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Abstract In this letter, we obtain multi-soliton solu-
tions in terms of ratio of ordinary determinants for
semi-discrete nonlocal nonlinear Schrödinger
(sd-NNLS) equation by employing the Darboux trans-
formation. We construct explicit expressions of single
and double soliton solutions in zero background. We
obtain symmetry-broken and symmetry-unbroken soli-
ton solutions of sd-NNLS equation by using appropri-
ate eigenfunctions. We notice that for symmetry non-
preserving case, the potential term exhibits stable struc-
ture whereas individual fields display instability. We
also obtain blowup or oscillating singular-type soliton
solutions for symmetry-preserving case.

Keywords Reverse space PT -symmetry · Semi-
discrete nonlinear Schrödinger equation · Darboux
transformation · Multi-soliton solutions · Exceptional
points

1 Introduction

In recent past, Ablowitz and Musslimani introduced a
scalar PT -symmetric nonlocal nonlinear Schrödinger
(NNLS) equation [1]:
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iqt (x, t) = qxx (x, t) ± 2q2(x, t)q∗(−x, t). (1)

The NNLS equation is said to be integrable as it admits
Lax pair and an infinite number of conservation laws.
NNLS equation (1) has attracted a great deal of attrac-
tion due to remarkable new features in contrast with
classical standard NLS equation. Ablowitz and Mus-
slimani [1] obtained oscillating singular-type of NNLS
equation byusing the inverse scattering transform (IST)
mathod. Sarma et al. [2] illustrate that it can exhibit
both bright and dark soliton solutions simultaneously.
Hamiltonian formalism is developed in [3], periodic
and hyperbolic soliton solutions [4], rational solu-
tions [5] are derived and recently symmetry-preserving
and symmetry-broken soliton solutions have also been
studied [6].

Equation (1) is PT -symmetric because the non-
linear term V (x, t) = q(x, t)q∗(−x, t) is invariant
under the action of PT -symmetry, that is, V (x, t) =
V ∗ (−x, t). Moreover, this equation is invariant under
the combined transformation x → −x , t → −t ,
q → q∗. PT -symmetry invariance is unique because
the local solution state at x is directly coupled with
the nonlocal solution at distant location −x , like quan-
tum entanglement between pairs of particles. The ini-
tial interest in such systems was motivated by quan-
tum mechanics. In [7], firstly it was pointed out that
PT -symmetric quantum systems with non-Hermitian
Hamiltonians possess real eigenvalues. Since then, the
pseudo-Hermitian systems have been studied exten-
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sively due to wide range of applications in nonlinear
optics [8], complex crystals [9], quantum chromody-
namics [10], Bose–Einstein condensates [11] etc.

Evenmore interestingly,PT -symmetric system can
also display a spontaneous symmetry breaking transi-
tions. Such a phase transition takes place at an excep-
tional point in the parameter space. Once a pseudo-
Hermitian parameter exceeds a certain threshold value;
the spectrum of PT -operator ceases to be entirely
real instead becomes partially or completely imaginary.
Further, as the PT -operator is not linear, and thus the
Hamiltonian and PT -operator may or may not have
the same set of eigenstates even though they still com-
mute. As a consequence, the associated eigenvalues of
the system change from real to complex that signifies
the brokenPT -symmetry [12–19]. These observations
are so much remarkable that they will revolutionize the
optical physics by synthesizing integratedPT photonic
devices and also extension of these ideaswill be fruitful
in other directions of research.

Integrable semi-discrete NLS (sd-NLS) equation
was first proposed by Ablowitz and Ladik [20]:

i
d

dt
qn= 1

δ2
(qn+1−2qn + qn−1)±|qn|2 (qn+1 + qn−1)

(2)

and showed that it is solvable, has soliton solution,
admits an infinite number of conserved quantities and
a Hamiltonian structure. There exists a wide range of
physical and biological phenomena that are governed
by this model, e.g., it describes biophysical systems
[21], molecular crystals [22], selftraping on a dimer
[23], Heisenberg spin chain [24] and so on. The non-
local reductions are particularly important due to its
applications in PT -symmetric optics, especially in
developing of theory of electromagnetic waves in arti-
ficial heterogenic media [25–27]. The nonlocal ver-
sion of Ablowitz and Ladik equation was presented
in [28,29]:

i
dQn

dτ
= Qn+1 − 2Qn + Qn−1

±QnQ
∗−n (Qn+1 + Qn−1) , (3)

which is an integrable Hamiltonian model. Qn is com-
plex valued function, n is an integer. Equation (3) is
also a PT -symmetric for the reason that the so-called
nonlinear self-induced potentialVn = QnQ∗−n remains
invariant under the joint action of PT -symmetry [30].

Ablowitz and Musslimani [28] investigated it by using
IST scheme and derived singularity formation. In [31],
the authors constructed N -soliton solution for focus-
ing case and get periodic and singular solutions using
Hirota’s method.

In this letter, we focus on a semi-discrete coupled
NLS (sd-CNLS) equations

i
dQn

dτ
= Qn+1 − 2Qn + Qn−1

− QnRn (Qn+1 + Qn−1)

−i
dRn

dτ
= Rn+1 − 2Rn + Rn−1

− QnRn (Rn+1 + Rn−1) . (4)

Coupled in the sense that authors have evaluated
more general soliton solutions by solving system
(4) simultaneously. And nonlocality has been inves-
tigated independently for PT -symmetry-broken and
PT -symmetry-preserving cases. In the first case, Qn

and Rn are behaved as two independent functions and
their evolution is governed by two different equations.
In this case, Qn is evaluated at n and Rn is evaluated at
−n simultaneously but solutions are not identical that
means Rn is not a parity transformed complex conju-
gate function of Qn . And illustrate that each function
in the pair spontaneously breaks PT -symmetry; one
exhibits amplification and the other dissipation, but get
stable soliton propagation for |QnRn|. In the second
case function Rn is related to Qn and can be directly
obtained from Qn by simply taking the parity conju-
gate. To get better understanding, it is verymuch essen-
tial to treat Qn and Rn as two separate functions. This
procedure is distinctive and not globally applied but
give universal solutions.

Our work is organized as follows. In Sect. 2,
sd-NNLS equations and associated Ablowitz–Ladik
scheme are presented. In Sect. 3, a Darboux transfor-
mation is applied to the Lax pair system and obtain
multi-soliton solutions in terms of ratio of ordinary
determinants. In Sect. 4, explicit solutions are calcu-
lated and finally we illustrated our results by plotting
the obtained solution for different values of spectral
parameters. We discuss our results in Sect. 5 followed
by a conclusion in Sect. 6.

2 Ablowitz–Ladik scheme

The sd-CNLS equation (4) can be presented as a consis-
tency condition of linear difference-differential system
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Broken and unbroken PT -symmetric solutions 235

Ψn+1 = LnΨn,
d

dτ
Ψn = MnΨn, (5)

where

Ln =
(
z Qn

Rn z−1

)
,

Mn =
(
i Qn Rn−1 − i

2

(
z − z−1

)2 − i
(
zQn − z−1Qn−1

)
i
(
z−1Rn − zRn−1

) − i RnQn−1 + i
2

(
z − z−1

)2
)

,

where Ψn = (Xn,Yn)T is a eigenvector and z be the
associated eigenvalue. The linear system of difference-
differential equations is also known asAblowitz–Ladik
(AL) scattering problem [32]. The AL Scheme (5)
may be regarded as semi-discrete analogue of the Lax
pair. The integrability condition of AL Scheme (5)
becomes a semi-discrete analogue zero-curvature con-
dition (namely, d

dt Ln + LnMn − Mn+1Ln = 0) which
yields the coupled system of Eq. (4).

In order to get the integrable a sd-NLS equation (2)
from Eq. (4), we transform variable as follows:

Qn → δqn, Rn → δrn, τ → δ−2t. (6)

Then the system (4) becomes

i
dqn
dt

= 1

δ2
(qn+1 − 2qn + qn−1)

−qnrn (qn+1 + qn−1) ,

−i
drn
dt

= 1

δ2
(rn+1 − 2rn + rn−1)

− qnrn (rn+1 + rn−1) , (7)

which reduces to the integrable sd-NLS equation (2)
by taking rn = ∓q∗

n . On the other hand, Eq. (3) is
obtained from the system (4) using the nonlocal sym-
metry reduction, i.e., Rn = ∓Q∗−n . In addition to this,
if we take continuum limit, that is δ → 0, the system
(7) leads to continuous NLS equations,

iqt = qxx − 2rq2, − irt = rxx − 2qr2. (8)

Similarly, if we replace z = exp (−iλδ) into the AL
Scheme (5) reduces

Ψn+1 − Ψn

δ
=

(− iλ qn
rn iλ

)
Ψn + O(δ2),

d

dt
Ψn =

⎛
⎝ iqnrn−1 + 2iλ2 − λ (qn + qn−1) − i

(
qn−qn−1

δ

)
−λ (rn + rn−1) + i

(
rn−rn−1

δ

)
− irnqn−1 − 2iλ2

⎞
⎠ Ψn + O(δ2), (9)

under the continuum limit take (that is, x = nδ, t = δ2τ

and δ → 0), we obtain Lax pair for continuous NLS
equation (8).

3 Darboux transformation for coupled
semi-discrete NLS equations

Darboux transformation (DT) is a gauge transformation
used to generate a family of infinitely many non-trivial
solutions of a linear equations (differential, difference
and differential-difference) from a known trivial solu-
tion. TheDT can also be used to computemultiple solu-
tions of a nonlinear integrable evolution equations (dif-
ferential, difference and differential-difference equa-
tions) [33]. In order to calculate multi-soliton solutions
of nonlinear evolution equation, we apply DT on the
known solution of associated linear spectral problem.
The covariance of the linear spectral problem gener-
ates non-trivial solutions of a given nonlinear evolu-
tion equation. In this section, we shall apply DT on the
matrix-valued of AL scheme (5) and the covariance of
theAL schemegenerates the new solutions of sd-CNLS
system (4).

The DT for AL Scheme (5) can be defined as

Ψn[1] ≡ Tn,1Ψn

=
(− z + z−1an,1 bn,1

cn,1 z−1 + zdn,1

)
Ψn, (10)

where Tn,1 is the onefold Darboux matrix. Here an,1,

bn,1, cn,1 and dn,1 are some functions to be determined.
The transformed solution Ψn[1] given by (10) also sat-
isfies AL Scheme (5), that is,

Ψn+1[1] = Ln[1]Ψn[1], d

dt
Ψn[1] = Mn[1]Ψn[1],

(11)
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236 Y. Hanif, U. Saleem

where the transformed matrices Ln[1] and Mn[1] are
obtained by replacing Qn, Rn by Qn[1], Rn[1] in Ln

and Mn . On substitution of (10) in (11) and using (5),
we obtain

Qn[1] = −Qn − bn,1

dn,1
, Rn[1] = Rn − cn,1

an,1
. (12)

The unknown functions an,1 bn,1, cn,1 and dn,1 can be
determined by using the following constraint condi-
tions

Tn,1Ψn |z=zk= 0, k = 1, 2. (13)

The above conditions (13) lead to following coupled
system of linear algebraic equations

z−1
k an,1Xn,k + bn,1Yn,k = zk Xn,k,

cn,1Xn,k + zkdn,1Yn,k = −z−1
k Yn,k . (14)

The solution of linear system (14) of algebraic equa-
tions allows us to write

an,1 =

∣∣∣∣ z2Xn,2 Yn,2

z1Xn,1 Yn,1

∣∣∣∣∣∣∣∣ z
−1
2 Xn,2 Yn,2

z−1
1 Xn,1 Yn,1

∣∣∣∣
, bn,1 =

∣∣∣∣ z
−1
2 Xn,2 z2Xn,2

z−1
1 Xn,1 z1Xn,1

∣∣∣∣∣∣∣∣ z
−1
2 Xn,2 Yn,2

z−1
1 Xn,1 Yn,1

∣∣∣∣
,

cn,1 = −

∣∣∣∣ z
−1
2 Yn,2 z2Yn,2

z−1
1 Yn,1 z1Yn,1

∣∣∣∣∣∣∣∣ Xn,2 z2Yn,2

Xn,1 z1Yn,1

∣∣∣∣
, dn,1 = −

∣∣∣∣ Xn,2 z−1
2 Yn,2

Xn,1 z−1
1 Yn,1

∣∣∣∣∣∣∣∣ Xn,2 z2Yn,2

Xn,1 z1Yn,1

∣∣∣∣
.

(15)

Again under the continuum limit, the DT (10) for AL
scheme (5) reduces to the standard DT for classical
NLS equation [33]. For this purpose, take x = nδ, t =
δ2τ and δ → 0, we have

Ψ (x, t)[1] = lim
δ→0

Ψn[1]
2iδ

= (λI2 − S1) Ψ, (16)

where I2 is the identity matrix and

S1 = 1

X1Y2 − X2Y1(
λ1X1Y2 − λ2X2Y1 − (λ1 − λ2) X1X2

(λ1 − λ2) Y1Y2 λ2X1Y2 − λ1X2Y1

)
Ψ.

(17)

Moreover, under continuum limits Eq. (12) reduces to

q[1] = q + 2i
(λ1 − λ2) X1X2

X1Y2 − X2Y1
,

r [1] = r − 2i
(λ1 − λ2) Y1Y2
X1Y2 − X2Y1

, (18)

which agrees with the onefold transformation obtained
in the literature for the classical NLS equation (see for
example [33]). Similarly, one can define twofold DT
on Ψn

Ψn[2] ≡ Tn,2[1]Ψn[1] = Tn,2[1]Tn,1Ψn,

=
(
z2 + A(1)

n + z−2A(2)
n zB(1)

n + z−1B(2)
n

zC (1)
n + z−1C (2)

n z−2 + z2D(1)
n + D(2)

n

)
Ψn,

(19)

where A(1)
n = −an,1 − an,2[1] + bn,2[1]cn,1, A

(2)
n =

an,1an,2[1], B(1)
n = −bn,1 + bn,2[1]dn,1, B(2)

n =
bn,2[1] + an,2[1]bn,1,C

(1)
n = −cn,2[1] + cn,1dn,2[1],

C (2)
n = cn,1 + an,1cn,2[1], D(1)

n = dn,1dn,2[1] and
D(2)
n = dn,1 + dn,2[1] + cn,2[1]bn,1. The unknown

functions A( j)
n , B( j)

n , C ( j)
n and D( j)

n can be computed
by using following conditions
⎛
⎝ z2 + A(1)

n + z−2A(2)
n zB(1)

n + z−1B(2)
n

zC (1)
n + z−1C (2)

n z−2 + z2D(1)
n + D(2)

n

⎞
⎠

(
Xn,k

Yn,k

)∣∣∣∣
z=zk

= 0, (20)

implies

2∑
j=1

A( j)
n z2−2 j

k Xn,k +
2∑
j=1

B( j)
n z3−2 j

k Yn,k = −z2k Xn,k,

2∑
j=1

C ( j)
n z3−2 j

k Xn,k +
2∑
j=1

D( j)
n z4−2 j Yn,k = −z−2

k Yn,k,

(21)

for k = 1, 2, 3, 4. Twofold transformation (19) leads
to following transformations

Qn[2] = (−1)2
Qn − B(1)

n

D(1)
n

, Rn[2] = Rn − C (2)
n

A(2)
n

.

(22)

where

A(2)
n [2] = Δa[2]

Δ1[2] , B(1)
n [2] = Δb[2]

Δ1[2] ,

C (2)
n [2] = Δc[2]

Δ2[2] , D(1)
n [2] = Δd [2]

Δ2[2] , (23)

with
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Broken and unbroken PT -symmetric solutions 237

Δ1[2] = det
(
Xn,k z−2

k Xn,k zkYn,k z−1
k Yn,k

)
,

Δ2[2] = det
(
zk Xn,k z−1

k Xn,k z2kYn,k Yn,k
)
,

Δa[2] = − det
(
Xn,k z2k Xn,k zkYn,k z−1

k Yn,k
)
,

Δb[2] = − det
(
Xn,k z−2

k Xn,k z2k Xn,k z−1
k Yn,k

)
,

Δc[2] = − det
(
zk Xn,k z−2

k Yn,k z2kYn,k Yn,k
)
,

Δd [2] = − det
(
zk Xn,k z−1

k Xn,k z−2
k Yn,k Yn,k

)
.

(24)

If we repeat these steps N -times, we obtain N -fold DT
on Ψn :

Ψn[N ] = Tn,N [N − 1]Ψn[N − 1]

=
N∏
j=1

Tn,N− j+1[N − j]Ψn,

Tn,1[0] = Tn,1, (25)

with
N∏
j=1

Tn,N− j+1[N − j]

=

⎛
⎜⎜⎜⎝

(−z)N +
N∑
j=1

A( j)
n zN−2 j

N∑
j=1

B( j)
n zN+1−2 j

N∑
j=1

C ( j)
n zN+1−2 j z−N +

N∑
j=1

D( j)
n zN+2−2 j

⎞
⎟⎟⎟⎠ .

(26)

The scalar potentials Qn and Rn transform as

Qn[N ] = (−1)N
Qn − B(1)

n

D(1)
n

, Rn[N ] = Rn − C (N )
n

A(N )
n

.

(27)

Similarly, A( j)
n , B( j)

n , C ( j)
n and D( j)

n (1 ≤ j ≤ N ) can
be uniquely calculated by requiring

Tn[N ]Ψ (k)
n

∣∣∣
z=zk

= 0, (28)

which yields

N∑
j=1

A( j)
n zN−2 j

k Xn,k +
N∑
j=1

B( j)
n zN+1−2 j

k Yn,k = −(−zk )
N Xn,k ,

N∑
j=1

C( j)
n zN+1−2 j

k Xn,k +
N∑
j=1

D( j)
n zN+2−2 j Yn,k = −z−N

k Yn,k ,

(29)

where zk (k = 1, 2, . . . , 2N ) be arbitrary parameters.
The linear system (21) can be solved for the unknowns
A( j)
n , B( j)

n , C ( j)
n and D( j)

n , we obtain the following
results

A(N )
n [N ] = Δa[N ]

Δ1[N ] , B(1)
n [N ] = Δb[N ]

Δ1[N ] ,

C (N )
n [N ] = Δc[N ]

Δ2[N ] , D(1)
n [N ] = Δd [N ]

Δ2[N ] , (30)

with

Δ1[N ] = det
(
zN−2
k Xn,k zN−4

k Xn,k · · · z−N
k Xn,k zN−1

k Yn,k zN−3
k Yn,k · · · z−N+1

k Yn,k
)
,

Δ2[N ] = det
(
zN−1
k Xn,k zN−3

k Xn,k · · · z−N+1
k Xn,k zNk Yn,k zN−2

k Yn,k · · · z−N+2
k Yn,k

)
,

Δa[N ] = (−1)N+1 det
(
zN−2
k Xn,k zN−4

k Xn,k · · · zNk Xn,k zN−1
k Yn,k zN−3

k Yn,k · · · z−N+1
k Yn,k

)
,

Δb[N ] = (−1)N+1 det
(
zN−2
k Xn,k zN−4

k Xn,k · · · z−N
k Xn,k zNk Xn,k zN−3

k Yn,k · · · z−N+1
k Yn,k

)
,

Δc[N ] = − det
(
zN−1
k Xn,k zN−3

k Xn,k · · · z−N
k Yn,k zNk Yn,k zN−2

k Yn,k · · · z−N+2
k Yn,k

)
,

Δd [N ] = − det
(
zN−1
k Xn,k zN−3

k Xn,k · · · z−N+1
k Xn,k z−N

k Yn,k zN−2
k Yn,k · · · z−N+2

k Yn,k
)
.

Equation (30) can be used to compute multi-soliton
solutions of sd-NNLS equation. It is important to men-
tion that under the continuum limit all results for N -
fold transformation (25)–(30) for sd-CNLS equation
(4) reduce to the results obtained in [33] for the classi-
cal NLS equation.
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4 Explicit solution of coupled sd-NLS equations

In this section, we construct exact expressions of single
and double soliton solutions of coupled sd-CNLS equa-
tion (4) in zero background. First, starting from the triv-
ial solutions Qn = 0 and Rn = 0, we can present the
solution of Lax pair (5)with z = zk (k = 1, 2, . . . , 2N )

as follows:

Ψn,k =
(
Xn,k

Yn,k

)
=

(
αk znk exp (iωkτ)

βk z
−n
k exp (−iωkτ)

)
, (31)

with

ωk = −1

2

(
zk − z−1

k

)2
, (32)

and αk and βk are constants of integration. Under the
continuum limits (31) reduces to the matrix-valued
solution to the Lax pair (9) for classical NLS equation
(8).

4.1 One-soliton solutions

In order to obtain explicit expressions of one-soliton
solutions of coupled sd-NLS equation, we use values
of Xn,k and Yn,k from (31) into (12) along with (15),
we obtain explicit expressions of onefold transformed
scalar potentials as

Qn(τ )[1] = α1α2(z22 − z21)z
2n+1
1 z2n+1

2 e2iτ(ω1+ω2)

α1β2z
2n+1
1 e2iτω1 − α2β1z

2n+1
2 e2iτω2

,

Rn(τ )[1] = β1β2(z21 − z22)

α1β2z22z
2n+3
1 e2iτω1−α2β1z21z

2n+3
2 e2iτω2

.

(33)

Equation (33) represents a more general expression of
one-soliton solution of coupled system (4). If we take
α1 = α2 = 1 and β1 = eiθ1 , β2 = −e−iθ2 in expres-
sion (33), we obtain

Qn(τ )[1] =
(
z21 − z22

)
eiθ2 z2n+1

2 e2iω2τ

1 + ei(θ1+θ2)e2iτ(ω2−ω1)z2n+1
2 z−2n−1

1

,

(34)

which coincides with the results obtained in reference
[29] but slightly different from expression (27) given in
reference [28]. However, the one-soliton solution (34)
under continuum limit δ → 0 with Qn(τ ) = δqn, x =
nδ, t = δ2τ, zk = e−iλkδ becomes

Fig. 1 Stationary one-soliton solution of sd-NNLS equation (3)

Fig. 2 Traveling one-soliton solution of sd-NNLS equation (3)

q(x, t)[1] = 2i (λ1 − λ2) eiθ2e4iλ
2
2t e−2iλ2x

1 + ei(θ1+θ2)e4i t
(
λ22−λ21

)
e2i x(λ1−λ2)

,

(35)

which reduces to Eq. (22) of reference [1] for θ2 =
θ̄1, λ1 = iη1 and λ2 = −i η̄1.

Now we would like to illustrate our results graph-
ically by plotting (33) for different choices of param-
eters. First of all, we obtain stable one-soliton solu-
tion from (33) for sd-NNLS equation (3) at so-called
exceptional points (EPs), namely z2k = (

z∗2k−1

)−1. For
sd-NNLS equation at EPs eigenvalues no longer inde-
pendent and eigenvectors become parallel; moreover,
the systembehaves like classical systemas illustrated in
Figs. 1 and 2. Figure 1 presents stationary soliton for the
parameters z1 = 0.5, z2 = 2, α1 = α2 = β1 = −β2 =
1 whereas Fig. 2 represents the traveling soliton for
parameters z1 = 0.5+0.1i, z2 = 1.923+0.385i, α1 =
α2 = β1 = −β2 = 1. Secondly, we obtain symmetry-
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Broken and unbroken PT -symmetric solutions 239

Fig. 3 Singular-type one-soliton solution of sd-NNLS equation
(3)

Fig. 4 Symmetry-broken decaying one-soliton solution of
equation (4)

Fig. 5 Symmetry-broken growing one-soliton solution of
equation (4)

Fig. 6 Symmetry-broken stable one-soliton solution of equa-
tion (4)

preserving singular-type solution for sd-NNLS equa-
tion (3) from (33). The absolute value of Qn(τ )[1] is
plotted in Fig. 3 for the parameters z1 = 0.7, z2 = 2
and α1 = α2 = β1 = −β2 = 1. The family of solu-
tions (33) oscillate in time τ and eventually blows up
in finite time τ = τs at n = −1/2; with τs = (2m+1)π

2(ω2−ω1)
,

m ∈ Z. Finally, we obtain symmetry-broken soliton
solution from the explicit expressions of one-soliton
solutions (33). The expressions (33) are plotted in
Figs. 4, 5 and 6 for z1 = 0.5 + 0.05i, z2 = 2 + 0.05i
and α1 = α2 = β1 = −β2 = 1. We obtain an unstable
one-soliton solution for sd-NNLS equation below EP
as shown in Figs. 4 and 5 which shows that amplitude
of |Qn(τ )| decays in the−n direction as τ → ∞while
the amplitude of |Rn(τ )| grows in the −n direction as
τ → ∞ contrary to the dynamics of |Qn(τ )| and we
obtain a stable structure for the |Qn(τ )Rn(τ )| as shown
in Fig. 6. It is worthwhile to mention that above EPs
the dynamical variables Qn(τ ) and Rn(τ ) switch their
behavior as described in [19].

4.2 Two-soliton solutions

In zero background expression of two-soliton solution
(22) becomes
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Fig. 7 Stationary two-soliton solution of sd-NNLS equation (3)

Qn[2] = −
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,

Rn[2] = −
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, (36)

where Xn,k and Yn,k are given by (31) along with (32).
The dynamics of two-soliton solutions of sd-NNLS
equation at EPs is plotted in Figs. 7, 8 and 9 for var-
ious values of parameters as for Fig. 7 (z1 = 2, z2 =
0.5, z3 = 2.01, z4 = 0.4975), Fig. 8 (z1 = 2, z2 =
0.5, z3 = 3, z4 = 0.333) and Fig. 9 (z1 = 0.5 +
0.5i, z2 = 1+ i, z3 = 0.40− 0.4i, z4 = 1.25− 1.25i).
Again we obtain stable structure at EPs. Figure 7 por-
trays propagation of slowly moving degenerate-type
two-soliton solution whereas Fig. 8 displays propa-

Fig. 8 Bound solitons solution of sd-NNLS equation (3)

gation of bound solitons. The bound soliton solution
occurs due to mutual attraction and repulsion between
two solitons along their own trajectories, where they
interact amplitude of solitons increase instantly after
that they repel each other and got separated. For bound
solitons, this process will repeat periodically; however,
for degenerate case, interaction takes place once only.
Figure 9 illustrates the interaction of two traveling soli-
tons.
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Fig. 9 Traveling two-soliton solution of sd-NNLS equation (3)

In order to obtain the interaction of symmetry-
preserving singular-type solutions,we substitute values
of Xn,k and Yn,k from (31) and plotted absolute value
of Qn[2] for parameters z1 = 0.5, z2 = 1.6, z3 =
0.53, z4 = 1.57 and α1 = α2 = α3 = α4 = 1, β1 =
−β2 = β3 = −β4 = 1 as shown in Fig. 10. More-
over, above and below the EPs we obtain unstable soli-
ton solutions. Here we only study the interaction of
two-soliton solutions below the EPs. We also obtain
interaction of symmetry-broken two-soliton solutions
(36) as illustrated in Figs. 11, 12 and 13 for z1 =
0.5 + 0.05i, z2 = 2 − 0.05i, z3 = 0.6 + 0.05i, z4 =
1.9−0.05i and α1 = α2 = α3 = α4 = 1, β1 = −β2 =
β3 = −β4 = 1. One can observed that we obtain sta-
ble two-soliton solution only for |Qn(τ )[2]Rn(τ )[2]|
as shown in Fig. 13 whereas we obtain unstable two-
soliton solution, see Figs. 11 and 12. It is interesting
to note that all solutions obtained here for sd-CNLS
equation (4) reduce to the results obtained for coupled
NLS equation (8).

5 Results and discussion

The complex eigenvalue z = a + ib plays a funda-
mental role to obtain different kinds of solutions. All
types of structural and dynamical properties from local
reduction to nonlocality and from unbroken PT sym-
metry to spontaneously PT symmetry breaking are
governed by this eigenvalue. Real part a of spectral
parameter z introduces amplitude while imaginary part
b is responsible for the velocity (both phase and group).
The group velocity is zero for b = 0 and phase part

Fig. 10 Singular-type two-soliton solution of sd-NNLS equa-
tion (3)

Fig. 11 Symmetry-broken decaying two-soliton solution of
equation (4)

Fig. 12 Symmetry-broken growing two-soliton solution of
equation (4)
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Fig. 13 Symmetry-broken stable two-soliton solution of equa-
tion (4)

Qn

Fig. 14 Symmetry-preserving oscillating solution of sd-NNLS
equation (3). For z1 = 1, z2 = 2 and α1 = α2 = β1 = −β2 = 1

solely depends upon n which give us stationary soli-
ton. However, for z = a + ib we have traveling soliton
whose speed is defined by b.

Nonlocal PT -symmetry continuous NLS equation
[1] and discrete NLS system [28] are primarily pre-
sented by Ablowitz and Musslimani. But in both set-
tings, they have only considered stationary solitons by
taking λ (purely imaginary) and z (real) for continu-
ous and discrete systems, respectively. They obtained
singular-type or blowup-type solutions in nonlocal
PT -symmetry regime. Such singular solutions are due
to non-conservation of power P = ∑∞

n=−∞ |Qn(τ )|2
which oscillate in time (also known as Rabi oscilla-
tions) with period π

ω2−ω1
as shown in Fig. 14 for var-

ious values of n, as observed in reference [12]. While
at n = −1/2 amplitude of these oscillations abruptly

Qn

Fig. 15 Symmetry-preserving oscillating solution of sd-NNLS
equation (3). For n = −1/2, z1 = 1, z2 = 2 and α1 = α2 =
β1 = −β2 = 1

Vn

Vn

Vn

Fig. 16 Profile of dynamical potential in brokenPT symmetric
regime. For z1 = 0.5+0.1i, z2 = 2+0.1i and α1 = α2 = β1 =
−β2 = 1

Qn

Rn

Qn Rn

Fig. 17 Unstable features of one-soliton solution of sd-NNLS
equation (4) near EP. For z1 = 0.5 + 0.1i, z2 = 2 + 0.1i and
α1 = α2 = β1 = −β2 = 1

enhance that ultimately generate singularities as shown
in Figs. 3 and 15. Furthermore, it is important to note
that the solutions Qn(τ ) and Rn(τ ) = Q∗−n(τ ) of
Eq. (4) are related and so-called self-induced potential
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Vn(τ ) = Qn(τ )Q∗−n(τ ) exhibit completely real spec-
trum for such nonlocal transitions. In other words, we
can say that PT -symmetry remains unbroken in this
case.

In contrast to this, in case of traveling solitons,
the solutions Qn(τ ) retain their shape during evolu-
tion in time as long as it remains centered around
EP of PT symmetry. For any shift from this point,
the nonlinearity in potential Vn(τ ) = Qn(τ )Q∗−n(τ )

breaks its PT symmetry in spite of the fact it always
obey the necessary condition of PT symmetry, i.e.,
Vn(τ ) = V ∗−n(τ ) [2]. This spontaneous breaking of
symmetry could be explained as follows: as discussed
earlier, the traveling soliton is realized by the choice
of complex eigenvalue, i.e., z = a + ib, the imagi-
nary part of this is responsible for evolution in time.
At EPs (z2k = (z∗2k−1)

−1), the dynamical potential is
completely real Vn(τ ) = |Qn(τ )|2 and system retain
stability as depicted in Figs. 1, 2 and 7, 8, 9. But when
z2k and z2k−1 are no more related and nonlocally dis-
turbed slightly by producing variation in imaginary
parts (velocity factor) the dynamical potential admits a
complex spectrum, see in Fig. 16. Accordingly Qn(τ )

and Rn(τ ) become independent and shifted from the
center of the symmetry triggering instability as shown
in Fig. 17. As a consequence PT symmetry is non-
linearly broken and solution Qn(τ ) and Rn(τ ) shows
exponential growth and decay, respectively, due to this
instability as illustrated in Figs. 4, 5, 6 and 11, 12, 13. In
short,PT symmetry spontaneously breaks may be due
to asymmetric speed distribution of waveguide at dif-
ferent positions in a physical systems. Such phenomena
have been observed in PT symmetric linear systems
but how this could be realized practically in nonlinear
regime is still a challenge.

6 Conclusion

In this paper, we have investigated multi-soliton solu-
tions of sd-NNLS equation by employing Darboux
transformation to the solution of the associated AL
scheme. We have expressed multi-soliton solutions
in terms of ratio of determinants and constructed
symmetry-broken and symmetry-unbroken one- and
two-soliton solutions for different values of parame-
ters. Our results may be step forward to understand
non-Hermitian photonics and other nonlinearPT sym-
metric systems effectively. The results obtained in this

letter can be further extended in various directions,
for example, one can explore soliton solution of sd-
NNLS equation in nonzero background, study degen-
erate solutions of sd-NNLS equation, rogue wave of
sd-NNLS equation and so on. We will address these
problems in future as a separate work.
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