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Abstract We derive the two-breather solution of the
class I infinitely extended nonlinear Schrödinger equa-
tion. We present a general form of this multi-parameter
solution that includes infinitely many free parameters
of the equation and free parameters of the two breather
components. Particular cases of this solution include
rogue wave triplets, and special cases of ‘breather-to-
soliton’ and ‘rogue wave-to-soliton’ transformations.
The presence ofmany parameters in the solution allows
one to describewave propagation problemswith higher
accuracy than with the use of the basic NLSE.

Keywords Infinitely extended NLSE · Breathers ·
Rogue waves

1 Introduction

The nonlinear Schrödinger equation [1,2] (NLSE) has
various applications in describing ocean waves [3–5],
pulses in optical fibres [6–8], Bose–Einstein conden-
sates [9–12], waves in the atmosphere [13], plasma
[14] andmany other physical systems [15–19]. Various
extensions of the NLSE have been considered [20–24]
that increase the accuracy of the description of nonlin-
ear wave phenomena in these systems by incorporat-
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ing higher-order effects [25–28]. Higher-order terms in
these extensions are responsible for linear dispersion,
as well as nonlinear effects such as self-phase modula-
tion, pulse self-steepening and theRaman effect [7,29].
These higher-order terms are important in nonlinear
optics [30,31], oceanwave dynamics [32–34] and espe-
cially in modelling high-amplitude rogue wave phe-
nomena [35–37]. Two comprehensive reviews in the
area of rogue waves and other nonlinear wave struc-
tures can be found in [38,39].

Adding higher-order terms generally results in the
loss of integrability of the resulting equation. This
means that exact solutions cannot be written in ana-
lytical form, making the treatment more complicated.
However, a special choice of the higher-order operators
in these extensions allows us to keep the integrability.
The power of using these operators consists in the pos-
sibility of applying arbitrary real coefficients to each of
these operators, thus significantly extending the range
of physical problems that can be solved in exact form.
It was found that the NLSE can be extended to arbitrar-
ily high orders of these operators [40–42], and these
operators have been explicitly presented up to eighth
order [41]. Using their recurrence relations, they can
be calculated to any order, although the explicit form
quickly becomes cumbersome. Nevertheless, there are
no conceptual difficulties in construction of these equa-
tions. Moreover, infinitely many terms can be consid-
ered when finding solutions of these equations.
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Presently, there are two sets of these operators that
can be used for infinite-order extensions of the NLSE.
We call them the class I [40–42] and class II [43,44]
infinite extensions of the NLSE [45]. The presence of
two independent extensions enables the more accurate
description of physical problems with greater flexibil-
ity. Here, we deal exclusivelywith the class I extension.
The class II extension is more involved and will be left
beyond the scope of the present work.

In this paper,wefind2-breather solutions of the class
I infinitely extended NLSE equation. These are multi-
parameter solutions that involve both the free parame-
ters of the equation and free parameters of the solution,
which together control the features of the two breather
components, such as their localisation, propagation,
and their relative position and frequencies. The pres-
ence of an infinite number of free parameters allows us
to consider many particular cases, such as breather-to-
soliton conversion, which is exclusive to higher-order
extensions of the basic equation.

We also derive several limiting cases, the most
important one of which is the general second-order
rogue wave solution, a particular case of the 2-breather
collision. However, only a limited number of special
cases can be given in the frame of a single manuscript.
We leave others for future work in this direction.

2 The class I infinitely extended NLSE

First, we give a brief exposition of the class I infinitely
extended nonlinear Schrödinger equation. It is the inte-
grable equation written in general form [40,41]

iψx + F(ψ,ψ∗) = 0, (1)

where the operator F(ψ,ψ∗) is defined through

F =
∞∑

n=1

(α2nK2n − iα2n+1K2n+1), (2)

with the operators Kn defined recursively by the inte-
grals of the nonlinear Schrödinger equation [40], and
where each coefficient αn is an arbitrary real number;
that is,

Kn(ψ,ψ∗) = (−1)n
δ

δψ∗

∫
pn+1dt,

where pn is the nth integral of the basic nonlinear
Schrödinger equation and pn+1 can be defined recur-
sively as

pn+1 = ψ
∂

∂t

(
pn
ψ

)
+

n∑

r=1

pn−r pr , p1 = |ψ |2.

The four lowest-order operators Kn (n = 2, 3, 4, 5)
derived in this way are:

K2(ψ,ψ∗) = ψt t + 2|ψ |2ψ,

K3(ψ,ψ∗) = ψt t t + 6|ψ |2ψt ,

K4(ψ,ψ∗) = ψt t t t + 8|ψ |2ψt t + 6|ψ |4ψ
+ 4ψ |ψt |2 + 6ψ2

t ψ∗ + 2ψ2ψ∗
t t .

K5(ψ,ψ∗) = ψt t t t t + 10|ψ |2ψt t t + 10(ψ |ψt |2)t
+ 20ψ∗ψtψt t + 30|ψ |4ψt . (3)

A few others can be found in [42]. The operators Kn

involve linear terms with derivatives of order n, and
nonlinear terms involving t-derivatives of the function
ψ and its complex conjugate ψ∗.

As already mentioned, the numbers αn can take any
values whatsoever and do not need to be viewed as
representing small perturbations for Eq. (1) to be com-
pletely integrable. This allows us to find solutions for
which any order of dispersion can be taken into account
without the need for approximation or numerical tech-
niques. This extension substantially widens the range
of applicability of theNLSE for solving nonlinearwave
evolution problems.

When only α2 �= 0, we have the fundamental, or
‘basic’ nonlinear Schrödinger equation:

iψx + α2K2(ψ,ψ∗) = iψx + α2(ψt t

+ 2|ψ |2ψ) = 0, (4)

which includes the lowest-order dispersion and self-
phase modulation terms. Further, if only α2 and α3 are
nonzero, we have the integrable Hirota equation [46]:

iψx + α2(ψt t + 2|ψ |2ψ) − iα3(ψt t t

+ 6|ψ |2ψt ) = 0. (5)

Adding the fourth-order operator, K4, into Eq. (5),
gives the Lakshmanan–Porsezian–Daniel (LPD) equa-
tion [47,48], and so on.

Again, the coefficients αn are finite and arbitrary.
However, physical applications, in general, require dis-
persive effects to decrease rapidly in strength with
increasing order n. Convergence will thus not be an
issue in practice for series involving αn, and we will
therefore be comfortable leaving the operator F for
the whole equation (1), as well as any other associ-
ated parameters, in the form of an infinite series when
necessary.

While the operators Kn in (3) rapidly become more
complicated and the resulting differential equation of
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order n becomes much harder to solve, exact solu-
tions can be found explicitly by using already known
solutions to the NLSE as a guide, and a large class
of breather and soliton solutions are already known
[41,42]. In previous works [41,42], we have seen that
the effect of nonzero odd order operators is to trans-
form t as t �→ t + vx with v being a function of all
coefficients α2n+1. The effect of the nonzero even order
operators is to transform x as x �→ Bx, with B being
a function of the parameters α2n .

In this work, we extend this approach to a gen-
eral family of second-order solutions, so we introduce
parameters B1 and B2, and v1 and v2, to play an anal-
ogous role for the two distinct breather components.
This enables us to generalise the 2-breather to the infi-
nite extension of the NLSE, and we now proceed to the
analysis of these solutions.

3 The 2-breather solution

Higher analogues of the Akhmediev breathers can be
obtained through iterations of the Darboux transforma-
tion [49,50]. After transforming the plane wave solu-
tion eix with a Darboux transformation, with an eigen-
value λ such that λ2 �= −1, and carrying out this trans-
formation twice, we get the 2-breather solution to the
basic NLSE. This can then be generalised to the 2-
breather solution of the extended equation. The general
2-breather solution is of the form

ψ(x, t) =
{
1 + G(x, t) + i H(x, t)

D(x, t)

}
eiφx , (6)

where

G(x, t) = −(κ 2
1 − κ 2

2 )

{
κ 2
1 δ2

κ2
cosh δ1B1x cos κ2t2

− κ 2
2 δ1

κ1
cosh δ2B2x cos κ1t1

− (κ 2
1 − κ 2

2 ) cosh δ1B1x cosh δ2B2x

}
,

(7)

H(x, t) = −2(κ 2
1 − κ 2

2 )

{
δ1δ2

κ2
sinh δ1B1x cos κ2t2

− δ1δ2

κ1
sinh δ2B2x cos κ1t1

− δ1 sinh δ1B1x cosh δ2B2x

+ δ2 cosh δ1B1x sinh δ2B2x

}
, (8)

D(x, t) = 2(κ 2
1 + κ 2

2 )
δ1δ2

κ1κ2
cos κ1t1 cos κ2t2

+ 4δ1δ2(sinh δ1B1x sinh δ2B2x

+ sin κ1t1 sin κ2t2) − (2κ 2
1 − κ 2

1 κ 2
2

+ κ 2
2 ) cosh δ1B1x cosh δ2B2x

− 2(κ 2
1 − κ 2

2 )

{
δ1

κ1
cosh δ2B2x cos κ1t1

− δ2

κ2
cosh δ1B1x cos κ2t2

}
, (9)

Here κ1 and κ2 are the modulation parameters,

δm = 1
2κm

√
4 − κ 2

m

is the growth rate of the modulational instability for
each breather component, and the shorthand notation
tm indicates tm = t + vmx for m = 1, 2. Note that
whenever tm appears, we have ignored a constant of
integration, and we have also done the same when-
ever δmBmx appears. The most general solution allows
for the replacements tm �→ tm − Tm , and δmBmx �→
δmBm(x − Xm), where Tm and Xm are real constants
which determine relative positions along the axes of t
and x, respectively, which we might include to incor-
porate a time delay in one breather component, for
instance. For the time being, we set these constants to
be both zero without substantial loss, to address their
significance later.

The phase factorφ is independent of themodulation,
since this part has no physical effect on the modulation
when it is real, and here it takes the same real value as
it does for the plane wave solution, i.e.

φ =
∞∑

n=1

(
2n

n

)
α2n . (10)

The values Bm determine the modulation frequency
of each component, and the parameters vm, although
they cannot be considered velocities in the usual sense,
introduce a tilt to |ψ | relative to the axes of x and t.
They are given explicitly by

Bm =
∞∑

n=1

(
2n

n

)
nF

(
1 − n, 1; 3

2 ; 1
4κ

2
m

)
α2n, (11)

vm =
∞∑

n=1

(
2n

n

)
(2n + 1)F

(
−n, 1; 3

2 ; 1
4κ

2
m

)
α2n+1,

(12)

with m = 1, 2, where F(a, b; c; z) is the Gaussian
hypergeometric function. Note that there is a simple
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relationship between vm and Bm : The coefficient of
α2n in Bm is twice the coefficient of α2n−1 in vm . The
first two terms of Bm for the two-breather solution have
been previously given in [51].Our new solution extends
these coefficients to arbitrary orders of dispersion and
nonlinearity.

Also notice that the parameters are the same func-
tions of κm, for both m = 1, 2. This is at least sug-
gested by symmetry. If two successive Darboux trans-
formations generate a 2-breather solution, then there
must be two independent eigenvalues, corresponding
to two independent modulation parameters. Physically,
we could reason that there should be no way of know-
ing which breather component is which, so the order
in which each component was generated by Darboux
transformation should be equally irrelevant. If so, it
should then follow that B1 is the same function of κ1 as
B2 is ofκ2, and similar forv1 andv2, and thiswould also
imply that Bm and vm are the same functions as for the
single-breather solution,which are already known [42].
It is worth considering whether this property extends to
the general n-breather solution: i.e. whether, in general,
we can find B1, . . . , Bn and v1, . . . , vn which are the
same functions of their respective modulation param-
eters κ1, . . . , κn, but we do not answer this question
here (Fig. 1).

The growth rate δm in both components will be real
when κm is real, but the eigenvalues of the Darboux
transformation are free to take any complex value at all,
although the transformations are trivial when the eigen-

Fig. 1 The 2-breather solution (6) of Eq. (1). The modulation
parameters are at a ratio κ1 : κ2 = 1 : 2. Parameters of the
equation are: α2 = 1

2 , α3 = 1
6 , α4 = 1

24 , α5 = 1
30 , α6 = 1

144 ,

with all higher αn = 0. The wave profile is tilted in the (x, t)-
plane due to the nonzero vm

Fig. 2 A collision between an Akhmediev breather and
Kuznetsov–Ma soliton,with κ1 = 1, and κ2 = i.Hereαn = 1/n!
up to n = 8, with all higher αn = 0

Fig. 3 The 2-breather solution with αn = 1/n! up to n = 8,
with all higher αn = 0, but now with κ1 = 3

2 , and κ2 = 1

values are real, and thus so are the modulation parame-
ters. Real-valued modulation parameters correspond to
Akhmediev breathers, whereas imaginary-valuedmod-
ulation parameters correspond to Kuznetsov–Ma soli-
tons, the functional form of the breathers being other-
wise equivalent. An example which shows the differ-
ence between real and imaginary modulation parame-
ters is given in Fig. 2. In Fig. 3, we give an example of
the effects of altering the ratio of the modulation of the
two components.

4 Breather-to-soliton conversion

If we choose parameters αn such that Bm = 0, the 2-
breather solution may then behave in a way which is
unique to the extension of the nonlinear Schrödinger
equation [51], in the sense that it is only when higher
orders of dispersion and nonlinearity are accounted for
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that it is possible to take Bm = 0 without obtaining a
trivial or otherwise degenerate solution.

For example, if we choose α2 such that B2 = 0 for
all κ2, then writing B1 = B, it is easy to show that B
must take the value

B =
∞∑

n=1

(
2n + 2

n + 1

)
(n + 1)E

(−n, 1; 3
2 ; 1

4κ
2
1 | 14κ 2

2

)
α2n+2,

where we define the function E as the difference of
hypergeometric functions:

E(a, b; c; z1|z2) = F(a, b; c; z1) − F(a, b; c; z2).
We can then simplify the general 2-breather solution

considerably. We obtain

G(x, t) = (κ 2
1 − κ 2

2 )

{
κ 2
1 δ2

κ2
cosh δ1Bx cos κ2t2

− κ 2
2 δ1

κ1
cos κ1t1 − (κ 2

1 − κ 2
2 ) cosh δ1Bx

}
,

H(x, t) = 2δ1(κ
2
1 − κ 2

2 ) sinh δ1Bx

(
1 − δ2

κ2
cos κ2t2

)
,

D(x, t) = 2(κ 2
1 + κ 2

2 )
δ1δ2

κ1κ2
cos κ1t1 cos κ2t2

+ 4δ1δ2 sin κ1t1 sin κ2t2

− (2κ 2
1 − κ 2

1 κ 2
2 + κ 2

2 ) cosh δ1Bx

− 2(κ 2
1 − κ 2

2 )

(
δ1

κ1
cos κ1t1

− δ2

κ2
cosh δ1Bx cos κ2t2

)
. (13)

An example of this solution is given in Fig. 4. The dif-
ference of this solution from the one shown in Fig. 1
is that the wave profiles at x → ±∞ are not plane
waves. The periodic set of tails from each breather
maximum extends to infinity, reminiscent of periodi-
cally repeating solitons. This is the phenomenon that is
known as breather-to-soliton conversion [51]. Clearly,
these ‘solitons’ do not have a separate spectral param-
eter related to them.

5 The 2-breather solution in the semirational limit

When one of the modulation parameters, say κ2, tends
to zero, we obtain the semirational limit, i.e. a solution
obtained as a combination of polynomials and circular

Fig. 4 A wave profile of a ‘breather-to-soliton conversion.’ We
use the same set of parameters as in Fig. 3, except α2 is now
chosen such that B2 = 0. This choice extends to infinity the tails
of the breathers that would otherwise decay

or hyperbolic functions. Then, writing κ for κ1, and δ

for δ1, the functions G, H , and D become

G(x, t) = 1
8κ

2{κ2(1 + 4t 22 + 4B 2
2 x2) − 1} cosh δB1x

+ κδ cos κt1,

H(x, t) = 2κB2x(δ cos κt1 − κ cosh δB1x)

+ 1
4δκ

2(1 + 4t 22 + 4B 2
2 x2) sinh δB1x

D(x, t) = δ

κ
{4 − 1

4κ
2(1 + 4t 22 + 4B 2

2 x2)} cos κt1

+ 4δB2x sinh δB1x + δt2 sin κt1
− {4 + 1

4κ
2(1 + 4t 22 + 4B 2

2 x2)} cosh δB1x,

(14)

and the parameters B2 and v2 are reduced to

B2 =
∞∑

n=1

(
2n

n

)
nα2n, (15)

and

v2 =
∞∑

n=1

(
2n

n

)
(2n + 1)α2n+1. (16)

This semirational 2-breather solution is a superposition
of a Peregrine solution with the Akhmediev breather,
since taking the limit κ2 → 0 reduces the frequency of
one of the breathers to zero, meaning that it is trans-
formed to a Peregrine solution. A plot of this solution is
shown in Fig. 5. Here, the central feature is roughly the
second-order rogue wave while the peaks away from
the origin belong to the remaining first-order breather.
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Fig. 5 The 2-breather solution in the semirational limit. Here the
nonzero modulation parameter is κ = 1, with αn the same as in
Fig. 1. It can be considered as a superposition of the Akhmediev
breather with the Peregrine solution

6 The degenerate two-breather limit

If both eigenvalues of the Darboux transformation are
taken to be equal, so that both modulation parameters
κm are also equal, we obtain the case of degenerate
breathers. Direct calculations provide no solution. In
this case, one modulation parameter should instead be
taken as a small perturbation from the other, say |κ1 −
κ2| = ε. Then, we take the limit as the perturbation ε

becomes arbitrarily small, so that the solution remains
well defined at all times. Namely, if we put κ1 = κ,

and κ2 = κ + ε, we have

B2 =
∞∑

n=1

(
2n

n

)
nF(1 − n, 1; 3

2 ; 1
4 (κ + ε)2)α2n,

and

v2 =
∞∑

n=1

(
2n

n

)
(2n + 1)F(−n, 1; 3

2 ; 1
4 (κ + ε)2)α2n+1.

Next, recalling the identity

d

dz
F(a, b; c; z) = ab

c
F(a + 1, b + 1; c + 1; z)

take the Maclaurin series of G(x, t), H(x, t) and
D(x, t)with respect to ε. In the limit as ε → 0, the ratio
of these serieswill be awell-defined solutionwith equal
eigenvalues; it is thus sufficient to consider only the
lowest-order non-vanishing terms in the series expan-
sion for D(x, t) in ε, which in this case happen to be

the coefficients of ε2. By this method, we obtain the
degenerate 2-breather solution in form (6) with

G(x, t) = 2κ2
[
1 + cosh 2δBx +

{(
κB − 2δ2

κ
B

− δ2B ′
)
x sinh δBx

− κ

δ

(
1 − δ2

κ2

)
cosh δBx

}
cos κ(t + vx)

−{t + (v + κv′)x}δ cosh δBx sin κ(t + vx)

]
,

H(x, t) = 2κ

[ {(
2δ2

κ2 − 1

)
κB + 2δ2B ′

}
x

+ 1
2 δ

{
1
2

(
2δ2

κ2 − 1

)
Bx − δ2

κ
B ′

}
x cosh δBx

× cos κ(t + vx) + κ

δ

(
2δ2

κ2 − 1

)
sinh 2δBx

− δ2 sinh δBx{cos κ(t + vx)

+ κ sin κ(t + vx)}{t + (v + κv′)x}
]
,

D(x, t) = κ2

32δ2

[
− 8κ2

(
1 + δ2

κ2

)
− 64δ4

κ2 (t + vx)2

− 64δ2
(
1 − 2δ2

κ2

)2

B2x2 − 32 cosh 2δBx

− 128δ2

κ

{(
2 − 4δ2

κ2

)
B − δ2

κ
B ′

}
x sinh δBx

× cos κ(t + vx) − 32δ

{
κ cos κ(t + vx)

+ 4δ2

κ2 {t + (v + κv′)x} sin κ(t + vx)

}

cosh δBx + 16δ2

κ2

{
2 cos 2κ(t + vx)

+
(
8

(
1 − 2δ2

κ2

)
κBB ′x

− 4δ2B ′2
)

κ2x − 4v′{2t + (v + κv′)x}
)}]

,

(17)

where B = B1 andweuse B ′ andv′ to denote the partial
derivatives of B2 and v2 with respect to ε evaluated at
the point ε = 0, i.e. when κ2 → κ. That is,

B ′ = 1
3κ

∞∑

n=1

(
2n

n

)
n(1 − n)F(2 − n, 2; 5

2 ; 1
4κ

2)α2n,

and

v′ = − 1
3κ

∞∑

n=1

(
2n

n

)
(2n + 1)nF(1 − n, 2; 5

2 ; 1
4κ

2)α2n+1,
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Fig. 6 The degenerate 2-breather solution. We take the set of αn
the same as in Fig. 1, and the modulation parameters κ1 = κ2 =
1
2 . The two breathers collide with the high peak at the origin due
to the synchronised phases

etc.We drop the subscripts due to the fact that as ε → 0
both modulation parameters take equal values anyway.
A plot of this solution is given in Fig. 6.

The degenerate breather solution is a one-parameter
family of solutions which represents the collision of
two breathers with the same modulation parameter κ ,
or, equivalently, with equal frequencies. It can be con-
sidered a generalisation of the known 2-soliton solution
for the class I extension of the nonlinear Schrödinger
equation [52].

7 Second-order rogue wave solution

When the frequency of the degenerate breather tends
to zero, the spacing between the successive peaks in
Fig. 6 becomes infinitely large, pushing them out to
infinity. What remains at the origin is the second-order
rogue wave. In order to derive this solution, we take the
limit κ → 0 in expressions (17). However, calculations
show that this limit cannot be found directly. In order
to find it, we repeatedly apply l’Hôpital’s rule to the
degenerate breather solution as κ → 0. The derivatives
of G, H, and D with respect to κ at the point κ = 0
vanish up to O(ε6). The resulting functions G, H, and
D become polynomials:

G(x, t) = 12{−3 + 24(3B2 − BB ′′ − vv′′)x2

+ 80B4x4 − 192v′′xt + 96B2x2(t + vx)2

+ 24(t + vx)2 + 16(t + vx)4}, (18)

H(x, t) = 576B ′′x + 2304B ′′x(t + vx)2 − 24Bx{15
− 8(B + 16B ′′)Bx2 − 16B4x4

+ 192v′′x(t + vx) − 32B2x2(t + vx)2

+ 24(t + vx)2 − 16(t + vx)4}, (19)

D(x, t) = − 9 − 36{11B2 − 48BB ′′ + 64B ′′2

− 16(v − v′′)v′′}x2 − 48{9B4 − 6B2v2

+ 16(3v2 − B2)BB ′′ + 16(v2 − 3B2)vv′′}x4
− 64(B4 + 3B2v2 + 3v4)B2x6 + 576v′′xt
− 768v′′xt3 + 288(B2 − 8BB ′′ − 8vv′′)x2t2

− 192B2x2t4 + 576{(B − 8B ′′)Bv

+ 4(B2 − v2)v′′}x3t − 768B2vx3t3

− 192(B2 + 6v2)B2x4t2 − 384(B2

+ 2v2)B2vx5t − 108(t + vx)2

− 48(t + vx)4 − 64(t + vx)6, (20)

where, in the same limit as κ → 0,

B =
∞∑

n=1

(
2n

n

)
nα2n,

v =
∞∑

n=1

(
2n

n

)
(2n + 1)α2n+1.

The first-order derivatives B ′ and v′ vanish as κ → 0,
but the second-order derivatives still remain, and in the
limit as κ → 0 are

B ′′ = −1

3

∞∑

n=1

(
2n

n

)
n(n − 1)α2n,

v′′ = −1

3

∞∑

n=1

(
2n

n

)
(2n + 1)nα2n+1.

This solution is shown in Fig. 7. It is, naturally, the
second-order rogue wave, but slanted and rescaled in
the (x, t)-plane relative to the second-order roguewave
of the NLSE [53,54].

8 Rogue wave triplets

It is well known that the general nth order rogue wave
has the remarkable property of being able to split into
1
2n(n + 1) first-order components [55]. The second-
order rogue wave discussed above is only a particular
case of a more general rogue wave structure, where
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Fig. 7 The second-order rogue wave, Eqs. (18), (19), (20),
obtained from the degenerate 2-breather solution shown in Fig. 6
in the limit κ → 0, with some stretching due to higher-order
effects

all three first-order components are located at the ori-
gin and have merged into one single peak. In order to
obtain the more general solution where the three com-
ponents are not merged together, known as the rogue
wave triplet [56], we re-introduce the constants of inte-
gration into the general 2-breather solution, i.e.

δmBmx �→ δm(Bmx − εXm),

t + vmx �→ t − Tmε + vmx,

where Xm and Tm are arbitrary and the parameter ε is
introduced to make sure that the Taylor series in the
degenerate limit still vanishes up to O(ε2). The values
of Xm and Tm determine the location of the components
of the breather components. They add additional free
parameters to the solution which we have previously
given for the restricted case in which Xm = Tm = 0.
Notice also that we do not make the replacement x �→
x − Xmε directly, but, for simplicity’s sake, instead
define Xm to account for the higher-order terms in Bm .

In order to further simplify parametrisation, we
assume that Xm and Tm are functions of themodulation
parameter κ and are of the order O(κ). Then, defining
free parameters ξ and η independent of κ, such that

κξ = 48(X1 − X2),

κη = 48(T1 − T2),

we have in the limit as κ → 0 the rogue wave triplet
solution in the form

ψ(x, t) =
{
1 + Ĝ(x, t) + i Ĥ(x, t)

D̂(x, t)

}
eiφx , (21)

Fig. 8 The second-order roguewave triplet (21), with separation
parameters ξ = −η = 480, and the extended equation parame-
ters given by α2 = 1

2 , α3 = 1
27 , α4 = 1

50 , α5 = 1
81 , α6 = 1

200 ,

α7 = 1
343 . For this choice of parameters, we have B = 77

50 ,

v = 1324
1323 , B ′′ = − 7

25 and v′′ = − 2894
3969

with

Ĝ(x, t) = G(x, t) − 48ξ Bx − 48η(t + vx), (22)

Ĥ(x, t) = H(x, t) + 12ξ − 48ξ B2x2

− 96ηBx(t + vx) + 48ξ(t + vx)2, (23)

D̂(x, t) = D(x, t) − (ξ2 + η2) + 12{ξ(3B − 4B ′′)
− 4ηv′′}x + 16ξ B3x3 + 12η(1 + 4B2x2)

×(t + vx) − 48ξ Bx(t + vx)2

− 16η(t + vx)3, (24)

where Ĝ, Ĥ and D̂ now contain two new free param-
eters, ξ and η, which determine the separation of the
fundamental roguewave components in the triplet [56],
and where G, H and D are as given in Eqs. (18)–(20),
for the particular case inwhich ξ = η = 0. An example
of the formation of rogue wave triplets, corresponding
to nonzero ξ and η, is shown in Fig. 8. When both
ξ = 0 and η = 0, all three components merge at the
origin, as in Fig. 7.

Generally, the coefficient B in Eq. (21) determines
the degree of localisation along the x-axis. Larger val-
ues of B will correspond to narrower peaks, whereas
smaller values of B will correspond to broader peaks
and B = 0 to minimal localisation. A point of interest
here is that it is again possible to choose a parametri-
sation for which B is any fixed constant. If we choose,
for instance,

α2 = c − 1

2

∞∑

n=1

(
2n + 2

n + 1

)
(n + 1)α2n+2,
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we end up with B = c, where c is a free parameter.
However, B ′′ is entirely independent of the choice of c,
since the coefficient of α2 in B ′′ is zero. As the simplest
example, we consider the completely de-localised case,
B = 0, with B ′′ remaining arbitrary. The rogue wave
solution then reduces to (21) with

Ĝ(x, t) = G0(x, t) − 48η(t + vx),

Ĥ(x, t) = H0(x, t) + 12ξ + 48ξ(t + vx)2,

D̂(x, t) = D0(x, t) − (ξ2 + η2) − 48(ξ B ′′ + ηv′′)x
+ 12η(t + vx) − 16η(t + vx)3.

where

G0(x, t) = 12{−3 − 192v′′x(t + vx) + 24(t + vx)2

+ 16(t + vx)4},
H0(x, t) = 576B ′′x{1 + 4(t + vx)2},
D0(x, t)= − 9−576{4B ′′2+v′′2}x2+576v′′x(t + vx)

− 768v′′x(t + vx)3 − 108(t + vx)2

− 48(t + vx)4 − 64(t + vx)6.

Here, G0, H0 and D0 are as given for the case where
the components are merged and B = 0, and Ĝ, Ĥ , D̂
incorporate the shifting of the first-order components
through ξ and η.

When B = 0, the second-order rogue wave acquires
soliton-like tails similar to those in Fig. 4. When, addi-
tionally, ξ = η = 0, rogue waves merge at the origin
to form a second-order rogue wave with extended tails.
This case is shown in Fig. 9. When ξ or η is not zero,

Fig. 9 The second-order rogue wave solution with ‘soliton’-like
tails when α2 is chosen such that B = 0, and ξ = η = 0. Other
parameters are the same as in Fig. 8

Fig. 10 The second-order rogue wave solution with ‘soliton’-
like tails when B = 0, but now ξ = η = 48

the components split, resulting in the disappearance of
the central peak. This case is shown in Fig. 10. Here,
the central peak is absent but the long tails remain, con-
sisting of de-localised first-order components.

Conclusions

We have derived the general 2-breather solution for
the class I infinitely extended nonlinear Schrödinger
equation, and given many limiting cases, namely
breather-to-soliton conversions, the semirational limit,
the degenerate 2-breather, and, probably most impor-
tantly, the general second-order rogue wave solution.
These solutions completely describe a large family of
second-order solutions to the class I extension of the
NLSE, and exhibit rich behaviour.

These results provide a more detailed analysis of
the formation of nonlinear wave structures such as
breathers and rogue waves when higher-order effects
come into play, and leave a large range of future related
work wide open.
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