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Abstract The study of both linear and nonlinear
structural vibrations routinely circles the concise yet
complex problem of choosing a set of coordinates
which yield simple equations of motion. In both exper-
imental and mathematical methods, that choice is a
difficult one because of measurement, computational,
and interpretation difficulties. Often times, researchers
choose to solve their problems in terms of linear,
undampedmode shapes because they are easy to obtain;
however, this is known to give rise to complicated
phenomena such as mode coupling and internal res-
onance. This work considers the nature of mode cou-
pling and internal resonance in systems containing non-
proportional damping, linear detuning, and cubic non-
linearities through the method of multiple scales as
well as instantaneous measures of effective damping.
The energy decay observed in the structural modes is
well approximated by the slow-flow equations in terms
of the modal amplitudes, and it is shown how mode
coupling enhances the dampingobserved in the sys-
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tem. Moreover, in the presence of a 3:1 internal res-
onance between two modes, the nonlinearities not only
enhance the dissipation, but can allow for the exchange
and transfer of energy between the resonant modes.
However, this exchange depends on the resonant phase
between the modes and is proportional to the energy in
the lowest mode. The results of the analysis tie together
interpretations used by both experimentalists and the-
oreticians to study such systems and provide a more
concrete way to interpret these phenomena.

Keywords Nonlinear mode coupling · Transient
dynamics · Equivalent damping · Multiple scales

1 Introduction

The central tenet of linear modal analysis is that the
proper identification ofmode shapes leads to the decou-
pling of modal equations of motion. For any generic,
linear system,

M ü + C u̇ + K u = 0, (1)

the associated eigenproblem is given by
(
K + i ω C − ω2 M

)
φ = 0, (2)

where u is the vector of physical coordinates, M is the
massmatrix, K is the stiffnessmatrix,C is the damping
matrix,φ are themode shapes, andω are the natural fre-
quencies. If the system is undamped, i.e., C = 0, then
solving Eq. (2) yields the real-valued, undamped mode
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shapes and natural frequencies; however, if C �= 0,
then the eigenproblem can yield complexmode shapes,
appearing in complex conjugate pairs [4,5,10]. These
calculations ultimately give real-valued displacements
and decoupled equations of motion; however, often
times in vibrations of continuous systems and/or exper-
imental systems it is advantageous to use the undamped
mode shapes, particularly because undamped mode
shapes are easily measured from experimental data.
Unfortunately one drawback of this approach is that
applying a modal coordinate transformation based on
the undamped mode shapes typically leads to coupling
between the modes, i.e., the equations of motion are no
longer decoupled in this case.

Additional difficulties in studying and understand-
ing the nature of mode coupling and damping arise
when one considers the wider class of nonlinear sys-
tems. With the inclusion of nonlinearities in the gov-
erning equations, in general a coordinate transforma-
tion no longer exists that can be used to decouple the
equations of motion. However, the modal coordinates
as identified from the corresponding linear system are
nonetheless often used to simplify the equations of
motion, so that in the resulting equations of motion
coupling between the modal coordinates only occurs
in the nonlinear terms [13]. The behavior of the system
arising from this nonlinear coupling can exhibit energy
dissipation rates that depend on the energy distribu-
tion within the system [8] as well as bifurcations not
observed in the corresponding linear system [17,18].
Such behavior can play an important role in applica-
tions such as nanomechanical systems [9,11,12], ther-
moacoustic oscillations [14], and structural dynamics
[15,22].

1.1 Equations of motion

We consider here a general nonlinear multi-degree-of-
freedom system of the form

M ü + C u̇ + K u + N (u, u̇) = 0, (3)

whereN is a vector containing the nonlinearities of the
system. No set of linear mode shapes can be employed
to decouple Eq. (3) for non-trivial, nonlinear N; how-
ever, for weak nonlinearities perturbation methods can
be employed to study the way those linear mode shapes
are coupled together. The structure of the nonlineari-
ties, N, and their dependence on u and u̇ depend on

the problem addressed, but in what follows N(u, u̇) is
assumed to contain cubic stiffness and damping com-
ponents while the linear damping is assumed small.
As a result, the mass normalized mode shapes of the
undamped linear system can be used to transform to
modal coordinates, and the resulting equationofmotion
takes the form

q̈i + ω2
i qi + ε

⎛
⎝

N∑
j=1

[
λi j q̇ j + ξi j q j

]

+
N∑
j=1

N∑
k=1

N∑
l=1

[
μs
i jkl q j qkql + μv

i jkl q j qkq̇l

+μd
i jkl q̇ j q̇k q̇l + μc

i jkl q̇ j q̇kql
])

= 0, (4)

with the modal coordinates qi (t) defined as

qi (t) = φT
i M u(t). (5)

In Eq. (4), ε � 1 is a small parameter that character-
izes the weakly nonlinear nature of the problem. The
linear damping is described by the term λi j ≡ φT

i C φ j

while ξi j is included as a detuning in the linear stiffness
from the ε = 0 system based on the identified mode
shapes. Both of these terms couple together the modal
coordinates associated with the linear mode shape φi .
In addition, modal coupling is introduced through the
cubic nonlinearities. Here μs and μc describe non-
linear stiffness terms, with the former being a gen-
eral cubic stiffness nonlinearity and the later repre-
senting a velocity-dependent term. Likewise, μv and
μd are nonlinear damping terms. Many authors have
studied these terms individually in the context of per-
turbation methods. In particular, the seminal work by
Nayfeh and Mook [16] describes numerous examples
of systems with small cubic stiffness nonlinearities,
both with and without internal resonances. The cubic
damping term described by μd is often associated with
Rayleigh [1,3,19],while van der Pol type nonlinearities
described by μv can arise in the study of mechanical,
electrical, and biological systems [7]; both are dissipa-
tive in nature. The remaining nonlinearity of interest to
this work, described by μc, can arise from geometric
nonlinearities [6,20].

This work applies the method of multiple scales
to develop approximate solutions to the modal equa-
tions that arise from multi-degree-of-freedom systems
with general, non-proportional damping, detuning, and
a broad class of cubic nonlinearities [16]. The real-
valued, undamped mode shapes are used to decouple
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the dominant, undamped, linear dynamics, as shown
in Eq. (4). The dynamical response predicted by the
averaged equations is shown to closely match numeri-
cal solutions of the original differential equations both
when themodal frequencies are incommensurate and in
the presence of internal resonances. While much of the
related work in the literature has been concentrated in
the study of one or two-degree-of-freedom systems, the
results developed in this paper are scalable to arbitrary
degrees of freedom. The resulting analysis describes
the effect of the mistunings and nonlinearities on the
amplitude of the linear modes and captures the effect
of mode coupling on general multi-degree-of-freedom
nonlinear systems.

1.2 Example system

While the focus of this work is the analysis of a general
system of coupled equations including cubic nonlinear-
ities, the results are applied to the finite-order modal
expansion of a simply supported rectangular plate with
point attachments undergoing infinitesimal deforma-
tion. The continuum plate is represented by

D ∇̃4ũ + (2 ρ h) ũt̃ t + F̃ (ũ) = 0,

x̃ ∈ [0, Lx ] , ỹ ∈ [0, Ly
]
, t̃ > 0,

ũ
(
0, ỹ, t̃

) = ũ
(
Lx , ỹ, t̃

) = ũ
(
x̃, 0, t̃

)

= ũ
(
x̃, Ly, t̃

) ≡ 0,

ũ x̃ x
(
0, ỹ, t̃

) = ũ x̃ x
(
Lx , ỹ, t̃

) = ũ x̃ x
(
x̃, 0, t̃

)

= ũ x̃ x
(
x̃, Ly, t̃

) ≡ 0,

ũ (x̃, ỹ, 0) = ũ0 (x̃, ỹ) , ũt̃ (x̃, ỹ, 0) = ˙̃u0(x̃, ỹ),

(6)

where the tildes represent dimensional quantities, ∇̃4

is the biharmonic operator in dimensional coordinates,
and F̃ is the term associated with the attachments, both
linear and nonlinear. In this, ρ is the density and h is the
plate thickness, while the flexural rigidity D is defined
as

D = E h3

12 (1 − ν2)
, (7)

with Young’s modulus E and Poisson’s ratio ν. Now
consider the following nondimensionalization

x ≡ π x̃

Lx
, y ≡ π ỹ

Lx
, u ≡ ũ

U	

, t = t̃
L2
x

π2

√
2 ρ h
D

,

(8)

where U	 is a characteristic displacement associated
with the deformation. For example, if the initial energy
in the system is identified as

Ẽ(0) =
∫ Ly

0

∫ Lx

0

1

2

[
(2 ρ h)

( ˙̃u0
)2

+D
(
∇̃2ũ0

)2]
dx dy, (9)

then U	 can be chosen as

U	 =
√

Ẽ(0)

D Lx Ly
. (10)

Moreover, ε is a small parameter defined as

ε ≡ F	 L4
x

π4 DU	

, (11)

where F	 is a nominal parameter associated with the
strength of the attachments1, and it is assumed that
ε � 1. Using this nondimensionalization, the problem
reduces to

∇4u + utt + εF(u) = 0,

x ∈ [0, π ], y ∈ [0, γ π ], t > 0,

u(0, y, t) = u(π, y, t) = u(x, 0, t)

= u(x, γ π, t) = 0,

uxx (0, y, t) = uxx (π, y, t) = uxx (x, 0, t)

= uxx (x, γ π, t) = 0,

u(x, y, 0) = u0(x, y), ut (x, y, 0) = u̇0(x, y),

(12)

where γ ≡ Ly
Lx

is the aspect ratio of the plate, which can
be varied to specify themodal frequencies and in partic-
ular examine resonant and non-resonant dynamics. For
the nondimensionalized system, the mode shapes and
natural frequencies to be used in the modal expansion
are given by

Um,n = 2 sin (m x) sin

(
n y

γ

)
,

ωm,n = m2 +
(
n

γ

)2

. (13)

The mistuning and nonlinearities are introduced
through point attachments so that F(u) takes the form

F(u(x, y, t)) = λ ut (ax , ay, t) δ(x − ax ) δ(y − ay)

+ ξ u(bx , by, t) δ(x − bx ) δ(y − by)

1 One could, for example, choose F	 ≡ F̃(U	), so that ε � 1
implies that F̃(U	) � (π/Lx )

4 DU	, although other choices
can also be used to nondimensionalize the system.
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Fig. 1 Linear mode shapes, non-commensurate frequencies (γ = 1.6); a Mode 1—m = 1, n = 1, bMode 2—m = 1, n = 2

+μs u3(cx , cy, t) δ(x − cx ) δ(y − cy)

+μv u2(dx , dy, t) ut (dx , dy, t) δ(x − ex ) δ(y − ey)

+μc u( fx , fy, t) u
2
t ( fx , fy, t) δ(x − fx ) δ(y − fy)

+μd u3t (dx , dy, t) δ(x − dx ) δ(y − dy). (14)

Physically F(u) describes a linear damper located at
(ax , ay), a linear spring at (bx , by), and cubic nonlin-
earities located at corresponding points on the rectan-
gular plate. Using the specified undamped linearmodes
as basis functions for a Galerkin method, the modal
equations for this rectangular plate reduce to Eq. (4)
where the constant coefficients are calculated to be

λi j = λ ·Ui (ax , ay)Uj (ax , ay),

ξi j = ξ Ui (bx , by)Uj (bx , by),

μs
i jkl = μs ·Ui (cx , cy)Uj (cx , cy)Uk(cx , cy)Ul (cx , cy),

μv
i jkl = μv ·Ui (ex , ey)Uj (ex , ey)Uk(ex , ey)Ul (ex , ey),

μc
i jkl = μc ·Ui ( fx , fy)Uj ( fx , fy)Uk( fx , fy)Ul ( fx , fy),

μd
i jkl = μd ·Ui (dx , dy)Uj (dx , dy)Uk(dx , dy)Ul (dx , dy).

(15)

Note that for a specific set of indices (i, j, k, l) all
permutations of these coefficients are identical, e.g.,
μs
i jkl = μs

lk ji = μs
jlki = · · · .

In the examples that follow, a two mode expan-
sion for Eq. (12) will be considered, keeping modes
(m, n) = (1, 1) and (m, n) = (1, 2) as shown in Fig. 1.
In addition, the attachments described in Eq. (14) are
assumed to be collocated at (x, y) = (π/2, 3 γ π/8),
so that they are neither at a node nor maximum point
of either mode. The value of γ will be chosen to set the
resonance relation between the modes of interest. The
small parameter is chosen to be ε = 0.10 and unless
noted the attachment parameters are assumed to be

λ = 0.25, ξ = 0.00, μs = 0.25,

μd = 0.25, μv = 0.25, μc = 0.25. (16)

The resulting parameters in the modal equations are
determined from Eq. (15).

2 Asymptotic solution

The method of multiple scales is applied to develop
an asymptotic solution. Specifically, the modal coordi-
nates qi (t) are expanded in the small parameter ε as

qi (t) = q(0)
i (t) + ε q(1)

i (t) + ε2 q(2)
i (t) + · · · , (17)

together with the identification of the time scales ηi ≡
εi t , such that

η0 = t, η1 = ε t, η2 = ε2 t. (18)
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As a result, time derivatives are expanded as

d

dt
= ∂

∂η0
+ ε

∂

∂η1
+ ε2

∂

∂η2
+ · · · , (19a)

d2

dt2
= ∂2

∂η20
+ ε

[
2

∂2

∂η0 ∂η1

]

+ ε2

[
∂2

∂η21
+ 2

∂2

∂η0 ∂η2

]
+ · · · . (19b)

Introducing these into Eq. (4), theO(1) terms in the
expansion reduce to

∂2q(0)
i

∂η20
+ ω2

i q
(0)
i = 0, (20)

for each mode, leading to the general solution

q(0)
i = A(0)

i

(
η1
)
sin
(
ωi η0 + φ

(0)
i

(
η1
))

. (21)

Here the notation η1 indicates dependence on all times
scales at or slower than η1, that is η1 ≡ (η1, η2, . . .).
Note that in particular at this order of the asymptotic
approximation the individual modes remain uncoupled
on the η0 time scale. Mode coupling will arise in the
slow time dynamics of the amplitude and phase terms,
that is, A(0)

i

(
η1
)
and φ

(0)
i

(
η1
)
, respectively.

The O (ε) terms can then be written as

∂2q(1)
i

∂η20
+ ω2

i q
(1)
i + 2

∂2q(0)
i

∂η0 ∂η1

+
N∑
j=1

[
λi j

∂q(0)
j

∂η0
+ ξi j q

(0)
j

]

+
N∑
j=1

N∑
k=1

N∑
l=1

[
μs
i jkl q

(0)
j q(0)

k q(0)
l

+μc
i jkl

∂q(0)
j

∂η0

∂q(0)
k

∂η0
q(0)
l

+μv
i jkl q

(0)
j q(0)

k

∂q(0)
l

∂η0

+μd
i jkl

∂q(0)
j

∂η0

∂q(0)
k

∂η0

∂q(0)
l

∂η0

]
= 0. (22)

The multiple scale analysis proceeds by removing sec-
ular terms from the above equation, so that the coef-
ficients of harmonic terms with frequency ωi vanish.
The resulting slow-flow equations can be written as

cos
(
ωi η0+φ

(0)
i

)
: 2ωi

∂A(0)
i

∂η1
+λi i ωi A

(0)
i +ai1=0,

(23a)

sin
(
ωi η0+φ

(0)
i

)
: −2ωi A

(0)
i

∂φ
(0)
i

∂η1
+ξi i A

(0)
i +bi1=0,

(23b)

where ai1 and bi1 represent the cosine and sine com-
ponents of the cubic nonlinearities averaged over one
period of mode i and are given by

ai1 =
N∑
j=1

N∑
k=1

N∑
l=1

{
A(0)
j A(0)

k A(0)
l

[
μs
i jkl I

s,cos
i jkl

+ωl μ
v
i jkl I

v,cos
i jkl

+ω j ωk ωl μ
d
i jkl I

d,cos
i jkl + ω j ωk μc

i jkl I
c,cos
i jkl

]}
,

(24a)

bi1 =
N∑
j=1

N∑
k=1

N∑
l=1

{
A(0)
j A(0)

k A(0)
l

[
μs
i jkl I

s,sin
i jkl

+ωl μ
v
i jkl I

v,sin
i jkl

+ω j ωk ωl μ
d
i jkl I

d,sin
i jkl + ω j ωk μc

i jkl I
c,sin
i jkl

]}
.

(24b)

The coefficients I •,•
i jkl , defined in “AppendixA”, describe

the contributions of resonant terms that depend on the
modal frequencies of the system. These terms typically
vanish unless specific resonance conditions hold, as
illustrated below.

The mechanical energy present in a mode is related
to the amplitude as

Ei =
(
ωi A

(0)
i

)2

2
, (25)

so that to lowest order the time derivative of the modal
energy is

dEi
dt

=ε ω2
i A(0)

i

∂A(0)
i

∂η1
= − ε

[
λi i Ei+ωi A

(0)
i

2
ai1

]
.

(26)

2.1 Non-commensurate modes

In the absence of an internal resonance between the
linear modes, the frequencies of the system are non-
commensurate, that is ωi �= ω j for all i �= j . There-
fore, the coefficients I •,•

i jkl given in Appendix A can be
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evaluated so that the slow-flow equations can bewritten
as

∂A(0)
i

∂η1
+
(

λi i

2

)
A(0)
i +

{(
μv
i i i i
8

) (
A(0)
i

)3

+
∑
j �=i

(
μv
i j j i

4

)
A(0)
i

(
A(0)
j

)2
⎫
⎬
⎭+

{(
3μd

iii i ω2
i

8

) (
A(0)
i

)3

+
∑
j �=i

⎡
⎣
⎛
⎝
(
μd
ii j j+μd

i j i j+μd
i j j i

)
ω2
j

4

⎞
⎠ A(0)

i

(
A(0)
j

)2
⎤
⎦
⎫⎬
⎭=0,

(27a)

∂φ
(0)
i

∂η1
− ξi i

2ωi
−
{(

μc
iii iωi

8

) (
A(0)
i

)2

+
∑
j �=i

(
μc
i j j i ω

2
j

4ωi

) (
A(0)
j

)2 +
(
3μs

ii i i

8ωi

) (
A(0)
i

)2

+
∑
j �=i

⎡
⎣
⎛
⎝
(
μs
ii j j+μs

i j i j+μs
i j j i

)

4ωi

⎞
⎠ (

A(0)
j

)2
⎤
⎦
⎫
⎬
⎭=0.

(27b)

In particular, the amplitude equations can be reformu-
lated as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂A(0)
1

∂η1

...

∂A(0)
i

∂η1

...

∂A(0)
N

∂η1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ11 0 . . . . . . 0

0
. . .

. . .
...

...
. . . Λi i

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 ΛNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(0)
1
...

A(0)
i
...

A(0)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where

Λi i ≡ λi i +
[

μv
i i i i + 3μd

iii i ω
2
i

2ω2
i

]
Ei

+
∑
j �=i

{[
μv
i i j j + 3μd

ii j j ω
2
j

ω2
j

]
E j

}
, (29)

and for the nonlinear coefficients given in Eq. (15),
μd
ii j j = μd

i ji j = μd
i j j i . With Γi identified as the instan-

taneous damping of the i-th mode of the system, for
non-commensurate modes Γi ≡ Λi i , the nonlinear
extension of the damping coefficient in a linear sys-
tem.

The energy in the i-thmode is governed by the equa-
tion
dEi
dt

= −ε Λi i Ei , (30)

where Λi i depends on the energy in each mode. Note
that for linear damping only the coefficients along
the diagonal of the linear damping matrix contribute
to the lowest-order decay of the amplitude. The off-
diagonal terms that describe non-proportional damp-
ing and represent mode coupling through the damp-
ing are absent to O(ε). Thus the response of a lin-
ear system with non-proportional damping is approx-
imated to lowest order with simply modal damping,
obtained by ignoring the off-diagonal components.
This result has been observed in other contexts as
well. For example, Bilbao et al. [2] show in their
work how the non-proportional damping matrix of a
finite element model can be approximated by a pro-
portional one by minimizing the difference in energy
dissipation between the two systems, while Udwadia
[21] discusses minimizing the Euclidean norm of the
difference between a non-proportional modal damp-
ing matrix and its approximation. The net result of
these approximations for any non-proportional damp-
ing is simply to ignore the off-diagonal entries of
Λ and retain only the elements along the diagonal
leading to a form identical to that developed above.
These approaches are computationally efficient and
describe the lowest-order contribution from linear
damping.

With the introduction of nonlinearities, this mea-
sure of the instantaneous damping given by Λi i is
no longer constant, but rather depends on the squared
amplitude of the modes of the system, corresponding
to the distribution of the energy through the modes
of the system. Hence the response of each mode is
coupled to the remainder. However, because of the
symmetric nature of the μi jkl terms, for the case of
non-commensurate natural frequencies, Λi i > 0 pro-
vided that μ

(c,s)
i jkl > 0, which corresponds to pos-

itive damping. Therefore, although the modes are
coupled together through damping, the energy in
any given mode cannot increase due to this mode
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Fig. 2 Modal response
(γ = 1.60);
(E1(0), E2(0)) =
(0.50, 0.50). The dashed
line represents the
amplitude as derived from
the energy, that is, A(0)
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figure online)
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coupling, that is, the energy cannot be transferred
from one mode to another in the absence of an
internal resonance. Instead, the effect of mode cou-
pling is to increase the overall dissipation observed
in this system, as compared to the corresponding
nonlinear system in which the mode coupling is
neglected.

The phase variables are likewise reformulated as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ
(0)
1

∂η1

...

∂φ
(0)
i

∂η1

...

∂φ
(0)
N

∂η1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 0 . . . . . . 0

0
. . .

. . .
...

...
. . . Ωi i

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 ΩNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

with

Ωi i ≡ ξi i

2ωi
+
[

μc
iii i ω

2
i + 3μs

ii i i

4ω3
i

]
Ei

+
∑
j �=i

{[
μc
i j j i ω

2
j + 3μs

ii j j

2ωi ω
2
j

]
E j

}
, (32)

where μs
ii j j = μs

i j i j = μs
i j j i . The O(ε) frequency

shift of the i-the mode is described by Ωi i , and as
with the decay rate, the shift due to the nonlinearities
depends on the energy in each mode. Finally, the decay
in the amplitude of the response is independent of the

phase of the corresponding mode. Once the energy in
each mode is determined from Eqs. (27)a and (25),
the phase variables can be solved from Eq. (27)b by
quadrature.

Consider the two mode expansion of the plate
described above with γ = 1.60. This aspect ratio was
chosen so that the frequencies are not commensurate
and reduce to

ω1 ≡ ω1,1 = 1 + 1

γ 2 ≈ 1.3906,

ω2 ≡ ω1,2 = 1 + 4

γ 2 ≈ 2.5625. (33)

The initial conditions are chosen so that the initial
energy in eachmode is identical, with E1(0) = E2(0) =
0.50. For the direct numerical simulation of the original
equations of motion, the initial conditions are chosen
to be

q1(0) = q2(0) = 0, q̇1(0) = q̇2(0) =
√
2

2
, (34)

while those of the averaged equations given in Eq. (28)
are

A(0)
1 (0) =

√
2

2ω1
, A(0)

2 (0) =
√
2

2ω2
. (35)

The modal response for this system is shown in Fig. 2
when the initial energy is equally distributed between
the two modes. For reference in each figure, the ampli-
tude as derived from the energy in the appropriatemode
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Fig. 4 Instantaneous damping, varying energy ratio (γ = 1.60); (E1(0), E2(0)) = (0.99, 0.01): blue dashed line, (E1(0), E2(0)) =
(0.50, 0.50): red solid line, (E1(0), E2(0)) = (0.01, 0.99): green solid dotted line (Color figure online)

as given in Eq. (25) is shownwith the dashed line. Like-
wise, the evolution of the energy in eachmode is shown
in Fig. 3 for both the numerical simulation of the origi-
nal equations ofmotion and the approximation from the
averaged equations. The agreement between the two is
excellent, and in particular the averaged response cap-
tures the slowly varying decay of the energy in each
mode. In addition, as shown in Fig. 4 the instantaneous
damping as defined by Γi from Eq. (29) can be pre-
dicted by the multiple scales analysis. As the energy
distribution is varied, the nonlinear damping is seen to
play a significant role in the observed response of the
system. As a reminder, with linear damping alone the
instantaneous damping would be constant and equal
to the diagonal damping element λi i . However, as pre-
dicted by the multiple scales analysis the instantaneous
damping depends significantly on the energy in the
response. Moreover, even in the absence of an inter-
nal resonance the energy decay in each mode depends
not only on the energy in that mode, but in the energy
distribution throughout the systemdue to themode cou-
pling evidenced by the summation in Eq. (29). Notably,
in this example the higher mode corresponding to Γ2

is most sensitive to the energy distribution in the sys-
tem.

2.2 3:1 Internal resonance

In the presence of nonlinearities, resonant conditions
between the frequencies of the linear modes can give
rise to additional secular terms in Eq. (22). In partic-
ular, if there exists a 3:1 resonance, between modes α

and β, so that 3ωα − ωβ = O(ε), the cubic nonlin-
earities couple together the resonant modes, so that the
slow-flow equations can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂A(0)
i

∂η1

...

∂A(0)
α

∂η1

∂A(0)
β

∂η1

...

∂A(0)
i

∂η1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ11 0 . . . . . . . . . 0

0
. . .

. . .
...

... 0 Λαα Λαβ 0
...

... 0 Λβα Λββ 0
...

...
. . . 0

0 . . . . . . . . . 0 ΛNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(0)
1
...

A(0)
α

A(0)
β

...

A(0)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

where Λi i is given in Eq. (29) and

Λαβ ≡ Eα

2ω3
α

{[
3μs

αααβ + 5ω2
α μc

αααβ

]
sin
(
ψ

(0)
αβ

)

+
[
−ωα μv

αααβ + 9ω3
α μd

αααβ

]
cos

(
ψ

(0)
αβ

)}
, (37a)

Λβα ≡ Eα

6ω3
α

{[
−μs

αααβ + ω2
α μc

αααβ

]
sin
(
ψ

(0)
αβ

)

+
[
−ωα μv

αααβ + ω3
α μd

αααβ

]
cos

(
ψ

(0)
αβ

)}
, (37b)

with ψ
(0)
αβ ≡ 3φ

(0)
α − φ

(0)
β . In the presence of the inter-

nal resonance between modes α and β, note that only
the evolution equations for modes α and β are altered;
the remaining non-resonant modes (i �= (α, β)) remain
unchanged from those observed in Eq. (28). These off-
diagonal coupling terms are non-reciprocal, so that
Λαβ �= Λβα , while these equivalent damping coeffi-
cients depend only on Eα , the energy in the resonant
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mode with the lowest frequency. Thus, if the lowest
frequency mode is unexcited, the system cannot trans-
fer energy from the higher mode, but the converse does
not hold. If the system is excited in the lower mode,
energy can be transferred to the higher resonant mode.

In contrast to the previously considered case with
non-commensurate frequencies, the resonant phase
ψ

(0)
αβ influences the coupling between the resonant

amplitudes, and therefore the energy distribution in
these modes. Moreover, these coupling terms can be
of either sign depending on this phase. Thus the pres-
ence of the 3 : 1 internal resonance makes possible the
exchange of energy between the resonant modes. This
is in contrast to the non-resonant modes, where Λi i is
always positive for positive damping coefficients, so
that the presence of the nonlinearities can enhance the
dissipation but cannot lead to an energy increase in a
mode due to energy exchange.

The phase equations for the non-resonant modes are
identical to those given in Eq. (27b), while for the res-
onant modes α and β are expressed as

∂φ
(0)
α

∂η1
= Ωαα − Ωαβ, (38a)

∂φ
(0)
β

∂η1
= −Ωβα + Ωββ, (38b)

with
Ωαβ =

{[
3μs

αααβ − 5ω2
α μc

αααβ

]
cos

(
ψ

(0)
αβ

)

+
[
−ωα μv

αααβ + 3ω2
α μd

αααβ

]
sin
(
ψ

(0)
αβ

)} A(0)
α A(0)

β

8ωα
,

(39a)

Ωβα =
{[

−μs
αααβ + ω2

α μc
αααβ

]
cos

(
ψ

(0)
αβ

)

+
[
ωα μv

αααβ − ω3
α μd

αααβ

]
sin
(
ψ

(0)
αβ

)}
(
A(0)

α

)3

24ωα A(0)
β

,

(39b)

and the evolution of the resonant phase ψ
(0)
αβ is gov-

erned by

∂ψ
(0)
αβ

∂η1
= 3

∂φ
(0)
α

∂η1
− ∂φ

(0)
β

∂η1
. (40)

As with the amplitudes, the coupling in the phase evo-
lution is non-reciprocal.

The effective damping of amode is typically defined
in terms of the instantaneous decay rate of the cor-
responding amplitude. In particular, such a definition

cannot distinguish between damping, which is intrinsic
to the mode and always negative, from energy transfer,
which represents the flowof energy betweenmodes and
can be positive or negative depending on the coupling.
In this context the amplitude equations for the resonant
modes can be written as

∂A(0)
α

∂η1
+ 1

2

(
Λαα + Λαβ

A(0)
β

A(0)
α

)

︸ ︷︷ ︸
Effective Damping, Γα

A(0)
α ,

∂A(0)
β

∂η1
+ 1

2

(
Λβα

A(0)
α

A(0)
β

+ Λββ

)

︸ ︷︷ ︸
Effective Damping, Γβ

A(0)
β . (41)

where the effective damping for modes α and β

reflects the coupling between these modes. Note that
these effective damping measures depend on the
energy in each mode and for mode β can be sin-
gular when A(0)

β = 0 although the lower mode α

is always finite because of the dependence of Λαβ

on the energy of this mode. The effective damp-
ing for the non-commensurate frequencies remains
unchanged.

In the following examples, the plate described above

is used with γ =
√
2
2 , so that the natural frequencies

of the two modes considered exhibit a 3 : 1 reso-
nance, with ω1 = 3 and ω2 = 9. The response of the
system will be considered as both the initial energy
distribution between the resonant modes varies and
the initial resonant phase of the system. The exam-
ples consider intermediate total energy levels, so that
the nonlinearity is expected to influence the response
of the system, while the total energy in the reso-
nant modes is held constant, so that E1(0) + E2(0) =
1.00.

As shown in Fig. 5, the decay of the modal energies
from the direct numerical simulation of the original
equations of motion, shown in blue, is well approxi-
mated by the prediction from the multiple scales analy-
sis (dashed red). The decay rate as identified in Eq. (41)
depends on the energy distribution in the system, as
shown in Fig. 6. However, unlike the previous results
in which Γi was always positive for positive damping,
the additional mode coupling introduced by Λ12 and
Λ21 can lead to energy transfer between modes. This
is best illustrated with (E1(0), E2(0)) = (0.99, 0.01)
with the response shown in Fig. 5c. As seen in Fig. 6b,
Γ2 for this initial state, the energy in Mode 2 initially
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Fig. 5 Modal energies
(γ = 1/

√
2, ψ12(0) = 0,

(E1(0), E2(0)) =
(0.50, 0.50)); Original
Equations: blue solid line,
averaged equations: red
solid spaced line (Color
figure online)
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(a) (E1(0), E2(0)) = (0.01, 0.99)
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(b) (E1(0), E2(0)) = (0.50, 0.50)
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(c) (E1(0), E2(0)) = (0.99, 0.01)
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Fig. 6 Instantaneous damping, varying energy ratio (γ = 1/
√
2, ψ12(0) = 0); (E1(0), E2(0)) = (0.99, 0.01): blue dashed line,

(E1(0), E2(0)) = (0.50, 0.50): red solid line, (E1(0), E2(0)) = (0.01, 0.99): green solid dotted line (Color figure online)
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Fig. 7 Instantaneous
damping, varying initial
phase ψ12(0) (γ = 1/

√
2,

(E1(0), E2(0)) =
(0.99, 0.01)); ψ12(0) = 0:
blue dashed line,
ψ12(0) = π/2: green solid
dotted line, ψ12(0) = π : red
solid line, ψ12(0) = 3π/2:
black dashed line (Color
figure online)
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decays and the corresponding decay rate is positive.
However, near t = 4 the energybegins to increase, indi-
cating that energy is transferred fromMode 1 toMode 2
and the accompanying decay rate is negative. As time
increases further, the energy finally begins to decay
again. This response can be contrasted with that shown
in Fig. 5a, where the energy is initially concentrated
in Mode 2, so that (E1(0), E2(0)) = (0.01, 0.99), but
the effective damping in Mode 1 remains positive and
no significant amount of energy is transferred between
modes.

In contrast to the previous example with non-
commensuratemodes, the response of themodal ampli-
tudes also depends on the resonant phase variableψαβ ,
whose evolution is governed by Eq. (40).Moreover, the
off-diagonal terms Λαβ and Λβα can be of either sign,
so that these terms allow for the exchange of energy
between modes, depending on the resonant phase vari-
able. As illustrated in Fig. 7, this can have a significant
effect on the effective damping, in particular for Mode
2, although Mode 1 is relatively insensitive to the ini-
tial phase due to the relatively insignificant amount of
energy in More 2. In each figure the effective damp-
ing is shown as the initial phase ψαβ(0) varies. For
example, with ψ12(0) = π the energy in Mode 2 ini-
tially grows due to mode coupling, so that Γ2 is ini-
tially negative. Note that since these off-diagonal terms
are dependent only on the energy in the lowest mode,
these effects are most significant when this mode is
active.

3 Conclusions

This analysis provides a description of energy trans-
fer in the transient response of general resonant multi-
degree-of-freedom system due to nonlinearities, and
in particular the effect of mode coupling in the tran-

sient response of systems with light, generalized lin-
ear damping, linear detuning, and cubic nonlineari-
ties. For the case of nonlinear systems, an approxi-
mate description of the instantaneous damping mea-
sure can be derived from the method of multiple scales;
further, this approximate description directly shows
how the instantaneous damping can be thought of
as being energy-dependent. Moreover, the response
of any mode of the system is shown to be depen-
dent of the energy distribution throughout the system
even when the modes are not commensurate. How-
ever, for the case of non-commensurate frequencies,
this approximate damping term cannot become nega-
tive, implying that energy cannot be transferred from
mode to mode; rather, the mode coupling only serves
to increase the rate of energy dissipation in each mode.
In contrast, when internal resonances are introduced to
a system, asymmetric, potentially non-positive terms
emerge in the nonlinear effective damping matrix that
are directly responsible for modal energy transfer and
non-reciprocal effects, that is, the nonlinearities allow
for the energy of resonant modes to increase due to
energy exchange. The asymmetric structure of the
matrix allows for energy to easily transfer from low
modes to high modes, but attenuates the transfer of
energy from high modes to low modes, an effect com-
monly seen in experimentation and numerical stud-
ies.
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A Appendix

The coefficients I •,•
i jkl identified in Eq. (24) are defined

as the Fourier components of terms in the slow-flow
equations arising from the cubic nonlinearities. With
ψq ≡ ωq η0 + φ

(0)
q , these reduce to

I s,cosi jkl ≡ ωi

π

∫ 2π/ωi

0

{
cosψi sinψ j sinψk sinψl

}
dη0,

(42a)

I c,cosi jkl ≡ ωi

π

∫ 2π/ωi

0

{
cosψi cosψ j cosψk sinψl

}
dη0,

(42b)

I v,cos
i jkl ≡ ωi

π

∫ 2π/ωi

0

{
cosψi sinψ j sinψk cosψl

}
dη0,

(42c)

I d,cos
i jkl ≡ ωi

π

∫ 2π/ωi

0

{
cosψi cosψ j cosψk cosψl

}
dη0,

(42d)

I s,sini jkl ≡ ωi

π

∫ 2π/ωi

0

{
sinψi sinψ j sinψk sinψl

}
dη0,

(42e)

I c,sini jkl ≡ ωi

π

∫ 2π/ωi

0

{
sinψi cosψ j cosψk sinψl

}
dη0,

(42f)

I v,sin
i jkl ≡ ωi

π

∫ 2π/ωi

0

{
sinψi sinψ j sinψk cosψl

}
dη0,

(42g)

I d,sin
i jkl ≡ ωi

π

∫ 2π/ωi

0

{
sinψi cosψ j cosψk cosψl

}
dη0,

(42h)

The evaluation of these integrals depends on the
relationship between the frequencies (ωi , ω j , ωk, ωl).
Specifically, there exist terms that appear for any set of
frequencies. For example,

I d,cos
i i i i = 3

8
, I d,cos

i i j j = I d,cos
i j i j = I d,cos

i j j i = 1

4
, (43)

while I d,cos
i jkl = 0 otherwise. Likewise one can show that

I d,sin
i jkl ≡ 0. However, additional terms arise when there
exists a 3 : 1 resonance between two modal frequen-
cies. For example, if α and β denote mode numbers
such that 3ωα = ωβ , then there are additional compo-
nents of I d,cos and I d,sin such that

I d,cos
βααα = I d,cos

αβαα = I d,cos
ααβα=I d,cos

αααβ=1

8
cos

(
ψ

(0)
αβ

)
,

−I d,sin
βααα=I d,cos

αβαα = I d,cos
ααβα=I d,cos

αααβ=1

8
sin
(
ψ

(0)
αβ

)
,

(44)

where ψ
(0)
αβ ≡ 3φ

(0)
α − φ

(0)
β . These are in addition to

the terms that exist for any set of frequencies. Similar
conclusions hold for the remaining parameters.
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