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Abstract We study the Kuramoto–Sakaguchi model
composed by N identical phase oscillators symmetri-
cally coupled. Ranging from local (one-to-one, R = 1)
to global (all-to-all, R = N/2) couplings, we derive a
general solution that describes the network dynamics
close to an equilibrium. Therewith, we build stability
diagrams according to N and R bringing to the light a
rich scenery of attractors, repellers, saddles, and non-
hyperbolic equilibriums. Our result also uncovers the
obscure repulsive regime of the model through bifurca-
tion analysis. Numerical simulations show great accor-
dance with our analytical studies. The exact knowledge
of the behavior close to equilibriums may be a funda-
mental step to investigate phenomena about synchro-
nization in networks. As an example, in the end, we
discuss the dynamics behind chimera states from our
results.

Keywords Synchronization · Stability · Kuramoto
model · Perturbation analysis · Bifurcations

1 Introduction

For more than forty years, the paradigmatic system
of N one-dimensional coupled phase oscillators, the
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Kuramoto model [1], has been intensively studied to
understand phenomena related to synchronization in
biological, chemical, and electronic networks. Despite
the simplicity of the dynamics of each oscillator (θ̇ =
ω), strong efforts should be dedicated to find analytical
solutions for a network of nonlinearly coupled oscil-
lators, due to the high dimensionality of the system.
Kuramoto showed a seminal solution giving rise to
the prosper application of the mean–field theory in the
Kuramoto model [2]. The method considers the net-
work in the thermodynamic limit N → ∞with oscilla-
tors globally coupled. So that, the network is described
oscillating with a mean frequency and its coherence is
given by the magnitude of a (mean-field) order param-
eter, an approach analogous to the Eulerian descrip-
tion in hydrodynamics. Since then this approach has
been successful in analytical investigations [2–9]. In
contrast, accurate results for the finite-size Kuramoto
model remain a challenge due to the great number
of equations involved, nevertheless, the dynamics is
richer. While in the case of global coupling, the full
synchronization is the only stable equilibrium, in dif-
ferent topologies of the Kuramoto model multistability
is allowed [10]. And, sustained by Lyapunov function
argument, the system would reach an equilibrium state
as t → ∞ [11]. In this context, equilibriums play a
central role in network dynamics.

Multistability [12–14], basin of attractions [15,16],
and traveling waves [17] are some of the fundamental
phenomena directly related with equilibriums in vari-
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ants of the Kuramoto model with both attractive and
repulsive phase couplings.1 These phenomena are also
observed in real-world networks [18–21]. Such man-
ifestations are mostly studied in the continuous ther-
modynamic limit and keep not yet well understood.
Exact solutions for a lower number of oscillators in the
Kuramoto model are mandatory in this study, but they
are still a topic of investigation [22,23].

To shed some light on those problems, we study the
Kuramoto–Sakaguchi (KS) model [24], a generaliza-
tion of the Kuramoto model, explicitly for a finite num-
ber of N identical oscillators symmetrically coupled
(G = GT , in matrix representation). For an approach
to the skew-symmetric coupling (G = −GT ), the com-
plementary case,2 we point out Ref. [25]. Whereas, in
thatwork, the authors studied the role of the coexistence
of Hamiltonian-like and dissipative behaviors, here we
explore the dynamics of oscillators in the phase and
parameter spaces. In contrast to traditional investiga-
tions, where the time evolution of the network is fol-
lowed by the order parameter [8], we obtain solutions
describing precisely the individual trajectory of each
oscillator when the system is close to an equilibrium,
in some sense similar to the Lagrangian description
in hydrodynamics. We present several numerical stud-
ies in great accordance with our theory. Our goal is
to give theoretical support for phenomena of synchro-
nization observed in real-world networks with more
complex phase oscillators. In fact, synchronizations
in the repulsive regime discussed in this work were
recently observed in a nice experimental network of
nanoelectromechanical oscillators [26]. In the analy-
sis, the authors show that for first-order expansion in the
coupling parameter, their model can be represented by
the Kuramoto–Sakaguchi network model. For stronger
couplings, termsof second-order of the expansiondom-
inate and different behaviors take place delimiting the
boundary of our theoretical predictions.

In the KS model, the time evolution of each phase
oscillator is governed by

θ̇x = ωx +
∑

〈y,x〉
G(x,y) sin

(
θy − θx − α

)
, (1)

1 The dynamic of networks with repulsive phase couplings is
almost unknown in spite of its relevance in neurons networks. In
the repulsive regime, the oscillators do not collapse in a single
phase although they synchronize in frequency.
2 Recalling that amatrixMN×N can bewritten by a combination
of symmetric and skew-symmetric matrices.

where x = 0, 1, 2, . . . , N − 1 identifies the xth oscil-
lator in a ring, ωx, its natural frequency, and G(x,y),
the coupling rule between it and the yth oscillator. The
notation 〈y,x〉 means that the summation is on the R
nearest neighbors in both sides of oscillator x, then y
assumes the valuesx−R,x−R+1, . . . ,x, . . . ,x+R,
where R can be from R = 1 (local coupling) to
R = (N − 1)/2 (global coupling), if N is odd. If
1 < R < (N − 1)/2 the coupling is called nonlocal.
Finally,α ∈ (−π, π ] is a constant that, for positive cou-
pling G, determines the regime of the network named
attractive if |α| < π/2 and repulsive otherwise. In the
attractive regime, the statewhere all oscillators have the
same phase is allowed, contrary to the repulsive regime
[27]. Further, the eigenvalue expression obtained in Eq.
(11) and its applications in Fig. 3 as well as in Table 1
will make this notion more precise.

Considering N identical oscillators (ωx = constant,
∀x) interacting according to KS model, with periodic
boundary conditions, as in general studies of chimera
states [28–30] (for the case ωx �= ωy see [23] ), an
equilibrium is related to the phase difference between
the nearest neighbors of oscillators� = θx+1−θx. Due
to the similarity, any homogeneous phase distribution
of the oscillators along a circle is an equilibrium, i.e.,

� = 2π

N
q, q = 0, 1, 2, . . . , N − 1. (2)

The integer q denotes the number of loops needed to
distribute the phase oscillators in the circle. The trivial
solution is � = 0 (or 2π ) corresponding to the full
synchronization. For the rest (q �= 0), we say that the
network is synchronized in a q-twisted state. Note that
there is no different distribution for q ≥ N .

In this work, we describe the stability properties of
the q-twisted states assuming a general symmetric cou-
plingG(x,y), only dependent on the absolute distance
between oscillators – i.e., G(x,y) = G(|y − x|) ≡
Gn = G−n , for distance given by n = y − x. More
specifically, we determine the set of eigenvalues associ-
ated with each state identifying the complete stability
scenario of hyperbolic and non-hyperbolic equilibri-
ums for a finite number N of oscillators. As an appli-
cation, we show specifically this scenery in the param-
eter space R × q of the repulsive regime and calcu-
late the bifurcation of twisted states in the thermody-
namic limit. Here, we apply the theory in numerical
experiments implemented with the traditional coupling
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Gn = constant. Nevertheless, we have considered dif-
ferent couplings as exponential [Gn ∝ exp(−k|n|)]
and cosine [Gn ∝ 1 − A cos(n)], assumed in the sem-
inal works about chimera [28,31], and also obtained
great accordance with the theory. Nevertheless, we
point out that the closer the dynamics is to equilibrium
the better the theory works. For longer distances, our
analytical results fail to describe trajectories but can
help to describe global behaviors.

In the end, we discuss how these results contribute
to a dynamical interpretation of chimera states.

2 Theory

2.1 Synchronization frequency

Without loss of generality, we assume that frequency
ωx = 0, periodic boundary conditions (θ0 = θN ) and
N odd. Then, Eq. (1) can be rewritten as

θ̇x =
R∑

n=−R

Gn sin(θx+n − θx − α). (3)

Based on the system symmetry, we assume that the
network shall asymptotically converge to a q-twisted
statewith the sameconstant frequency θ̇x = �.Assum-
ing θ0 = 0, we obtain θx = �t +�x. Substituting this
result inEq. (3), the network synchronization frequency
� of any mode q is obtained:

� =
R∑

n=−R

Gn sin(n� − α). (4)

2.2 Stability of q-twisted states

We begin to analyze the stability of q-twisted states by
taking into account a small perturbation in its solution:
θx = �t + �x + Ex. Then,
θ̇x = � + Ėx . (5)

Substituting Eq. (5) in the LHS of Eq. (3) and
expanding the (perturbed) RHS of Eq. (3) to first-order
in Ex, we obtain (with ψ ≡ n� − α)

Ėx(t) =
R∑

n=−R

Gn [Ex+n(t) − Ex(t)] cosψ. (6)

With the ansatz Ex(t) = Axeλt , (or with vector nota-
tion: E(t) = A eλt ), Eq. (6) becomes

λAx =
R∑

n=−R

Gn [Ax+n − Ax] cosψ

=
R∑

n=1

Gn
[
ρnAx−n + μnAx+n

] − βAx , (7)

where ρn = cos(n� + α), μn = cos(n� − α), and

β =
R∑

n=1

Gn(ρn + μn) = 2 cosα

R∑

n=1

Gn cos(n�). (8)

Then, Eq. (7) can bewritten in thematrix formλA =
MA, where A = [A0, . . . ,Ax, . . . ,AN−1]T and M is
a circulant matrix [32]

M =

⎛

⎜⎜⎜⎜⎜⎝

−β G1μ1 G2μ2 · · · G2ρ2 G1ρ1
G1ρ1 −β G1μ1 · · · G3ρ3 G2ρ2
G2ρ2 G1ρ1 −β · · · G4ρ4 G3ρ3

...
...

...
...

. . .
...

G1μ1 G2μ2 G3μ3 · · · G1ρ1 −β

⎞

⎟⎟⎟⎟⎟⎠

(9)

with (non-normalized) eigenvectors given by

A� =
[
z�

0, . . . , z�
x, . . . , z�

N−1
]T

,

z� ≡ exp

(
i
2π

N
�

)
, (10)

with � = 0, 1, 2, . . . , N − 1.
The �th eigenvalue of the q-twisted state is given by

λ� = γ� + i��, with

γ� = −4 cosα

R∑

k=1

Gk cos

(
k
2π

N
q

)
sin2

(
k

π

N
�
)

(11)

�� = 2 sin α

R∑

k=1

Gk sin

(
k
2π

N
q

)
sin

(
k
2π

N
�

)
. (12)

Any perturbation E(t) can be written in terms of
the eigenmodes: E(t) = ∑

� C�F�(t), with F�(t) =
A�eλ�t or, without vector notation, Ex(t) = ∑

� C� F�

(x, t) where F�(x, t) = z� x eλ�t is a wave function:

F�(x, t) = eγ�t exp

(
i

(
2π�

N
x + ��t

))
. (13)
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Notice that the eigenmode � = 0, with eigenvalue
λ0 = 0 and eigenvector A0 = [1, 1, . . . , 1]T , results
from the invariance of the system given Eq. (1) under a
global phase shift θx → θx +C , ∀x. Then, despite of
the N equations following Eq. (1), the equilibriums are
(N −1)-dimensional since they are related to the phase
difference. In other words, the sum of all phase differ-
ences is a multiple of 2π due to the periodic bound-
ary condition such that any phase difference can be
obtained from the others N − 1. Therefore, the eigen-
mode � = 0 shall be disregarded below.

3 Applications in finite networks

3.1 Long-lived eigenmodes

In general, attractive and repulsive regimes are studied
for α = 0 and π , respectively. The convergence to any
q-twisted state is monotonically exponential, missing
the effect of the complex part of the eigenvalues [Eq.
(12)] in the dynamics. For different values ofα, accord-
ing to our results, the behavior close to equilibriums is
more interesting. Except for the state q = 0, where
nothing changes (�� = 0), all eigenmodes can oscil-
late with their particular frequencies given by Eq. (12).
To test this prediction, we confronted them with some
“brute force” numerical simulations. In one of many
simulations, we evolved a network of 50 oscillators
locally coupled (R = 1) with α = 1.5 and Gn = 0.1.
The time evolution of such a system was performed
by direct numerical integration of the 50 differential
equations [Eq. (3)] from random initial conditions and
the system reached a twisted state with q = 8: the sys-
tem has frequency synchronization, i.e., all the oscil-
lators have the same phase velocity � = − 0.20665,
and the phase difference between any two neighbors is
θx+1 − θx = 8(2π/50), ∀x.

Regarding the theoretic aspect, for q = 8, we can
compute all the (real part of) eigenvalues (only for � >

0) with Eq. (11):

γ1 = γ49 ≈ −0.598 × 10−4,

γ2 = γ48 ≈ −2.38 × 10−4,

γ3 = γ47 ≈ −5.32 × 10−4,

· · ·
γ24 = γ26 ≈ −151. × 10−4,

γ25 ≈ −152. × 10−4.

80 84 88 92 96
t/103

−0.2068

−0.2067

−0.2066

−0.2065

θ̇25

∼ eγt

2 4 6 8
ω/10−2

10−6

10−4
Spectrum

Fig. 1 Behavior of θ̇25 in the KS model for local coupling
(black). The exponential decreasing curve (red) and the spectrum
(blue) demonstrate the behavior of the longest-lived eigenmodes
of the 8-twisted state. N = 50, R = 1, α = 1.5, and Gn = 0.1.
(Color figure online)

We observe that all γ�(>0) are negative and, as we
shall discuss in the next subsection, it is a clear signal
that the 8-twisted state is stable, in agreement with the
numerical simulation. On the other hand, if we assume
that the lifetime of an eigenmode can be estimated as
τ� ∝ |γ�|−1, clearly the eigenmodes � = 1 and 49 have
the longest lifetimes.

For large times, but before the system reaches the
final state q = 8, it is reasonable to expect a behav-
ior dominated by the eigenmodes � = 1, 49 of the 8-
twisted state: a wave [Eq. (13)] with amplitude decay-
ing exponentially with constant γ = γ1,49 < 0. Sub-
stituting the parameters of the network in Eqs. (4,
12), we obtain, respectively, �8 = −0.20665 and
�1 = |�49| = 0.0211 ≡ ωT .

In Fig. 1, we show the behavior of θ̇25 (the phase
velocity of the oscillator in the site x = 25) for
80,000≤ t � 96,000 (black line) and its correspond-
ing spectrum. One can observe in Fig. 1 that the pro-
nounced peak in the spectrum is around ω ≈ ωT (blue
line) and the oscillation amplitude of θ̇25 is decaying
exponentially to the final synchronization frequency
�8 as predicted above: the red curve is obtained with a
function proportional to exp(γ t).

We present also the spectrogram for θ̇25 in Fig. 2,
one can observe that initially the oscillator x = 25
has several frequencies with high amplitude. This is
because, due the random initial conditions, the network
is deciding in which one of the 25 attractors (|q| ≤
12) it will converge. Following, just some frequencies
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Fig. 2 Spectrogram of θ̇25

survived, the system decided to the twisted state q = 8
(�8 ≈ − 0.20665). Now, we only observe oscillations
of its eigenmodes given by �� with � = 1, . . . , N − 1
(Eq. (12)). Then, all eigenmodes die one by one, being
ωT the last one.

3.2 Multistability

The eigenmodes3 are stable if γ� < 0 and unstable if
γ� > 0. Thus, a q-twisted state can be classified as:

(a) attractor (hyperbolic) if γ1, . . . , γN−1 < 0;
(b) repeller (hyperbolic) if γ1, . . . , γN−1 > 0;
(c) saddle (hyperbolic) if ∃ γ�γ�′ < 0;
(d) non-hyperbolic if ∃ γ� = 0.

We call the attention for some remarks about the items
above. (i) If a non-hyperbolic state has all the other
γ� < 0, the system does not converge completely to the
q-twisted state; however, in general, it synchronizes in
frequency. We call this state as neutrally stable. In sub-
section “Hyperbolic × non-hyperbolic stable states,”
we discuss the different signatures of these equilibri-
ums: the former has a homogeneous phase distribution
(θx+1−θx = constant, ∀x) and the latter does not have.
(ii) Due to the assumption of periodic boundary condi-
tions, there is a symmetry between the stability of −q
andq states: The real part of their eigenvalues [Eq. (11)]
is the same (γq = γ−q ). One also can see from Eq. (2)

3 Remember that only the eigenmodeswith � > 0 are considered
here.

that −q and N − q represent the same state, so there is
another way of labeling the twisted states, for instance:
q = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2, if N
is odd. (iii) If α = π/2 the eigenvalues are purely
imaginary and the stability is not well defined by our
assumptions. (iv) Since typically �� �= 0, there are
several different types of equilibriums with stable and
unstable manifolds which we generically call saddle.
(v) Although our deduction assumed N odd, the anal-
ysis can be easily extended to N even.

As an example, we consider a network of N = 20
oscillators in a ringwith the same and positive coupling
for attractive and repulsive regimes. We varied R from
local to nonlocal and tested the stability of each q-
twisted state according to the sign of γ�, ∀ � > 0. The
outcome is compiled in Fig. 3.

The attractors are represented by blue rectangles in
the diagrams, and the neutrally (non-hyperbolic) stable
states are in light blue. While repellers, saddles, and
non-hyperbolic unstable states are in white.

According to Eq. (11) and conditions (a-d) above,
if we change the system from attractive to repulsive
regime (or vice versa), repellers become attractors and
vice versa, including non-hyperbolic equilibriums, and
saddles keep their unstable character in both regimes.
There are some non-hyperbolic states with stable and
unstable manifolds. Close to these equilibriums, the
dynamic is saddle-like and they are alsounstable in both
regimes. Finally, the states with ‘0’ in Fig. 3 have γ� =
0, ∀� and our analysis above is unable to determine
their stability. However, according to some simulations
we performed, such states seem to be unstable in both
regimes.

The stable states, highlighted in blue and light blue in
our diagrams of Fig. 3, should be compared with those
in Fig. 1 of Ref. [13], which were obtained exclusively
by a large and intense work of “brute force” numerical
integration of the Kuramoto equations. One can readily
realize that the analysis performed here with the eigen-
values [Eq. (11)] provides simultaneously (i) a much
faster (almost immediate) computational tool capable
of producing (ii) a much more detailed scenario of the
q-twisted states that identifies the different hyperbolic
(repellers and saddles) as well as non-hyperbolic (neu-
trally stable and saddle-like) equilibriums, for any val-
ues of N and R. In contrast, the diagrams in Fig. 1 of
Ref. [13] only show whether the pair (q, R) is stable
or not.
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Fig. 3 Stability diagrams of the q-twisted states for N = 20
oscillators equally coupled in a ring for a attractive regime
(|α| < π/2) and b repulsive regime (π/2 < |α| ≤ π ). Highlight
for stable states: (hyperbolic) attractors in blue, neutrally (non-
hyperbolic) stable states in light blue; saddles, repellers and also
non-hyperbolic unstable states are in white. (Color figure online)

3.3 Bifurcations in the repulsive regime

Now, we analyze the case of a network of oscillators in
the continuum limit. We also assume below that each
oscillator is coupled to its R nearest neighbors (each
side) with constant coupling.

We start with a network locally coupled (R = 1).
From Eq. (11), the stability of a q-twisted state can
change from attractor to repeller (vice versa) according
to the sign of cos(2πq/N ). For |q| = N/4, all eigen-
values are purely imaginary,4 and consequently these
states are not asymptotically stable or unstable, there
is a bifurcation point given by the ratio |q|/N = 1/4.
Since in our representation |q| ≤ (N − 1)/2, the max-
imum ratio |q|/N tends to 1/2 in the limit of N → ∞.
Therefore, a network locally coupled presents approx-
imately half of its states as (hyperbolic) attractors and
the other half, repellers, independently of α and Gn .

For nonlocal couplings, the stability of the q-twisted
states depends only on the ratio R/N . This is clearly
expressed in the thermodynamic limit N → ∞ of Eq.
(11) where, in the attractive regime, stable solutions are
obtained when

∫ R/N

0
cos(2πqz) sin2(π�z) dz > 0 (14)

in the range 1 ≤ R ≤ N/2, for Gn > 0 and con-
stant. For a given q-twisted state, its stability changes
when the integral in the inequality (14) is null. Defining
the function f (x, y) ≡ sin(2πxy)/y, with x = R/N ,
to express the solution of the integral, the bifurcation
condition is given by

f (x, (� − q)) − 2 f (x, q) + f (x, (� + q)) = 0. (15)

For a chosen q, we set � = 1 and vary x from 0 to 0.5
and find values (xq(�=1)) that solve the equation. This
process should be repeated for � = 2, 3, . . . . Since the
stability condition Eq. (14) is satisfiedwhen x � 0, a q-
twisted state loses its stability when Eq. (15) is satisfied
for some �, remaining unstable in the rest of the range of
x . In our example, twist bifurcations happen for � = 1:
tbq(1) = xq(1) (See the middle column in Table 1).
This result is valid for more complex networks. In [10],
the authors obtained the same solution from the mean-
field approach considering a symmetric distribution of
coupling Gn .

In the repulsive regime, the condition of stability is
no longer satisfied when x � 0 for nonlocal couplings.
So, now, the first twist bifurcation point demarcates

4 A good example can be seen in the first column of both dia-
grams in Fig. 3, the states q = 5 and q = 15 (which in turn is
equivalent to the state q = −5) has γ� = 0, ∀�.
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Table 1 Bifurcations in the continuum limit

Twisted state Attractive regime (I) Repulsive regime (II)

q � tbq(�) � tbq(�)

1 1 0.340461 – Unstable

2 1 1/6 5 0.277562

3 1 0.110727 7 0.191433

5 0.308065

4 1 0.082948 9 0.145507

7 0.225577

2 5/12

5 1 0.066323 11 0.117041

9 0.178895

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
q/N

0.1

0.2

0.3

0.4

0.5

R
/N tb2(5)

tb3(7)

tb3(5)

tb4(9)

tb4(7)

tb4(2)

tb5(11)

tb5(9)

Fig. 4 Stability in the repulsive regime. Black dots are the stable
states for N = 100. Colored stripes are regions (in the continuum
limit) where q-twisted states are expected to be stable, according
to table 1 (For comparison, the values of q/N were calculated
with N = 100 in both cases.). (Color figure online)

the boundary where a q-twisted state becomes stable.
In this regime, several twist bifurcation can occur as
shown in the last columnofTable 1. For local couplings,
the condition becomes |q|/N > 1/4.

For any value of R/N , the state of full synchro-
nization (q = 0) shall be a hyperbolic attractor in the
attractive regime and a hyperbolic repeller in the repul-
sive regime. On the other hand, the numbers in table
1 should be interpreted as follows: (I) In the attractive
regime, tbq(1) is the highest value of R/N where the q-
twisted state is stable. For instance, tb2(1) = 1/6means
that the state q = 2 is stable for 0 < R/N < 1/6. (II)

In the repulsive regime, several values of tbq(�) deter-
mine ranges of stabilities, for a given q. For instance:
q = 4 is stable when tb4(9) < R/N < tb4(7) and
tb4(2) < R/N < 0.5 (green stripes in Fig. 4).

In Fig. 3 and also Table 1, where Gn > 0, the dis-
tinction between the attractive and repulsive regimes
becomes clearer: for |α| < π/2, the fully synchro-
nized state (all phases equal or q = 0) is an attractor
for all values of R and for R/N � 0.34 only the state
q = 0 is an attractor. With π/2 < |α| ≤ π , the state
q = 0 is a repeller for any value of R. The network will
synchronize in frequency, but with different values for
the phases.

3.4 Dynamics close to equilibrium

3.4.1 Close to an attractor

It is important to remember that our analysis of stability
was performed by taking into account a small pertur-
bation Ex in the q-twisted states. On the other hand,
with the (real part of the) eigenvalues Eq. (11), one can
predict if a given q-twisted state is stable or not, then if
the system is close to a stable state, the time evolution
of each phase can be approximately

θx(t) ≈ �t + �x +
∑

�

C�F�(x, t), (16)

where � is the synchronization frequency of the state,
given by Eq. (4); � = 2πq/N and F�(x, t) are the
(perturbation) eigenfunctions Eq. (13). Eventually, the
time evolution of the Kuramoto order parameter, for a
system close to an attractor, could be predicted directly
with our formulas:

ρ(t) =
∣∣∣∣∣
1

N

∑

x

eiθx(t)

∣∣∣∣∣ . (17)

We considered a system with parameters α =
0.4, R = 1, N = 50, Gn = 1/50 and initially in
the state q0 = 0, (then � = 0, ∀x), with a not too
small perturbation:

θx(0) = 1.4 exp

[
− (x − 25)2

200

]
sin

(
7.5π

50
x

)
, (18)

with x = 0, 1, . . . , 49, see Fig. 5a.
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Fig. 5 a initial configuration of phases, given by Eq. (18); b
comparison between the theoretical prediction (obtained with
Fourier decomposition and our equations for perturbations, blue
curve) and the results obtained by direct numerical integration
of 50 differential equations (red circles). (Color figure online)

From the condition above, we evaluated the phases
by (i) “brute force” numerical integration of the
50 (KS) differential equations and by (ii) our theo-
retical formulation: the initial condition Eq. (18) was
decomposed in its Fourier components A�, B�; � and
the eigenvalues were obtained with Eqs. (4, 11, 12)
for q = 0; and the time evolution of each phase was
calculated with:

θx(t) = �t +
∑

�

eγ�t
[
A� cos

(
2π�

50
x + ��t

)

+B� sin

(
2π�

50
x + ��t

)]
. (19)

Then, the Kuramoto order parameter was computed
for both cases and the comparison is presented in Fig.
5b. One can observe that both results start equals and
they diverge slightly as the network evolves. This is
due to a delay introduced by our analytical evolution
caused by the distance that the initial condition is from
the equilibrium q = 0.

3.4.2 Close to a repeller

We studied the behavior close to a repeller, while the
systemmoves away from it, through one eigendirection
of its unstable manifold. We considered a network of

0 200 400 600 800 1000 1200 1400
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0

θ̇ 1
0(

t)

(a)

0 200 400 600 800 1000 1200 1400
t

0.0
0.1
0.2
0.3
0.4
0.5

ρ
( t
)
=

| Z
(t
)|

(b)

Fig. 6 Initial time evolution of: a The phase velocity of the
oscillator in x = 10; b the order parameter ρ. Black curves
were obtained by direct integration (Runge–Kutta) of the 20 KS
equations. In turn, the red curves were obtained with our approx-
imation, Eqs. (17,21). (Color figure online)

N = 20 phase oscillators with R = 3, Gn = 1/20,
α = 1.6 > π/2 (repulsive regime) and with initial
condition close to equilibrium q = 1. In Fig. 3b, we
can observe that q = 1 is a repeller.

The initial condition for the phases is q = 1 plus a
small perturbation (A = 0.1) in the eigenmode � = 1.

θx(t = 0) =
(
2π

20

)
x + A cos

(
2π

20
x

)
. (20)

On the other hand, with equations (4,11,12), one
can obtain �(q=1) ≡ �1 ≈ −0.2847 and the real and
imaginary parts of the eigenvalue of mode � = 1: γ1 =
0.001295, �1 = 0.1095. Then, the initial evolution of
the phase oscillators can be approximated by

θx(t) = �1t +
(
2π

20

)
x+ Aeγ1t cos

(
2π

20
x + �1t

)
,

(21)

as can be observed in Fig. 6. By deriving Eq. (21),
we obtained the phase velocity nearby the repeller (red
line in Fig. 6a), we compared this with the direct result
of numerical integration of the 20 KS equations (black
curve). Thebehavior of the order parameter is presented
in Fig. 6b, one can observe that Eqs. (17, 21) also pro-
vide a good approximation for the initial time, during
which the system moves away from the repeller.
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3.4.3 Close to a saddle

We also investigated the behavior close to a saddle,
and we observed the system approaching it through
one eigendirection of its stable manifold and after that
moving away from it through its unstable manifold.

For this, we considered again a network of N =
20 phase oscillators, but with R = 6, Gn = 1/20,
α = 1.6 > π/2 (repulsive regime) and with initial
condition close to equilibrium q = 4. In Fig. 3b, we
can observe that for R = 6, the state q = 4 is a saddle.

The initial condition for the phases is q = 4 plus
a small perturbation (A = 0.1) in the eigenmode � =
16, with eigenvalue λ16 = γ16 + i�16, where γ16 =
− 0.006676, �16 = − 0.3403,

θx(t = 0) =
(
2π.4

20

)
x + A cos

(
2π.16

20
x

)
. (22)

Again, we integrated the 20 KS equations with
the initial condition described above and observed the
phase velocity of the oscillator inx = 10, θ̇10, as shown
in Fig. 7. Such variable has exponentially decreasing
oscillations toward the state q = 4 and can be well
approximated by (red curve in Fig. 7b)

θ̇10(t) = �4 + Aeγ16t
[
γ16 cos

(
2π.16

20
10 + �16t

)

− �16 sin

(
2π.16

20
10 + �16t

)]
, (23)

where �4 ≈ −0.08087 is the synchronization fre-
quency of q = 4. That is a clear signature of the system
moving through the eigendirection of the stable mani-
fold.

Before t ∼ 103, θ̇10 begins to oscillate with differ-
ent frequency and exponentially increasing amplitude.
Such behavior can be well approximated by the eigen-
mode � = 12, the blue curve in Fig. 7b is written as:

�4 + Beγ12(t−t ′) cos(�12(t − t ′)) , (24)

where γ12 = 0.001632, �12 = −0.0588 and the other
constants: B = 0.000642 and t ′ = 1011.4.

3.5 Hyperbolic × non-hyperbolic stable states

Technically, the difference between hyperbolic (attrac-
tor) and non-hyperbolic (neutrally) stable states is the
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−0.10

−0.05

θ̇ 1
0(

t)

(b)

Fig. 7 Time evolution of phase velocity of the oscillator in x =
10. Black curves in a and b were obtained by direct integration
(Runge–Kutta) of the 20 KS equations near a saddle; b red and
blue curves: our approximations given by Eqs. (23) and (24).
(Color figure online)

presence of at least one null eigenvalue in the latter
case. The purpose of this section is to illustrate the role
of the corresponding eigenvector in the dynamics of
networks. To this end, we retake the network studied
in section “Multistability” and focus in the 2-twisted
state in the repulsive regime. We recall that for R = 8
and R = 9 this state is an attractor and neutrally stable,
respectively (Fig. 3b).

Our experiment is based on a numerical integration
(Runge–Kutta, with step size δt = 2.5 × 10−2 and
2 × 105 iterations) for each case (R = 8 and R = 9),
with the same initial conditions close to the equilibrium
(q = 2),

θx(0) = x
2π

20
2 + rx , x = 0, 1, . . . , 19 , (25)

where rx ∈ [− 0.4, 0.4] is a random number. Gn =
1/20 and α = π are fixed, so that, the only differ-
ence between both simulations is the number of nearest
neighbors R. The circles in Fig. 8a represent the ini-
tial conditions of all oscillators. In Fig. 8b, the squares
represent the asymptotic state of the attractor for the
coupling R = 8. All the oscillators are synchronized in
frequency, and the phase distance between neighboring
oscillators is the same constant � = 2π 2/20 = π/5,
corresponding to q = 2, as expected. Despite of this
fact, the final state for R = 9 violates the assump-
tion Eq. (2) about the phase distribution as the triangles
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Fig. 8 Signatures of hyperbolic (R = 8) and non-hyperbolic
(R = 9) stable states with N = 20, α = π , Gn = 1/20, and
q = 2. a Initial condition. b Final configurations for hyperbolic
(red squares) and non-hyperbolic (blue triangles) stable states,
both obtained numerically from the same initial condition (a).
(Color figure online)

in Fig. 8b show. Nevertheless, the oscillators are syn-
chronized in frequency (θ̇x = � = 0, ∀x) and with
q̄ ≡ ∑

x(θx − θx−1)/(2π) = 2. That is the feature of
neutral stability.

It is worth tomention that in our simulationswe have
not seen a distribution devoid of symmetry in neutrally
stable states. Note that in Fig. 8b the sequence of tri-
angles for x = 0 to x = 9 is repeated from x = 10
to x = 19. Moreover, that is not the only solution.
Different initial conditions lead the system to different
configurations around the neutrally stable state.

Concerning the eigenvectors, stable hyperbolic equi-
libriums present all of them associated with negative
eigenvalues. The dimensions of the phase space and the
stablemanifold are the same at the equilibriums attract-
ing exponentially trajectories to the equilibrium state.
In its turn, neutrally (non-hyperbolic) stable equilib-
riums present eigenvectors corresponding to negative
and null eigenvalues giving rise to stable and center
manifolds, respectively. The space, close the equilib-
riums, splits into three different behaviors: trajectories
in the stable manifold converge to the equilibrium, in
the center manifold they move slowly until they stop
without reaching the equilibrium, and trajectories out
of these manifolds are attracted to the center manifold,

due to the action of the stable manifold, ceasing the
movement. Linear analyses are not able to determine
this behavior; nevertheless, our simulations indicate
that the dynamic stops close to such non-hyperbolic
equilibriums.

4 Final remarks

In this work, we presented the exact solution of the
KS model for finite N number of identical oscillators
symmetrically coupled and give an extended analysis
about the stability and the dynamics close to the q-
twisted states. With that, we can characterize precisely
the nature around attractors, repellers, saddles, and also
non-hyperbolic equilibriums, some of the well known
most fundamental invariant sets capable of dictating
the global behavior in dynamic systems. We expect
that this study gives new insights to understand sev-
eral basic open problems in synchronization. Here, we
give an example. It is known that in KS models a
chimera state (simultaneous manifestation of coherent
and incoherent states in a network) collapses to q = 0
(full synchronization) state after some time. In order to
increase the lifetime without increasing the network,
the relation R/N ≈ 0.35 has been largely employed,
seemingly empirically, in studies of chimera states in
KS model and several others different network models
based on Rössler, Lorenz, FitzHugh-Nagumo, Stuart-
Landau, and Mackey-Glass dynamical systems [33–
35].

According to our results, the bifurcations presented
in table 1 indicate that for R/N � 0.34 only the state
q = 0 is stable. The other states are unstable, mostly
saddle(-like) and some repellers.While the equilibrium
q = 0 keeps some oscillators synchronized, the struc-
ture of the unstable equilibriums contributes globally
to the incoherent behavior as follows: First, we notice
that in chimera studies it is usual to set α � π/2.
Observe that the real part of the eigenvalues [Eq. (11)],
for α ≈ π/2, indicates that the lifetime τ� ∝ |γ�|−1 is
very large, since γ� ∝ cosα. It promotes slow relax-
ation of all eigenmodes. On the opposite side, the com-
plex part of the eigenvalues [Eq. (12)] is maximized,
in view that �� ∝ sin α. So that, there are (N − 1)
different frequencies of oscillations for each one of the
(N − 1) q-twisted states (the state q = 0 does not
present oscillations in its eigenmodes). Therefore, in
the chimera state of the KS model, there are poten-
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tially (N − 1)2 perturbing waves [Eq. (13)], arisen at
the unstable equilibriums, traveling globally along the
incoherent oscillators of the network.

Additionally, enhancing proportionally N and R,
fixing the ratio R/N � 0.34, there will appear new
populations of saddles increasing, even more, the
ergodicity of the environment. The phase of the oscil-
lators will keep being attracted and repelled by the
stable and unstable manifolds from one equilibrium
to another indefinitely extending the chimera lifetime.
For a deeper description of chimera states, one should
also analyze the dynamical behavior of collective vari-
ables with Ott-Antonsen or Watanabe-Strogatz meth-
ods beyond others; however, our scenery described
above is at least qualitatively consistent with the previ-
ous numerical study of KS model for R/N ≈ 0.35 and
α = 1.46 [36]. The authors, in this work, also observed
that the average lifetime of chimeras (before the full
synchronization of the network) grows exponentially
with N .

Another novelty from our results concerns the repul-
sive regime of the KS model. Much attention has been
paid to the full synchronization in networks, neverthe-
less bird flocks, fish schools, activity of cortical neurons
in cats, and travelingwaves in undulatory locomotionof
fishes and lampreys are some of several manifestations
in nature strongly related with a kind of synchroniza-
tion where, contrary to the full synchronization and as
in the repulsive regime of the KS model, the units must
not approach each other indefinitely. They converge
asymptotically to different states resulting in a homoge-
neous distribution, crucial for the efficient operation of
the network. It is impressive that despite several impor-
tant advances performed in the paradigmatic KSmodel
its repulsive regime remained almost untouched. With
the analysis presented, this work raises the knowledge
about the repulsive regime to the same level of the (tra-
ditional) attractive regime concerning the equilibrium
states.

Finally, as a recent example of the relevance of
eigenvalues in the Kuramoto model, despite the com-
plexity of the basin of attraction boundary [37], the sta-
tistical size of the basin of attraction of twisted states
can be estimated by their eigenvalues, indicating that
global phenomena can be understood by local studies
in networks of phase oscillators [38].
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