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Abstract Motivated by the dynamics of microscale
oscillators with thermo-optical feedback, a simplified
third-order model capturing the key features of these
oscillators is developed, where each oscillator consists
of a displacement variable coupled to a temperature
variable. Further, the dynamics of a pair of such oscilla-
tors coupled via a linear spring is analyzed. The analyti-
cal procedures used are the variational equationmethod
and the two-variable expansionmethod. It is shown that
the analytical results are in agreement with the results
of numerical integration. The bifurcation structure of
the system is revealed through a bifurcation diagram.

Keywords Micro-electromechanical systems · Limit
cycle oscillator · Coupled oscillators · Perturbation
method · Bifurcations

1 Introduction

The dynamics of resonant MEMS, or micro-electro-
mechanical systems, are of interest due to both the large
number of current and potential applications [20] and
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for the new questions that arise in their design and anal-
ysis. Of interest here areMEMS systems consisting of a
resonator suspended above a substrate and illuminated
with a focused laser. The suspended resonator and sub-
strate form a Fabry–Pérot interferometer [1] with the
net result that the amount of laser heating of the res-
onator ismodulated by the resonator/substrate gap. The
resulting feedback of heating, temperature and thermal
stress can result in limit cycle oscillations [2]. Prior
work has shown that these oscillators can be entrained
[12] to inertial and optical signals [13].

Accounting for laser heating and thermo-mechanical
coupling the oscillator can be described by the follow-
ing equation of motion [21]

z̈ + 1

Q
ż + (1 + CT ) z + βz3 = DT, (1a)

Ṫ = HPL
[
σ + γ sin2 (2π(z − z0))

]
− BT, (1b)

where z is the displacement of the oscillator from its
equilibrium position and T is the temperature of the
oscillator. In Eq. (1a), z is the out-of-plane displace-
ment of the oscillator, normalized by the wavelength of
the laser light, Q is the quality factor, C is the thermal
coefficient for linear stiffness, β is the cubic stiffness,
D is the static position per unit change in temperature,
E is the inertial drive amplitude and ω is the inertial
drive frequency. In Eq. (1b), T is the average temper-
ature of the oscillator, B and H are thermal constants,
PL is the continuous-wave laser power, σ is the mini-
mum absorption, γ is the contrast in absorption and z0
is the equilibrium position of the oscillator with respect
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to the absorption curve. In Eq. (1a), the linear stiffness
and the thermal driving force depend on the tempera-
ture, and in Eq. (1b), the laser absorption is modulated
by the displacement of the oscillator [3].

The nonlinearities and presence of a large number
of parameters make the equations intractable, and thus,
we develop a model that has the essential features of
the system but is amenable to analysis. The premise
of our study is that understanding the dynamics of the
simplified model will help in explaining phenomena
associated with the more complexmodel and the corre-
sponding experiments. The dynamics of a single oscil-
lator are first discussed followed by an analysis of the
dynamics of a coupled pair of oscillators.

To the best of one’s knowledge, this is one of the first
studies where coupled third-order oscillators have been
considered. The archetypical system for synchroniza-
tion is the phase-only oscillator, where each oscillator
has the structure θ̇ = ω + f (θ, t). Here, θ denotes the
phase of each oscillator, while f (θ, t) represents vari-
ous forms of coupling and/or nonlinear term. This kind
of study was pioneered by Kuramoto [8], and those
results were later applied to biological situations by
Mirollo and Strogatz [9]. The case of two coupled van
der Pol oscillators was first studied by Storti and Rand
[17]. They obtained the regions of in-phase and out-of-
phase locking as well as drifting.

In recent years, interest has arisen in a multitude
of other kinds of oscillators. Valente et al. [19] have
considered a system consisting of two masses coupled
via a spring, which can rigidly impact a fixed stop.
Hybrid periodic orbits are found as well as trajecto-
ries where there are infinitely many impacts with the
stop occurring in a finite time. Fradkov and Andrevsky
[6] have studied synchronization of two simple pen-
dula coupled by a linear spring. Sliwa and Grygiel
[15] have considered a pair of coupled Kerr oscilla-
tors. These have the equation of the structure dz/dt =
− jωz − jεa ∗ a2 + Fe− jΩt − γ z, where z is a com-
plex variable, j denotes the imaginary unit and all other
symbols denote constants. This oscillator arises in non-
linear optics. Switching of the systembetween different
semi-stable attractors as well as chaotic beats has been
observed. Suchorsky and Rand [18] have considered
van der Pol oscillators coupled by fractional deriva-
tive. The authors have considered regions of locking
and drifting and have demonstrated the reduction to
known results in the limits where the fractional deriva-
tive is replaced by an integer. Finally, Chavez et al.

[4] have considered a pair of forced Duffing oscillators
coupled via soft impacts. A bifurcation diagram has
been presented by these authors.

The previous paragraphs give some indication of the
breadth and variety of oscillators and coupling mech-
anisms which have been considered in the literature.
However, all of these consider either phase-only or
second-order models. The introduction of a higher-
order system, in this work, presents new and interesting
phenomena which will be discussed. The complexity
of the system requires the use of a multitude of tech-
niques. We will use a variational equation method, a
regular perturbation theory on a Mathieu-like equation
aswell as a two-variable expansion on the system equa-
tions to generate a set of slow flow equations.

2 Simplified model of one oscillator

A key observation from the analysis of Eq. (1) is the
presence of a limit cycle for a large enough value
of PL [1]. Hence, to emulate the full equations the
reduced model must also support a limit cycle. The
damping in Eq. (1a) is inessential as there is already a
damping term in Eq. (1b), and that alone provides all
the damping which we require for off-cycle motions
to die out. The cubic nonlinearity term and tempera-
ture coefficient in the linear stiffness term in Eq. (1a)
are not essential for the formation of a limit cycle.
In Eq. (1b), sin2(z − z0) can be Taylor expanded as[
(z − z0) − (z − z0)3/6 + · · · ]2. Neglecting terms of
order O((z − z0)4) and higher, this term can be fur-
ther simplified to z2 − zz0 without losing any essential
features. Thus, Eq. (1) can be reduced to the following:

z̈ + z = T, (2a)

Ṫ + T = z2 − zz0. (2b)

A Lindstedt–Poincaré-type analysis [14] of this sys-
tem is performed, assuming the amplitude of oscilla-
tion to be small, of order ε. Further, the assumption is
made that the parameter z0 is of the second order of
smallness, and it is scaled as z0 = ε2 p to get

z̈ + z = T, (3a)

Ṫ + T = εz2 − ε2 pz. (3b)

Using the perturbation theory, we expand z = z(0) +
εz(1) + ε2z(2), T = T(0) + εT(1) + ε2T(2) and use the
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time dilation, τ = ωt , where ω = 1 + k1ε + k2ε2. At
the lowest order, we get

z(0)
′′ + z(0) = T(0), (4a)

T(0)
′ + T(0) = 0, (4b)

where prime denotes differentiation relative to the
stretched time, τ . Since Eq. (4b) has exponentially
decaying solutions, they are not of interest in driving
a limit cycle so we take T(0) = 0. With this substi-
tution, Eq. (4a) has the standard oscillatory solutions.
Since the system is autonomous, the phase is arbitrary
and the oscillation can be treated as z(0) = A cos τ .
Balancing the coefficients of ε, we get

z(1)
′′ + z(1) = −2k1z(0)

′′ + T(1), (5a)

T(1)
′ + T1 = z2(0) − pz(0) − k1T(0)

′. (5b)

In Eq. (5b), since T(0) = 0 = T ′
(0), the last term drops

out. Removal of resonance terms from Eq. (5a) gives
k1 = 0 but yields no information about A, which carries
along as a parameter, giving z(1) and T(1) in terms of
A. Balancing the coefficients of ε2 in the perturbation
analysis, we get

z(2)
′′ + z(2) − 2k1z(1)

′′ +
(
−2k2 − k21

)
z(0)

′′ + T(2),

(6a)

T(2)
′′ + T(2) = (2z(2) − p)z(1) − k1T(2)

′ − k2T(0)
′.
(6b)

Removing secular terms from Eq. (6a) yields the fol-
lowing solution:

z = A cosωt + A2
(
1

2
− 1

15
sin 2ωt− 1

30
cos 2ωt

)
,

(7a)

T = A2
(
1

2
+ 1

5
sin 2ωt + 1

10
cos 2ωt

)
, (7b)

where

A = √
10p/3, (8a)

ω = 1 − p/27. (8b)

Since the perturbation theory is developed in terms of
the amplitude, one is not required to explicitly report
ε in these expressions. It is noted that A and ω are the
amplitude and frequency of the fundamental motion
z(0), respectively. Thus, Eq. (2) exhibits limit cycle
oscillations for all positive values of p. The amplitude
increases and frequency decreases with increasing p.

3 Coupled pair of oscillators and variational
equation method

We now turn to the analysis of two coupled MEMS
oscillators, here assumed to be identical. The case
where detuning is present will be considered in a later
study. Linear coupling is assumed, which could be
achieved either via a spring or via electrostatic cou-
pling. The equations of the coupled oscillators are

z̈1 + z1 = T1 + α (z2 − z1) , (9a)

Ṫ1 + T1 = z21 − z1 p, (9b)

z̈2 + z2 = T2 + α (z1 − z2) , (9c)

Ṫ2 + T2 = z22 − z2 p, (9d)

where α is the coupling stiffness. The model consists
of two identical coupled oscillators, and hence, in-
phase (IP) and out-of-phase (OP) modes are expected.
Here , the IP mode is defined as z1(t) = z2(t) and
T1(t) = T2(t), whereas the OP mode is defined as
z1(t) = −z2(t) and T1(t) = −T2(t). Indeed, lineariza-
tion about the origin yields all six eigenvectors to have
the structure corresponding to IP and OP modes. Two
of the modes are associated with negative real eigen-
values for all p and α. The four remaining eigenval-
ues are two complex conjugate pairs, which are purely
imaginary for p = 0 and have positive real parts when
p > 0. One pair of these eigenvalues attaches to a pair
of eigenvectors which has the IP mode shape while the
other pair attaches to an eigenvector pair which has the
OP mode shape. It is noted that in the full nonlinear
system, the change in sign of the eigenvalues as p is
increased through zero corresponds to the Hopf bifur-
cation which gives rise to limit cycle oscillations.

Equation (9) is transformed in the following way:

x = z1 + z2, (10a)

y = z1 − z2, (10b)

u = T1 + T2, (10c)

v = T1 − T2. (10d)

Substituting Eq. (10) into Eq. (9), one gets

ẍ + x = u, (11a)

u̇ + u = x2 + y2

2
− px, (11b)

ÿ + (1 + 2α) y = v, (11c)

v̇ + v = xy − py. (11d)

The presence of IP mode is clearly demonstrated by
these equations—in this mode y = v = 0, and x and y
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satisfy Eq. (2). An exact OP mode, however, does not
exist; setting x = u = 0 leads to an apparent contradic-
tion. The problem of persistence of linearized modes in
nonlinear systems has been considered by Hennig [7].

3.1 Stability of the IP mode

The stability of the IP mode is now analyzed by con-
structing the variational equation, as in Stoker [16].
Small perturbations δx , δy, δu and δv are introduced
on top of the steady-state solutions of x , y, u and v,
where the steady-state solutions are characterized by
x = 2z and u = 2T , where z and T are given by
Eq. (7), and y and v are zero. This variational equation
for the δy − δv system can be combined into a single
third-order equation as

δ
...
y + δ ÿ + (1 + 2α) δ ẏ

+ (1 + 2α + p − F(t)) δy = 0, (12)

where F(t) is the limit cycle motion exhibited by x(t)
whose stability is being sought. Since x = z1 + z2
which equals 2z1 for the IP mode, and since the limit
cycle for a single oscillator was found in Eq. (7), one
may write

F(t) = 2A cosωt

+2A2
(
1

2
− 1

15
sin 2ωt − 1

30
cos 2ωt

)
.

(13)

A perturbative approach will now be used to deter-
mine the stability of the IP mode. For this approach,
it is sufficient to retain only the first term in the right-
hand side of Eq. (13). From this point onwards, δy is
written as q for notational convenience. To carry out
a perturbation procedure, the variables are rescaled as
follows:

ω3q ′′′ + ω2q ′′+νωq ′ +
(
ν + μ cos τ +μ2 p

)
q=0,

(14)

where τ = ωt , the prime denotes differentiation with
respect to the variable τ , μ = 2A, in which A is the
amplitude of the limit cycle, and ν = 1+2α.We use the
expansion, ν = 1 + μν1 + μ2ν2, let ω = 1 − μ2 p/27
and then expand q = q0 + μq1 + μ2q2. Before pro-
ceeding further, an outline of the philosophy behind the
perturbation is given. To obtain the transition curves
of Eq. (12), one seeks the motion that is periodic on
the curve itself, with a period equal to that of F(t).

The choice of period is motivated by the fact that in
the absence of the perturbations (i.e., μ = 0, ν = 1),
Eq. (14) possesses oscillatory solutions with natural
frequency 1; since the frequency of the parametric exci-
tation is also perturbatively close to 1, we are close to
a 1:1 resonance of the system. Substituting the pertur-
bation expansions into Eq. (14), at zero order one has

q ′′′
0 + q ′′

0 + q ′
0 + q0 = 0, (15)

which has the fundamental solutions cos τ , sin τ and
e−τ . The exponentially decaying solution is not of
interest, so we let

q0 = m cos τ + n sin τ, (16)

where m and n are arbitrary. Equating terms of order
μ in the expanded form of Eq. (14) and substituting
Eq. (16) into the result, we get

q ′′′
1 + q ′′

1 + q ′
1 + q1 = −m

2
(1 + cos 2τ) − n

2
sin 2τ.

(17)

The resonant terms can be removed from this equation
if one sets ν1 = 0. Using the method of undetermined
coefficients, one finds

q1 = (m − 2n) cos 2τ

30
+ (2m + n) sin 2τ

30
− m

2
.

(18)

At order μ2, we get

q ′′′
2 + q ′′

2 + q ′
2 + q2

= −q1 cos τ − (p/9)q ′′′
0 + (2/27)pq ′′

0

− (ν2 − (p/27))q ′
0 − (p + ν2)q0, (19)

where q0 and q1 have been determined above. This con-
tains resonance terms on the right-hand side, removal
of which requires

2np

27
+ 29mp

27
+ ν2n − n

30
+ ν2m − 29m

60
= 0,

(20a)
29np

27
− 2mp

27
+ ν2n + n

60
− ν2m + m

60
= 0. (20b)

Equation (20) are a pair of simultaneous linear homo-
geneous equations; a non-trivial solution exists if and
only if the determinant of the matrix vanishes. This
condition leads to

1

58320

(
67600p2 + 133920ν2 p − 29520p+ · · ·

+ · · · 116640ν22 − 31104ν2 − 405
)

= 0. (21)
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Fig. 1 Phase plane showing the in-phase mode. Steady state has
been shown after the initial transients decay. This plot is based
on the numerical integration of the original system equations

For p = 0.1, the value of ν2 obtained from Eq. (21) is
0.2455. Now, ν is 1+ μ2ν2 which also equals 1+ 2α.
Since μ is twice the amplitude of the single oscilla-
tor limit cycle, determined earlier to be 0.333 using
Eq. (8a), the transitional value of α, above which the
IP mode is stable and below unstable, is found to be
0.0545. The theoretical predictions are compared with
the numerical simulations. At α = 0.1, with initial
conditions {z1(0), z2(0), ż1(0), ż2(0), T1(0), T2(0)} =
{0.1, 0.09, 0, 0, 0, 0}, close to the IP mode, the numer-
ical solution shows an IP mode as shown in Fig. 1.
For the same initial conditions, as α is decreased
to 0.055, the straight line of the IP mode branches
out into an ellipse as shown in Fig. 2. The criti-
cal value of α is very close to the value predicted
by the variational method. For initial conditions,
{z1(0), z2(0), ż1(0), ż2(0), T1(0), T2(0)} =
{0.1,−0.09, 0, 0, 0, 0}, close to the OP mode, the
numerical solution resembles an OP motion as shown
in Fig. 3. Although the IPmode is an exact straight line,
the OP mode is not.

An intriguing feature is that the variational analy-
sis on the x, u equations, considering perturbations δx
and δu off their steady-state values, leads to the same
equation as Eq. (12) but with α = 0. According to
the foregoing analysis, the x–u motion is (Lyapunov)

Fig. 2 Branching out of the in-phase mode into an ellipse at
α = 0.055. Steady state has been shown after the initial transients
decay. This plot is based on the numerical integration of the
original system equations

Fig. 3 Phase plane showing an elongated figure-of-eight OP-
like mode. This plot is based on the numerical integration of the
original system equations

unstable. However, the x–u motion can be shown to
be orbitally stable. See Stoker [16] for a discussion of
orbital stability.
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3.2 Stability of the OP mode

It is now desired to determine the stability of the OP-
like mode. It was mentioned earlier that the strict OP
mode z1 = −z2 and T1 = −T2 does not exist for
Eq. (9). In order to investigate the stability of themotion
similar to the OP mode (cf. Fig. 3), one first needs to
obtain an expression for the motion, which one will
do using Lindstedt’s method. The variable scaling is
the same as that of a single oscillator Eq. (3), and the
solutions z1 = A cos(ωt) and z2 = −A cos(ωt) are
imposed at the ε0 level. Computer algebra is used for
the calculation, owing to intractability of themathemat-
ical manipulations. As in Section I, the starting step is
to introduce the parameter ε, in a manner consistent
with the scalings for a single oscillator Eq. (3). Time is
rescaled as τ = (1+ k1ε+ k2ε2)t and the variables are
expanded as z1 = z10 + εz11 + ε2z12, and so on. The
zero-order equations are

z10
′′ + (1 + α) z10 = αz20 + T10, (22a)

T10
′ + T10 = 0, (22b)

z20
′′ + (1 + α) z20 = αz10 + T20, (22c)

T20
′ + T20 = 0. (22d)

It is found that the z’s are oscillatory and the T ’s are
damped. Neglecting the exponentially decaying terms,
the frequency of oscillation of Eqs. (22a) and (22c) is
obtained as (1 + 2α)1/2. Now, we impose externally
that z10 = A cosωτ and z20 = −A cosωτ . The order
ε equations are

z11
′′ + (1 + α) z11 = T11 + αz21, (23a)

T11
′′ + T11 = z210, (23b)

z21
′′ + (1 + α) z21 = T21 + αz11, (23c)

T21
′′ + T21 = z220. (23d)

Plugging the zero-order solutions into these equa-
tions leads to a coupled inhomogeneous system of
ODEs for the one-level variables. To uncouple this sys-
tem, the transformation to sum and difference coordi-
nates is performed with z11 = (u + v)/2 and z21 =
(u−v)/2. Removal of the resonance term gives k1 = 0.
Solving the system in the new variables and inverting
gives z11 and z21 as trigonometric functions of t , with
the amplitude A still as a parameter.

Determination of amplitude is achieved from the
next level. The equations at this level are

Fig. 4 Phase portrait of the OPmode from perturbation analysis

z12
′′ + (1 + α) z12 = αz22 + T12 + 2k2z10

′′, (24a)

T12
′ + T12 = k2T10

′ + (p − 2z11) z10, (24b)

z22
′′ + (1 + α) z22 = αz12 + T22 + 2k2z20

′′, (24c)

T22
′ + T22 = k2T20

′ + (p − 2z21) z20. (24d)

Substitution of the already determined zero- and one-
level quantities into Eq. (24), followed by yet another
sum and difference transformation, leads to a situation
where the resonance terms can be removed. Computer
algebraic manipulations yield the following:

z1 = A cosωt + εu/2, (25a)

z2 = −A cosωt + εu/2, (25b)

where

ω = √
1 + 2α, (26a)

A = 2p (8α + 3) (8α + 5)(
128α2 + 128α + 27

)1/2 , (26b)

u = A2 − 2ω sin 2ωt + cos 2ωt

(8α + 3) (8α + 5)
. (26c)

The trajectory predicted byEqs. (25) and (26) is plot-
ted in Fig. 4 as a phase portrait, which has the desired
figure-of-eight shape but is wider than the actual, as
shown in Fig. 3. This solution will now be substituted
into Eq. (9) to construct the linear variational equation
for perturbations δz1, δz2, δT1 and δT2 added onto the
“steady-state” solutions z∗1(t), z∗2(t), T ∗

1 (t) and T ∗
2 (t).
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Fig. 5 Stability of the IP and OP modes

The linear variational equation turns out to be

δ̈z1 + δz1 = δT 1 + α (δz2 − z1) , (27a)
˙δT 1 + δT 1 = 2z∗1(t)δz1 − δz1 p, (27b)

δ̈z2 + δz2 = T2 + α (δz1 − δz2) , (27c)
˙δT 2 + δT 2 = 2z∗2(t)δz2 − δz2 p. (27d)

Unfortunately, these equations do not uncouple upon
introducing the substitution Eq. (10). This is because
a strict OP mode is a not a solution of Eq. (9). Hence,
numerical simulation is resorted to for the solution of
the above system. It yields that the perturbations remain
bounded for α < 0.88 while they grow exponentially
for α > 0.88. Numerical integration of the full system
Eq. (9) yields a transition from stable to unstable at
approximately α = 0.82 which is in good agreement
with the above prediction.

Figure 5 summarizes the foregoing sections by
showing the stability of the IP and OPmodes as a func-
tion of α.

4 Two-variable expansion method

Themethod of two-variable expansion[10], also known
as the method of multiple scales [11], will now be used
to study the coupled system. In this process, time is split
into two variables, a regular time ξ = t and a slow time
η = εt . The time derivative can be written as d/dt =
∂/∂ξ + ε∂/∂η, and the second and higher derivatives
may be calculated similarly. The small parameter ε is
introduced into Eq. (9) in the following manner:

z̈1 + z1 = εT1 + ε2α (z2 − z1) , (28a)

Ṫ1 + T1 = z21 − εz1 p, (28b)

z̈2 + z2 = εT2 + ε2α (z1 − z2) , (28c)

Ṫ2 + T2 = z22 − εz2 p. (28d)

This scaling is motivated as follows: It is reasoned that
the coupling α is very weak (O(ε2)) but on account of
the coupling, larger values of the static position z0 can
now be permitted. The following ansatz is attempted:

z1 = A(η) cos ξ + B(η) sin ξ, (29a)

z2 = C(η) cos ξ + D(η) sin ξ, (29b)

and additional dynamical variables are not taken for
T1 and T2 since they are exponentially decaying at
largest order. Substituting Eq. (29) into Eq. (28) and
removing resonant terms lead to the trivial slow flow
A′ = B ′ = C ′ = D′ = 0 where prime denotes d/dη.
This indicates that the method has to be carried out to
one further order. Defining a super-slow time ζ = ε2t ,
A, B,C, D are now taken to be functions of ζ . Removal
of resonance terms from the resulting equations now
gives the following slow flow

dA

dζ
= (−1/120)

[
60αD + 31B3 + 27AB2 + 31A2B

− (30p + 60α) B + 27A3 − 30pA

]
, (30a)

dB

dζ
= (1/120)

[
60αC − 27B3 + 31AB2

+ (
30p − 27A2) B − (30p + 60α) A

]
, (30b)

dC

dζ
= (−1/120)

[
60αB + 31D3 + 27CD2 + 31C2D

− (30p + 60α) D + 27C3 − 30pC

]
, (30c)

dD

dζ
= (1/120)

[
60αA − 27D3 + 31CD2

+ (
30p − 27C2) D − (30p + 60α)C

]
. (30d)

For increased convenience, one can express the
above system in terms of polar coordinates, i.e., A =
r1 cos θ1, B = r1 sin θ1, C = r2 cos θ2 and D =
r2 sin θ2. If one defines the phase difference ϕ =
θ2 − θ1, then the following system for r1, r2 and ϕ

is obtained from Eq. (30):

dr1
dζ

= pr1
4

− 9r31
40

− α

2
r2 sin ϕ, (31a)

dr2
dζ

= pr2
4

− 9r32
40

+ α

2
r1 sin ϕ, (31b)

dϕ

dζ
= 31

120

(
r22 − r21

)
+ α

2
cosϕ

(
r1
r2

− r2
r1

)
. (31c)

Note that Eq. (31) exhibits a symmetry: They are
invariant under the transformation

r1 −→ r2, r2 −→ r1, ϕ −→ −ϕ. (32)

By inspection, it can be seen that there are fixed
points when r1 = r2 and sin ϕ = 0, i.e., ϕ = 0 or
ϕ = π . The former corresponds to the IP mode, while
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the latter is the OP mode. A calculation for r (either
1 or 2) at the fixed point yields

√
10p
3 , which is same

as that obtained from the Lindstedt analysis of Sect. 2.
To obtain the stability of the IP mode, the Jacobian is
constructed for Eq. (31),

⎡
⎢⎢⎢⎣

− p
2 0 −α

√
10p
6

0 − p
2

α
√
10p
6

−31
√
10p3/2+54α

√
10p

180p
31

√
10p3/2−54α

√
10p

180p 0

⎤
⎥⎥⎥⎦ .

(33)

For p = 0.1, the critical value of α is 31/540 = 0.057,
where the IP mode is stable above this critical value
and unstable below it. This is in good agreement with
the variational equation and the results of numerical
integration. Construction of the Jacobian for the OP
mode shows that it remains stable at all values of α.
Thus, the two-variablemethod has yielded correctly the
stability transition of the IP mode. However, it cannot
yield the transition for the OP mode, at this level of the
perturbation theory.

Recall that we have shown that there is a range of
α values for which both the IP and OP modes are
stable (Fig. 5). It is noted that these modes are limit
cycles in the actual dynamical system but fixed points
in the slow flow. These slow flow equilibria are sep-
arated by an unstable slow flow limit cycle which we
shall refer to as a separatrix. Although it is unstable,
one may nevertheless see what the separatrix looks
like by choosing initial conditions to (approximately)
lie on the basin boundary between the two equilibria.
Moving from the three-dimensional slow flow space
to the six-dimensional space of Eq. (9), with initial
conditions {z1(0), z2(0), ż1(0), ż2(0), T1(0), T2(0)} =
{0.1, 0.00209816, 0, 0, 0, 0} which are very close to
the threshold, the separatrix appears as a quasiperiodic
motion, as shown in Figs. 6 and 7. Such a situation was
already encountered in Storti and Rand [17].

AUTO [5] is an analytic continuation software pack-
age which we will use to plot the bifurcation diagram
of the slow flow Eq. (31). The result is shown in Fig.
8 where slow flow fixed points are displayed in the ϕ

versus α plane. It can be seen that the IP mode is stable
up to α = 0.057; thereafter, it cedes stability to a pair
of slow flow fixed points which are born in a pitchfork
bifurcation.

Fig. 6 The separatrix exhibiting quasiperiodic motion in the
phase plane. This plot is based on the numerical integration of
the original system equations

Fig. 7 Time trace of the displacement variables at the separatrix.
This plot is based on the numerical resolution of the original
system equations

Since the slow flow system Eq. (31) possesses the
symmetry Eq. (32), all dynamical quantities either
have this symmetry or are part of a pair of reflected
twins. AUTO shows that these slow flow fixed points
lose stability in a Hopf bifurcation at approximately
α = 0.0468; the resulting symmetric slow flow limit
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Fig. 8 Bifurcation diagram from the slow flow equations,
obtained from AUTO software. Here, IP in-phase mode, PB
Pitchfork bifurcation and HB Hopf bifurcation

Fig. 9 Mirror symmetric limit cycles, LC1 and LC2, at α =
0.0437 prior to the homoclinic bifurcation which occurs at α =
0.0436, as the parameter α is decreased

cycles are stable. Numerical integration shows that
these limit cycles increase in amplitude and deform
in shape as α is decreased further, up to a further bifur-
cation which occurs when α decreases through approx-
imately 0.0436, though this is not shown in Fig. 8. In
this case, there is a homoclinic bifurcation in which the
two asymmetric slow flow limit cycles join to become a
single slow flow limit cycle which exhibits the symme-
try of Eq. (32). In Fig. 9, one sees the two limit cycles
obtained by numerical integration of the slow flowwith

Fig. 10 Single limit cycle at α = 0.0435 after the homoclinic
bifurcation which occurs at α = 0.0436, as the parameter α is
decreased

parameter value α = 0.0437 and initial conditions
r1 = r2 = 1/3 and ϕ = + 0.45 and ϕ = − 0.45,
respectively. In Fig. 10, one can see the single symmet-
ric limit cycle obtained atα = 0.0435 and starting from
either of the two initial conditions used in obtaining the
mirror symmetric limit cycles, earlier.

Another bifurcation occurs when α decreases
through approximately 0.0415, in which the unstable
separatrix limit cycle (Fig. 6) merges with the symmet-
ric slow flow stable limit cycle which was created in
the homoclinic bifurcation. For values of α less than
approximately 0.0415, the OP mode is the only stable
motion.

To visualize the bifurcation at α = 0.0415, the
results of simulation are shown with IC picked on the
crack between attainment of limit cycle and transition
to OP mode. Figure 11 presents the results of numer-
ical integration of the slow flow with parameter value
α = 0.042 and ICs r1 = r2 = 1/3 and ϕ = 0.4403,
while in Fig. 12 we change the IC ϕ to 0.4404. At this
α value, there are two stable objects: the symmetric
limit cycle and the fixed point corresponding to the OP
mode. In these simulations, it can be seen that the sys-
tem remains on the separatrix for a short time before it
progresses to its asymptotic state. In Fig. 13, the value
of α is changed to 0.041. Starting at the initial condi-
tions corresponding to Fig. 11, the system goes to the
OP mode.
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Fig. 11 Numerical integration of the slow flow showing the sys-
tem starting on the separatrix at α = 0.042 and going over to the
steady-state limit cycle

Fig. 12 Slowflow system starting on the separatrix atα = 0.042
and going over to the OP mode

5 Conclusions

Thus, in this article a study of a simplifiedmodel of cou-
pledMEMSoscillators is performed.Themost interest-
ing feature of the system is that the IP and theOPmodes
are both stable over a considerable range of parameter

Fig. 13 At α = 0.041, all initial conditions lead the slow flow
system to go to the OP mode

Table 1 Stability of the system to different values of α

Value of α Stability

> 0.9 Only IP

0.88 OP becomes stable

0.057 IP loses stability in pitchfork to modified IP

0.0468 Modified IP loses stability in Hopf to quasiperiodic

0.0436 Two LCs coalesce in homoclinic

0.042 Stable LC collides with separatrix and vanishes

< 0.042 Only OP

values. For sufficiently low α(< 0.04), only the OP
mode is stable. At intermediate α, both the IP and the
OP modes coexist stably. At high α(> 0.88), only the
IP mode is stable. This coexistent stability of the two
modes is reminiscent of what was found in Reference
[17] for two coupled van der Pol oscillators. Table 1
shows the bifurcations that occur in this system as the
value of α is varied.

As regards the various methods adopted, it is noted
that the two-variable method yielded the most accurate
results in the regions where it was effective. However,
it is ineffective in predicting the stability of OPmode. It
is also an interesting fact that this is one systemwhich is
driven by a third-order equation, and its stability anal-
ysis led us to a third-order Mathieu-like equation. It is
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likely that these studies can be extended to incorporate
other third-order parametrically excited systems and
MEMS systems with detuned oscillators in the future.
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