 − a2a4)2
.

(32)

These parameters must meet the conditions

(a) a1a4 �= 0, (b) a1a5 − a2a4 �= 0,

(c) m0g0 < 0, (d) a0 > 0, b0 > 0. (33)

They lead to a class of interaction solutions to the vcKP
equation (1)

u = −12g(t)(2a1h + 2a4k + a0k1eξ − b0k1e−ξ )2

f (t)φ2

+12g(t)(2a21 + 2a24 + a0k21e
ξ + b0k21e

−ξ )

f (t)φ
;
(34)

condition (33) ensures that the solution (34) is well
defined. By selecting some appropriate parameters,

a0 = 1, b0 = 1, a1 = 1, a2 = 1, a3 = 1,

a4 = 1, a5 = −1, a6 = 1, a7 = 10

3
,

g(t) = 6t, m(t) = −12t, f (t) = 6t,

l(t) = 0, n(t) = t, q(t) = t,

s1(t) = −14t, s2(t) = −12t, ω1(t) = 5
√
6t

3
,

k1 = −
√
6

3
, k2 = 0, (35)

which yields
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u = 48[3t2 cosh ξ(85t2 − 26x − 2y − 26) + 6 cosh ξ(x2 + y2 + 2x) + 34 cosh ξ ]
[6(x2 + y2) − 6t2(13x + y) + 3t2(85t2 − 26) + 4(3x + 4) + 6 cosh ξ ]2

+288
√
6 sinh ξ(2x − 13t2 + 2) + 864[y2 − x2 + t2(−42t2 + 13x − y + 13) − 2x + 1]
[6(x2 + y2) − 6t2(13x + y) + 3t2(85t2 − 26) + 4(3x + 4) + 6 cosh ξ ]2 , (36)

with

ξ = −
√
6x

3
+ 5

√
6t2

6
. (37)

Figure 6a–g shows the process of propagation for
the rogue waves at different times. Figure 6a exhibits
resonance soliton pairs, in which the lump is almost
invisible. As the time t increases, Figure 6b presents
this lump fission from the left line soliton. Figure 6c, d
depicts the propagation process of the interaction solu-
tion, a rogue wave appears in the middle of resonance
soliton pairs and connect them with each other, and the
maximum amplitude of the lump solution is reached
at time t = 0. Figure 6e–g shows that the lump was
swallowed by soliton pairs and disappeared gradually.
Compared the vcKP equation (1) with the KP equation
in [46], this lump interacting with resonance soliton
pairs exhibits a kind of special rogue wave in which
the peak emerges and evolves with the varying route.

5 Conclusions

In this work, we have studied the vcKP equation which
can model various nonlinear real situations in hydro-
dynamics, plasma physics and some other nonlinear
science. Using the bilinear method and symbolic com-
putation, lump, and lump–soliton interaction solutions
are presented. These local solutions are derived by con-
structing the auxiliary function. Taking the positive
quadratic function gives rise to the lump solution in
which the parameters need to satisfy certain conditions
to ensure the analyticity and localization of the lump.
It is shown that the velocity, moving path, and maxi-
mum height of the lump are completely characterized
by the time functions rather than the constant param-
eters. The interaction solution between the lump and
the linear soliton is obtained by combining the posi-
tive quadratic function and the exponential function.
The interaction between two kinds of waves are still
nonelastic but the track of the lump obeys the con-
trollable function of time. By adding the exponential
function, the lump interacting with resonance soliton
pairs displays a kind of special rogue wave in which the

peak emerges and evolves with the varying route. Com-
pared the vcKP equation with the constant-coefficient
counterparts, lump and lump–soliton solutions for the
vcKP equation possess more abundant properties. The
dynamic behaviors of these solutions are discussed
under the different parameters. These results may help
us to understand the propagation of nonlinear waves in
nonlinear science.
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