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Abstract Studies on thewaterwaves contribute to the
design of the related industries, such as the marine and
offshore engineering, while themediawith the negative
refractive index can be applied as the carrier media in
fiber optics. In consideration of the inhomogeneities of
the media and nonuniformities of the boundaries in the
real physical backgrounds, a quintic time-dependent-
coefficient derivative nonlinear Schrödinger equation
for certain hydrodynamic wave packets or medium
with the negative refractive index is investigated in this
paper. Bilinear forms and the N -soliton solutions with
respect to the nonzero background, which are different
from those in the existing studies, are derived under
the certain constraints. Conditions for the dark/anti-
dark/gray solitons are deduced due to the properties of
the solitons derived via the asymptotic analysis. Effects
of the dispersion coefficient λ(t), self-steepening coef-
ficient α(t), cubic nonlinearity μ(t) and quintic non-
linearity ν(t) on the interactions between the anti-dark
and gray solitons under the certain condition are inves-
tigated. Interactions among the dark, anti-dark and gray
solitons are discussed under two cases: when α(t)/λ(t)
and μ(t)/λ(t) are the constants, whether the interac-
tion is elastic or not depends on whether λ(t), α(t)
and μ(t) are the constants or the functions of t ; when
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α(t)/λ(t) and μ(t)/λ(t) are related to t , if the veloc-
ity of the soliton is a periodic function of t , the prop-
agation of the corresponding soliton is periodic and
the corresponding interaction is inelastic. Interactions
among the three/four solitons are described to be elastic
or inelastic based on the changes in the velocities and
waveforms of the three/four solitons after the interac-
tions.
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1 Introduction

Water waves are one of the most common phenom-
ena in nature, the study of which helps the design of
the related industries, such as the energy development,
marine and offshore engineering, hydraulic engineer-
ing andmechanical engineering [1–23].Mediawith the
negative refractive index are among the carriermedia in
fiber optics and can be applied in the fabrications of the
optical guiding elements in integrated circuit and bidi-
rectional optical waveguide coupling devices [24–29].
References [30–45] have used the derivative nonlinear
Schrödinger (DNLS) equations to model the nonlinear
phenomena in some fluids, optical fibers and inhomo-
geneous plasmas.
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In hydrodynamics, long waves have been governed
by the Korteweg–de Vries equation in the shallow-
water limit, whereas short waves, by the nonlinear
Schrödinger equation in the deepwater limit, more
precisely when K H > 1.363, where K is the car-
rier wavenumber and H is the unperturbed water
depth [46,48]. However, through the combination of
the asymptotic analysis and numerical simulations,
in the framework of the higher-order DNLS equa-
tions with variable coefficients, it has been discov-
ered that a wave packet in the deep water can pene-
trate into the shallow water (K H < 1.363) and propa-
gate stably, depending on the initial value in deep water
with a certain parameter related to the velocity of the
wave packet [45]. It has been said that in the neigh-
borhood of the “critical” K H ≈ 1.363 [49], cubic
nonlinearity weakens considerably, and higher-order
nonlinear and dispersive effects need to be restored
[48,50,51]. Higher-order, higher-dimensional, or even
time-fractional DNLS equations have been introduced
to describe the nonlinear phenomena in hydrodynamics
[48,52–59].

With the uneven bottom into consideration so that H
is allowed to be slowly varyingwith the space, a higher-
order DNLS equationwith time-dependent coefficients
has been derived [45]. In the study of media with nega-
tive refractive index, negative permittivity and perme-
ability have been considered [27,28]. Due to the inho-
mogeneities of media and nonuniformities of bound-
aries, time-dependent coefficients have been incorpo-
rated in the DNLS equations for describing the real
physical backgrounds [29,42–45,47].

A quintic time-dependent-coefficient DNLS equa-
tion [42,43],

iut + λ (t) uxx + iα (t) |u|2ux + μ (t) |u|2u
+ ν (t) |u|4u = 0, (1)

has arisen in the study of hydrodynamic wave pack-
ets and media with the negative refractive index, where
u(x, t) is the wave envelope for the free water surface
displacement or envelope of the electric field, t and x
denote not only the propagation distance and retarded
time in the context of optical fiber physics, but also
the slow time and spatial coordinate traveling with the
group velocity in hydrodynamics,whileμ(t), ν(t),λ(t)
and α(t) represent the cubic nonlinearity, quintic non-
linearity, dispersion and self-steepening coefficients,
respectively [42]. Additionally, special cases of Eq. (1)
have been seen in the following:

– When [λ(t), α(t), μ(t), ν(t)] = [λ̂, α̂, μ̂, ν̂],
Eq. (1) has been reduced to a quintic DNLS equa-
tion describing the hydrodynamicwave packets and
themediumwith negative refractive index,where λ̂,
α̂, μ̂ and ν̂ are the constants [44,45]. Deformation
and destruction of a water wave packet propagat-
ing shoreward from the deep to shallow water have
been described [45]. Gray solitons on a continuous-
wave background have been derived via two inte-
grals of motion [44], and the explicit power series
solutions, singular and dark solitons have been con-
structed [60].

– When [λ(t), α(t), μ(t), ν(t)] = [α
2 , 0,− q1

α
,− q2

α
],

Eq. (1) has been reduced to the equation describ-
ing the Madelung fluid, where α, q1 and q2 are the
constants [61]. Bright and gray/dark solitary waves
are derived [61].

– When [λ(t), α(t), μ(t), ν(t)] = [−1, κ, 0, 0],
Eq. (1) has been reduced to the Chen–Lee–Liu
equation for the nonlinear optical pulses in a
quadratic nonlinear crystal involving the self-
steepening without any concomitant self-phase
modulation, where κ is a constant [62]. When
κ = 1, soliton, breather, multi-rogue wave and
rational solutions have been constructed [41].

Bright and kink solitons for Eq. (1) have been
derived via the trial equation method [37], and the N -
soliton solutions for Eq. (1) have been constructed via
the bilinear forms [43]. By the way, it has been demon-
strated that: A dark soliton is a nonlocalized traveling
wave formed as a result of nonlinear resonance of a
bore with a periodic wave, and appears as an inten-
sity dip in an infinitely extended constant background
[63,64]; Anti-dark soliton exists in the form of a bright
pulse on a nonzero continuous-wave background [65];
Gray soliton exists under the background plane, with
its amplitude less than the high of the background plane
[61]; Dark and anti-dark solitons coexist on the same
background in the normal dispersion regime [40]. It has
also been proved analytically that a random frequency
shift of a dark soliton results in a time jitter

√
2 times

lower than that from the bright solitons [66,67], i.e.,
the dark solitons are more resistant to the perturbations
than the bright ones [40].

However, to our knowledge, the bilinear forms for
Eq. (1) different from those in Ref. [43] and dark/anti-
dark/gray solitons with the nonzero background for
Eq. (1) have not been investigated. In Sect. 2, we will
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A quintic time-dependent-coefficient derivative nonlinear Schrödinger equation 271

construct such bilinear forms, and derive the N -soliton
solutions for Eq. (1) under certain conditions. In Sect. 3,
properties of the two solitons will be derived via the
asymptotic analysis. In Sect. 4, conditions for the dark,
anti-dark and gray solitons will be derived. In Sect. 5,
interactions between/among the anti-dark, gray and
dark solitons, as well as the effects of α(t), λ(t) and
μ(t) on the interactions will be discussed under two
cases. In Sect. 6, we will give the conclusions.

2 Bilinear forms and N-soliton solutions for Eq. (1)

Introducing the transformation u = g/ f , we construct
the bilinear forms for Eq. (1), which are different from
those in Ref. [43], as follows

[
i Dt + λ(t)D2

x + χ1(t)2

2λ(t)
+ χ2(t)

]
(g · f ) = 0,

(2a)

λ(t)Dx
(
f · f ∗)+ χ1(t)| f |2 − 1

2
iα(t)|g|2 = 0, (2b)

λ (t) D2
x

(
f · f ∗)+ χ2(t)| f |2 − 1

2
iα(t)Dx

(
g · g∗)

−
[
μ(t) − i

χ1(t)

4λ(t)
α(t)

]
|g|2 = 0, (2c)

with the condition [43]

α(t)2 + 8λ(t)ν(t) = 0, (3)

where g and f are complex differentiable functionwith
respect to x and t , g∗ and f ∗, respectively, denote the
complex conjugate of f and g, χ1(t) and χ2(t) are the
nonzero complex functions of t , the bilinear operators
Dt and Dx are defined by [68]

Dι
x D

τ
t (	 · ϒ) =

(
∂

∂x
− ∂

∂x ′

)ι

(
∂

∂t
− ∂

∂t ′

)τ

	 (x, t) ϒ
(
x ′, t ′

)∣∣∣∣
t ′=t,x ′=x

, (4)

	(x, t) is a differentiable function with respect to x
and t ,ϒ(x

′
, t

′
) is a differentiable function with respect

to the formal variables x
′
and t

′
, while ι and τ are both

the nonnegative integers.
Based onBilinear Forms (2), the N -soliton solutions

for Eq. (1) can be expressed as

u = gN
fN

, (5)

where N is a positive integer. Then, gN and fN in
Eq. (5) are derived as

gN = Gei[η1x+m1(t)], fN = Fei[η2x+m2(t)] (6)

with

G = 1 +
N∑

n=1

⎡
⎣∑GN1,...,Nn exp

n∑
ρ=1

(
θNρ + 2iφNρ

)⎤⎦,

F = 1 +
N∑

n=1

⎡
⎣∑ FN1,...,Nn exp

n∑
ρ=1

θNρ

⎤
⎦,

θ j = k j x + ω j (t), GN1,...,Nn = FN1,...,Nn

n∏
ρ=1

GNρ

FNρ

,

FN1,...,Nn =
n∏

ρ=1

FNρ ×
Nl<Nd∏

1≤Nl ,Nd≤n

HNl ,Nd ,

χ1(t) = 1

2
i [α(t) − 4η2λ(t)] ,

χ2(t) = −1

2
(2η1 + η2) α(t) + α(t)2

8λ(t)

+ 4η22λ(t) + μ(t),

where

ω j (t) = k j

∫
[2 (η2 − η1) λ(t) − α(t)] dt

± 1

2

∫
� jdt,

m1(t) = 1

2
(η2 − 2η1)

∫
α(t)dt

+
∫

μ(t)dt + m2(t)

+
(
η22 + 2η1η2 − η21

) ∫
λ(t)dt,

Fj = exp
(
2iφ j

) � j + 2k j
[
α(t) + ik jλ(t)

]
� j + 2k j

[
α(t) − ik jλ(t)

]G j ,

Hs,h = �s�h + kskh
(
8ksk jλ(t)2 − �s,h

)
�s�h − kskh�s,h

,

� j =
√
k2j

{
� − 4λ(t)

[
k2jλ(t) + 2μ(t)

]}
,

�s,h = � + 4λ(t) [kskhλ(t) − 2μ(t)] ,

� = α(t)2 + 4 (2η1 − 3η2) α(t)λ(t),

η1, η2 and k j ’s are the real constants, G j ’s are the
complex constants,

∑
means a summation over all

possible subscripts {N1, . . . , Nn} chosen from the set
{1, 2, . . . , N } under the condition that N1 ≤ · · · ≤
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Nρ ≤ Nρ+1 ≤ · · · ≤ Nn , while ρ, j , s, h, l, d and
N j ’s are the integers.

Sinceω j (t)s are the real functions, it is required that
� j ’s are real, i.e.,

α(t)2 + 4 (2η1 − 3η2) α(t)λ(t)

− 4λ(t)2k2j − 8λ(t)μ(t) ≥ 0. (7)

Due to χ1(t) �= 0 and χ2(t) �= 0, N -Soliton Solu-
tions (5) needs to satisfy that

α(t) − 4η2λ(t) �= 0,

α(t)2

8λ(t)
− 1

2
(2η1 + η2) α(t) + 4η22λ(t) + μ(t) �= 0.

(8)

If χ1(t) = 0 or χ2(t) = 0, N -Soliton Solutions (5),
respectively, need to satisfy that

α(t) = 4η2λ(t), or μ(t) = 4η2(η1 − η2)λ(t). (9)

Under Constraints (7)–(9), the N -soliton solutions
with the nonzero background for Eq. (1) can be
expressed as N -Soliton Solutions (5), which are dif-
ferent from those in Ref. [43].

However, different from the above, when χ1(t) = 0
and χ2(t) = 0, i.e., α(t) = 4η2λ(t) and μ(t) =
4η2(η1 − η2)λ(t), the solutions given by N -Soliton
Solutions (5) are still different from those in Ref. [43],
although the bilinear forms are the same as those in
Ref. [43], which is caused by the expansion forms of
fN and gN , namely, Expressions (6).

3 Asymptotic analysis

When N = 2, we can obtain the two-soliton solutions
for Eq. (1) as

u = g2
f2

= ei[(η1−η2)x+m1(t)−m2(t)] 1+G1eθ1+2iφ1+G2eθ2+2iφ2 +G1,2eθ1+θ2+2i(φ1+φ2)

1 + F1eθ1 + F2eθ2 + F1,2eθ1+θ2
. (10)

Then, we can derive |u|2 as

|u|2 = 1 + G1eθ1+2iφ1 + G2eθ2+2iφ2 + G1,2eθ1+θ2+2i(φ1+φ2)

1 + F1eθ1 + F2eθ2 + F1,2eθ1+θ2

1+G∗
1e

θ1−2iφ1+G∗
2e

θ2−2iφ2 +G∗
1,2e

θ1+θ2−2i(φ1+φ2)

1 + F∗
1 e

θ1 + F∗
2 e

θ2 + F∗
1,2e

θ1+θ2
.

(11)

Under G1,2 �= 0, we assume that

k1 > k2 > 0 and ω2(t)/k2 > ω1(t)/k1. (12)

If θ1 is fixed, θ2 can be expressed as θ2 = k2
k1

θ1 +
k2
[

ω2(t)
k2

− ω1(t)
k1

]
. When t → −∞, we have eθ2 → 0;

when t → +∞, we have e−θ2 → 0. So we can derive

S−
1 = lim

t→−∞
(θ1 fixed)

|u|2 = 1 −
∣∣∣∣sech

(
θ1

2
+ 1

2
ln F1

) ∣∣∣∣
2

×
[∣∣∣∣sin

(
φ1 − 1

2
i lnG1

)∣∣∣∣
2

− |1 − F1|2
4|√G1|2

]
,

(13a)

S+
1 = lim

t→+∞
(θ1 fixed)

|u|2

=1 −
∣∣∣∣sech

(
θ1

2
+ 1

2
ln
(
F1H1,2

))∣∣∣∣
2

×
[∣∣∣∣sin

(
φ1 − 1

2
i ln
(
G1H1,2

))∣∣∣∣
2

−|1 − F1H1,2|2
4|√G1H1,2|2

]
, (13b)

where S−
1 and S+

1 denote the asymptotic expressions for
the soliton S1 before and after the interaction, respec-
tively.

If θ2 is fixed, θ1 can be expressed as θ1 = k1
k2

θ2 +
k1
[

ω1(t)
k1

− ω2(t)
k2

]
. When t → −∞, we have e−θ1 →

0; when t → +∞, we have eθ1 → 0. So we can derive
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Table 1 Properties of the solitonic interaction for the two-dark-soliton solutions

Solitons S j ( j = 1, 2) Widths Wj Amplitudes A±
j Velocities V±

j Phase shifts � j

S−
1 2 |k1|−1

∣∣�1
∣∣ 12 V1

∣∣∣ 12 k−1
1 ln H1,2

∣∣∣
S+
1 2 |k1|−1

∣∣�1
∣∣ 12 V1 + k−1

1 �

S−
2 2 |k2|−1

∣∣�2
∣∣ 12 V2 + k−1

2 �

∣∣∣ 12 k−1
2 ln H1,2

∣∣∣
S+
2 2 |k2|−1

∣∣�2
∣∣ 12 V2

S−
2 = lim

t→−∞
(θ2 fixed)

|u|2

=1 −
∣∣∣∣sech

(
θ2

2
+ 1

2
ln
(
F2H1,2

))∣∣∣∣
2

×
[∣∣∣∣sin

(
φ2 − 1

2
i ln
(
G2H1,2

))∣∣∣∣
2

−|1 − F2H1,2|2
4|√G2H1,2|2

]
, (14a)

S+
2 = lim

t→+∞
(θ2 fixed)

|u|2 = 1 −
∣∣∣∣sech

(
θ2

2
+ 1

2
ln F2

)∣∣∣∣
2

×
[∣∣∣∣sin

(
φ2 − 1

2
i lnG2

)∣∣∣∣
2

− |1 − F2|2
4|√G2|2

]
,

(14b)

where S−
2 and S+

2 denote the asymptotic expressions for
the soliton S2 before and after the interaction, respec-
tively.

Based on Expressions (13) and (14), the relevant
properties of the two solitons during the interaction,
including the widths Wj ( j = 1, 2), amplitudes A±

j ,

velocities V±
j and phase shifts� j , are listed in Table 1,

where � j , � j , Vj and � can be written as

� j =
∣∣∣∣sin

(
φ j − 1

2
i lnG j

)∣∣∣∣
2

−
∣∣∣∣∣cosh

[
ln
(−Fj

)
2

]∣∣∣∣∣
2

,

� j =
∣∣∣∣sin

(
φ j − 1

2
i ln(G j H1,2)

)∣∣∣∣
2

−
∣∣∣∣∣cosh

[
ln
(−Fj H1,2

)
2

]∣∣∣∣∣
2

,

Vj = α(t) + 2(η1 − η2)λ(t) − � j

2k j

+ i4k jλ(t)2
[2k jα(t)λ(t)−1 + � jλ(t)−1]t
4k4jλ(t)2 + [2k jα(t) + � j ]2

,

� = − [ln(H1,2)
]
t

= 8
4λ(t)

[
λ(t)′μ(t) − λ(t)μ(t)′

]
[
4k21λ(t)2 + k−2

1 �2
1

]
�1�2k

−2
1 k−2

2 λ(t)−1

+ 8
[2(η1 − 3η2)λ(t) + α(t)]

[
λ(t)α(t)′ − α(t)λ(t)′

]
[
4k21λ(t)2 + k−2

1 �2
1

]
�1�2k

−2
1 k−2

2 λ(t)−1
,

where (•)′ = ∂
∂t (•).

Without loss of generality, we consider the case of
η1 = −η2 = 1 and φ j = π

2 for illustrating the asymp-
totic expressions of the two-dark-soliton solutions for
Eq. (1). When φ j = π

2 , � j and � j are reduced as

� j = � j = Re(G j + Fj )

2|G j | = 2k2jλ(t)√
Re(G j )2 + Im(G j )2

×2Re(G j )k2jλ(t) + Im(G j )
[
� j + 2k jα(t)

]
4k4jλ(t)2 + [� j + 2k jα(t)

]2 ,

(15)

where Re(•) and Im(•) denote the real and imaginary
parts of the element •, respectively.

Based on Table 1, we can observe A±
j ’s ( j = 1, 2),

V±
j ’s and� j ’s are related to t , whileWj ’s are constant.

Besides, under � = 0 or � �= 0, the properties of the
two solitons S j ’s have different situations.

Assuming that

α(t)

λ(t)
= ρ1,

μ(t)

λ(t)
= ρ2, (16)

where ρ1 and ρ2 are the proportional coefficients, and
then we can obtain two cases according to � = 0 and
� �= 0 as follows:

Case 1. ρ1 and ρ1 are the constant.
In this case, � = 0, i.e., ln H1,2 = const.
We can obtain V−

j = V+
j and A−

j = A+
j ,

which implies that the velocity, amplitude and
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Table 2 Conditions of the dark, anti-dark and gray solitons

Solitons S j ( j = 1, 2) Anti-dark soliton Dark soliton Gray soliton

Conditions under � j = � j � j < 0 � j = 1 0 < � j < 1

width of the soliton S j are unchanged after the
interaction except that there is a phase shift,
while the interaction is elastic.

Case 2. ρ1 and ρ2 are related to t .
In this case, � �= 0, i.e., ln H1,2 �= const.
We can observe V−

j �= V+
j and A−

j = A+
j ,

which implies that the velocity of the soliton
S j is changed after the interaction, while the
interaction is inelastic.

Note that: Under Expressions (16) and Constraints (7)–
(9), without loss of generality, setting η1 = −η2 = 1,
we will investigate these situations under ρ1 �= −4 or
ρ2 �= −8.

4 Conditions for the dark, anti-dark and gray
solitons

According to A±
j in Table 1 and Eq. (15), we can obtain

the dark, anti-dark and gray solitons under the different
conditions listed in Table 2.

According to Constraint (7), we can obtain

|k j | <
1

2

√
ρ2
1 + 20ρ1 − 8ρ2 and ρ2 <

5

2
ρ1 + 1

8
ρ2
1 .

(17)

Based on Table 2, expressions of the conditions of
the dark, anti-dark and gray solitons are derived as fol-
lows:

– According to � j = 1, we can reduce the condition
for the dark solitons as

2k2jλ(t)
{
Im(G j )� j + 2k j

[
Im(G j )α(t)

+ k jRe(G j )λ(t)
] }−

√
Im(G j )

2 + Re(G j )
2{ [

� j + 2k jα(t)
]2 + 4k4jλ(t)2

}
= 0.

(18)

– According to � j < 0, we can reduce the condition
for the anti-dark solitons as

λ(t)
{
Im(G j )� j + 2k j

[
Im(G j )α(t)

+k jRe(G j )λ(t)
] }

< 0. (19)

– According to 0 < � j < 1, we can reduce the
condition for the gray solitons as

λ(t)
{
Im(G j )� j + 2k j

[
Im(G j )α(t)

+ k jRe(G j )λ(t)
] }

> 0,

2k2jλ(t)
{
Im(G j )� j

+ 2k j
[
Im(G j )α(t) + k jRe(G j )λ(t)

] }
−
√
Im(G j )

2 + Re(G j )
2{ [

� j + 2k jα(t)
]2 + 4k4jλ(t)2

}
< 0.

(20)

According to the above discussion, the three types
of solitons, including the dark, anti-dark and gray soli-
tons, are derived under Conditions (18)–(20), as seen
in Fig. 1.

5 Discussions

Under Constraints (7) and (8), according to N -Soliton
Solutions (5), we will analyze the interactions between
or among the solitons and illustrate the effects of λ(t),
α(t) and μ(t) on the interactions with Case 1 and 2,
respectively.

5.1 Interactions between two solitons

• ρ1 and ρ2 are the constants.

Because ρ1 and ρ2 are constants, under � = 0 and
η1 = −η2 = 1, the velocity V±

j = Vj ( j = 1, 2), and
Vj is reduced as

Vj = α(t) + 4λ(t)

− sign(k j )

2
|λ(t)|

√
ρ2
1 + 20ρ1 − 8ρ2 − 4k2j ,

(21)

which indicates that Vj ’s are related to ρ1, ρ2 and λ(t).
With other parameters fixed, we obtain that Vj is pro-
portional to k j whether under k j > 0 or k j < 0,
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Fig. 1 Solitons via N -Soliton Solutions (5) under N = 2 with −α(t) = λ(t) = − 1
4μ(t) = 1 and k1 = k2 = 1.5; a G1 = G2 = 1; b

G1 = G2 = 1 − i ; c G1 = G2 = −1 + i

Fig. 2 Interactions between the two solitons via N -Soliton Solu-
tions (5) under N = 2 with −α(t) = λ(t) = − 1

4μ(t) = 1,
k1 = −0.5 and k2 = 0.6; a interaction between the anti-dark
and gray solitons with G1 = −1 + i and G2 = 1 − i ; b inter-

action between the dark and gray solitons with G1 = 1 − i and
G2 = 1; c interaction between the anti-dark and dark solitons
with G1 = −1 + i and G2 = 1

Fig. 3 Interactions between the gray and anti-dark solitons via N -Soliton Solutions (5) under N = 2with−α(t) = λ(t) = − 1
4μ(t) = 1,

G1 = −1 + i , G2 = 1 and k2 = 1.5; a k1 = 0.95; b k1 = 1; c k1 = 1.1

whereas Vj under k j < 0 is bigger than that under
k j > 0.

Under Conditions (18), (19) and (20), interactions,
between the anti-dark and gray solitons, between the
dark and gray solitons, as well as between the anti-dark
and dark solitons, are described in Fig. 2a–c, respec-
tively. We observe that Vj and � j are invariable in

Fig. 2 and the propagation of the soliton S1 is faster than
that of the soliton S2 due to V1 > V2, which implies
that the interactions are elastic.

Interactions between the gray and anti-dark soli-
tons are described in Fig. 3. Amplitude in the inter-
action center increases with k1 increasing. With V2
unchanged, time of the interaction between the anti-

123



276 T.-T. Jia et al.

Fig. 4 Effects of λ(t), with the same parameters as those in Fig. 3c except that a λ(t) = 1.1; b λ(t) = 1.2; c λ(t) = 1.3

Fig. 5 Effects of α(t), with the same parameters as those in Fig. 3c except that a α(t) = −1.1; b α(t) = −1.2; c α(t) = −1.25

Fig. 6 Effects of μ(t), with the same parameters as those in Fig. 3c except that a μ(t) = −3.9; b μ(t) = −3.8; c μ(t) = −3.7

dark soliton S1 and gray soliton S2 decreases as V1
increases. Especially, under k1 = 1.1 the amplitude is
more than six times as high as the background.

Effects of λ(t), α(t) and μ(t) on the interactions
between the gray and anti-dark solitons are analyzed in
Figs. 4, 5 and 6, respectively. According to � j and Vj

( j = 1, 2), under k1 = 1.1 and k2 = 1.5, we observe
that: the amplitude in the interaction center decreases

not only as any one of μ(t) and λ(t) increases, but also
as α(t) decreases, whereas the amplitudes of the anti-
dark and gray solitons increase not only as any one
of λ(t) and μ(t) increases, but also as α(t) decreases;
Vj ’s are proportional to λ(t) and μ(t), respectively,
whereas Vj ’s decrease first and then increase with α(t)
increasing.
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Fig. 7 The same as Fig. 2 except that −α(t) = λ(t) = − 1
4μ(t) = cosh(t)

Fig. 8 The same as Fig. 2 except that k1 = 0.3, k2 = 0.1 and α(t) = λ(t) = μ(t) = cos(t) + 1.1

When α(t), λ(t) and μ(t) are real functions with
respect to t , under ρ1 = −1 and ρ2 = −4, the inter-
actions with λ(t) = cosh(t), between the anti-dark
and dark solitons, between the gray and dark soli-
ton, as well as between the anti-dark and gray soli-
tons, are described in Fig. 7a–c, respectively. Under
ρ1 = ρ2 = 1, interactions with λ(t) = cos(t) + 1.1
are described in Fig. 8. Amplitude in the interaction
center has a nonlinear superposition effect. According
to Eq. (21), the velocities of the solitons in Figs. 7 and
8 are recorded as V7, j and V8, j , respectively, as well as
derived as

V7, j = cosh(t)

[
3 − 1

2
sign(k j )

√
13 − 4k2j

]
,

V8, j =
[
cos(t) + 11

10

] [
5 − 1

2
sign(k j )

√
13 − 4k2j

]
.

Because V7, j and V8, j are the functions with respect to
t , the interactions in Figs. 7 and 8 are inelastic. Espe-

cially, propagations of the two solitons in Fig. 8 have
the periodicity due to V8, j , while A j ’s increase as |t |
increases in Fig. 8.

• ρ1 and ρ2 are related to t .

Because ρ1 and ρ2 are related to t , then � �= 0, and
then V±

j and A±
j ( j = 1, 2) are more complex than

that under the condition that ρ1 and ρ2 are constants,
where Vj and � j are rewritten as

Vj = α(t) + 4λ(t)

− k j |λ(t)|
2|k j |

√
ρ2
1 + 20ρ1 − 8ρ2 − 4k2j

+
ik j
[
2k jρ1 +

√
ρ2
1 + 20ρ1 − 8ρ2 − 4k2j

]
t

4k4j +
[
2k jρ1 +

√
ρ2
1 + 20ρ1 − 8ρ2 − 4k2j

]2 ,

(22a)
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Fig. 9 Interactions between the anti-dark and dark solitons, with the same as Fig. 2c except that k1 = 0.3, k2 = 0.1 andα(t) = λ(t) = 1;
a μ(t) = −cos2(t) − 1.1; b μ(t) = −cos2(t) + 1.1; c μ(t) = cos2(t) + 1.1

Fig. 10 The same as Fig. 2 except that k1 = 0.3, k2 = 0.1, α(t) = λ(t) = 1 and μ(t) = −cosh(t)

� j = 2k2j√
Re(G j )2 + Im(G j )2

×

⎧⎪⎨
⎪⎩

Im(G j )
√

ρ2
1 + 20ρ1 − 8ρ2 − 4k2j

4k4j +
[
2k jρ1 +

√
ρ2
1 + 20ρ1 − 8ρ2 − 4k2j

]2

+ 2k2jRe(G j ) + 2k jρ1Im(G j )

4k4j +
[
2k jρ1 +

√
ρ2
1 + 20ρ1 − 8ρ2 − 4k2j

]2
⎫⎪⎬
⎪⎭.

(22b)

According to Eq. (22), under ρ1 = 1, when ρ2 is
a periodic function of t , Vj and A j are the periodic
functions of t , and the corresponding solitons propagate
periodically. When ρ2 increases from −cos2(t) − 1.1
to−cos2(t)+1.1 and then to cos2(t)+1.1, for the anti-
dark and dark solitons, the corresponding Vj decreases

in turn,whereas the corresponding� j increases in turn,
as seen in Fig. 9a–c.

Especially, when ρ1 = 1 and ρ2 = −cosh(t), the
interactions between any two of the dark, anti-dark and
gray solitons are described in Fig. 10. According to
Eq. (22), we can observe that: when t tends to be infi-
nite,� j tends to be zero,whereasVj tends to be infinite,
which is affected by cosh(t).

5.2 Interactions among three or four solitons

Anti-dark, gray and dark solitons coexist on the
nonzero background, as seen in Fig. 11. According to
� j and Vj , the waveforms and velocities of the anti-
dark, gray and dark solitons all remain unchanged after
the interaction, which indicates that the interaction is
elastic, as seen in Fig. 11a, whereas the interactions in
Fig. 11b, c are inelastic due to the changes with t of the
waveforms and velocities of the solitons.
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Fig. 11 Interaction among the dark, gray and anti-dark solitons
via N -Soliton Solutions (5) under N = 3 with −α(t) = λ(t) =
− 1

4μ(t) = 1, G1 = 1, G2 = 1 − i , G3 = −1 + i , k1 = 1.5,

k2 = −0.5 and k3 = −1; a −α(t) = λ(t) = − 1
4μ(t) = 1;

b −α(t) = λ(t) = − 1
4μ(t) = cosh( t

4 ); c −α(t) = λ(t) =
cosh( t

4 ) and μ(t) = −4

Fig. 12 Interactions among the dark, gray and anti-dark soli-
tons via N -Soliton Solutions (5) under N = 4 with G1 = 1,
G2 = 1 − i , G3 = −1 + i , G4 = 1 − i , k1 = 1.5, k2 = −0.5,

k3 = −0.6 and k4 = −0.4; a −α(t) = λ(t) = − 1
4μ(t) = 1;

b −α(t) = λ(t) = − 1
4μ(t) = cos(t) + 1.1; c α(t) = λ(t) =

sech(t) and μ(t) = −4

Under N = 4, interactions among the four solitons,
including one gray soliton, one dark soliton and two
anti-dark solitons, are described in Fig. 12. When ρ1 =
1
4ρ2 = −1, then � = 0, and then whether Vj ’s are
invariable or variable depends onwhetherα(t) and λ(t)
are constants or functions of t , as seen in Fig. 12a, b,
respectively. When ρ1 = 1 and ρ2 = −4cosh(t), then
� �= 0, and then the interaction among the four solitons
occurs on the nonzero background with α(t) = λ(t) =
sech(t), as seen in Fig. 12c.

6 Conclusions

Water waves are one of the most common phenom-
ena in nature, while the media with negative refractive
index are among the carriermedia in fiber optics.Due to
the inhomogeneities of the media and nonuniformities

of the boundaries in the real physical backgrounds, a
quintic DNLS equation with the time-dependent coef-
ficients, i.e., Eq. (1), which describes certain hydro-
dynamic wave packets or medium with the negative
refractive index, has been investigated. Under Con-
straints (7)–(9), we have derived Bilinear Forms (2)
for Eq. (1), which are different from those in Ref. [43],
and obtained N -Soliton Solutions (5) for Eq. (1) with
respect to the nonzero background. Under Assump-
tions (12), properties of the two solitons, including the
amplitudes A±

j ’s ( j = 1, 2), velocities V±
j ’s, widths

Wj ’s and phase shifts � j ’s, have been derived via the
asymptotic analysis and listed in Table 1. Conditions
for the dark, anti-dark and gray solitons have been
deduced in Table 2. Three types of the solitons have
been described in Fig. 1.

UnderCondition (3), quintic nonlinearity coefficient
ν(t) has been demonstrated to be related to the dis-
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persion coefficient λ(t) and self-steepening coefficient
α(t). Interactions between the two solitons and effects
of α(t), λ(t) and the cubic nonlinearity coefficientμ(t)
on the interactions have been investigated under two
cases:

Case 1, where α(t)
λ(t) and

μ(t)
λ(t) are the constants.

– When α(t), λ(t) and μ(t) are the constants, inter-
actions, between any two of the dark, anti-dark and
gray solitons, have been seen to be elastic, as seen
in Fig. 2. Amplitude at the center of the interac-
tion between the anti-dark and gray solitons has
been found to increase not only with the decrease
of α(t) but also with the increase of any of λ(t),
μ(t) and k j , while A±

j ’s increase not only with the
increase of α(t) but also with the decrease of any
of λ(t), μ(t) and k j , as seen in Figs. 3, 4, 5 and 6.

– When α(t), λ(t) and μ(t) are related to t , under
α(t)
λ(t) = −1 and μ(t)

λ(t) = −4, we have found that:
when λ(t) = cosh(t) or cos(t) + 1.1, the interac-
tions in Figs. 7 or 8 is inelastic due to the changes
of V±

j ’s; propagation of the two solitons in Fig. 8
is periodic due to λ(t) = cos(t) + 1.1.

Case 2, where α(t)
λ(t) and

μ(t)
λ(t) are related to t .

– When α(t)
λ(t) = 1, we have found that: When μ(t)

λ(t)

increases from −cos2(t) − 1.1 to −cos2(t) + 1.1
and then to cos2(t) + 1.1, propagation of the two
solitons remains periodic, while the corresponding
Vj ’s decrease and A j ’s increase, as seen in Fig. 9;
when μ(t)

λ(t) = −cosh(t), under λ(t) = 1, � j tends
to zero and Vj tends to the infinity as t tends to
the infinity, which is affected by cosh(t), as seen in
Fig. 10.

Anti-dark, dark and gray solitons have been found
to coexist on the same nonzero background, as shown
in Fig. 11; interactions among the three or four soli-
tons have been investigated: when α(t)

λ(t) = −1 and
μ(t)
λ(t) = −4, velocities and waveforms for the three
solitons remain unchanged after the interaction under
λ(t) = 1, indicating that the interaction in Fig. 11a
is elastic, whereas the velocities for the three solitons
change after the interaction under λ(t) = cosh( t4 ),
indicating that the interaction in Fig. 11b is inelastic;
under α(t)

λ(t) = −1 and μ(t)
λ(t) = −4sech( t4 ), interaction

in Fig. 11c is inelastic due to the changes in the veloc-
ities for the solitons. Interaction is elastic in Fig. 12a

due to the invariance of the waveforms and velocities
for the four solitons, whereas interaction is inelastic in
Fig. 12b, c due to the changes of the waveforms and
velocities for the four solitons.
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