
Nonlinear Dyn (2019) 98:167–184
https://doi.org/10.1007/s11071-019-05180-6

ORIGINAL PAPER

Dynamic response of beams under moving loads
with finite deformation

Yuanbin Wang · Xiaowu Zhu · Zhimei Lou

Received: 4 July 2018 / Accepted: 2 August 2019 / Published online: 12 August 2019
© Springer Nature B.V. 2019

Abstract A novel material parameter-dependent
model is proposed in this work to investigate the non-
linear vibration of a beam under amoving load within a
finite deformation framework. For the planar vibration
problem, the Lagrange strain is adopted and the result-
ingmodel equations for the beam are established by the
Hamilton principle. Under appropriate assumptions,
the coupled model equations are simplified into a non-
linear integro-partial differential equation which incor-
porates a material parameter and a geometrical param-
eter. The dynamic response of the beam is determined
with the help of the Galerkin method. The solutions
show that both the material parameter and geometrical
parameter have the effect of reducing the amplitude of
the forced vibration, increasing the speed of the fluc-
tuation and the critical velocity for the moving load.
In comparison with small deformation formulations,
the effect of finite deformation herein is to reduce the
vibration amplitude, especially for slender beams. If the
vibration amplitude is relatively small, the nonlinear
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model may be replaced by the corresponding higher-
order linear model while preserving the main features
of the vibration problem.
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1 Introduction

The dynamic response of beams under moving loads
has been analyzed extensively during the past decades,
owing to its applications in engineering systems such
as bridges traveled by vehicles or pedestrians, space
tethers, satellite antennas, launch systems and so on.
In Fryba [1], various analytical solutions for vibra-
tion problems of simple and continuous beams under
moving loads were documented. Recently, Ouyang [2]
also reviewed the vibrations of beams under moving
loads. It is beyond the scope of this article to present an
exhaustive literature review, one can refer to [3–11] for
more information. The most relevant work discussed
below is classified according to the beam models they
adopt, which mainly include the Euler beam theory,
Timoshenko beam theory and some higher-order shear
deformable beam theories.

Based on the Euler beam theory, an abundant body
of work has been reported on the vibrations of beams
subjected tomoving loads, either in a linear or nonlinear
setting. For example, Sheng andWang [12] numerically
examined the nonlinear dynamic responses of Kelvin–
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Voigt beams under moving loads. They found that the
dynamic responses of the nonlinear model were higher
than those of the linear model. Eftekhari [13] applied
the differential quadrature method to investigate the
steady state of the linear and nonlinear vibration of
Euler–BernoulliVonKarmanbeamrestingon an elastic
Winkler foundation; the beam was subjected to a mov-
ing point load. Di Lorenzo et al. [14] studied the vibra-
tion response of the Euler uniform beam under mov-
ing loads with Kelvin–Voigt viscoelastic supports. The
free vibration solutions and dynamic responses were
obtained by numerical methods. The velocity of the
moving load plays a very important role in determin-
ing the vibration of the beam, and substantial work is
available that investigates the dynamic response of the
beams at the critical state. Timoshenko [15] firstly stud-
ied the steady-state solutions of the dynamic response
of a beam on an elastic foundation under a moving
load. These results showed that at the critical veloc-
ity (of the moving load), the deflection of the beam
becomes larger. Later, many researchers studied the
steady state of the beam and the critical velocity of
the moving load. Kenney [16] investigated the steady-
state vibrations of a beam under a moving load. Cran-
dall [17] obtained the steady-state solutions for a Tim-
oshenko beam on an elastic foundation with a moving
concentrated load. In [18], Achenbach and Sun studied
the effect of the damping coefficient and the veloc-
ity of the moving load on the dynamic response of a
Timoshenko beam on a flexible support. Steele [19]
studied the steady-state solutions at the critical state
and obtained the asymptotic solutions. Dieterman and
Metrikine [20] obtained two critical velocities of a con-
stant load moving at a constant speed along a Euler–
Bernoulli beam. As to the critical velocity which leads
to the largest vibration amplitude, some remarkable
results were obtained in [21,22]. Based on the Euler
beam model, Rodrigues et al. [21] and Froio et al. [22]
studied the dynamic response of beams on elastic foun-
dations under an oscillating and concentrated moving
load, the effects of the foundation’s stiffness and damp-
ing on the critical velocity were investigated. With the
help of Fourier transform, Dimitrovovà [23], Dimitro-
vovà and Rodrigues [24] studied the critical velocity
of a uniformly moving load on an infinite Euler beam
whichwas supported by a finite depth foundation. Chen
and Huang [25] applied the dynamic stiffness matrix
method to study the dynamic characteristics of Timo-
shenko beam on a viscoelastic foundation and deter-

mined the critical velocity. Tekili et al. [26] studied
the nonlinear vibration of aluminum beams strength-
ened by carbon coats under moving loads at a con-
stant speed. In order to take into account the effect
of the shear deformation on the vibration of beams,
Timoshenko beam theory is widely used. Kim et al.
[27] applied the modal analysis method to study the
dynamic responses of a Timoshenko beam under a
moving load. The natural frequencies and mode shapes
were obtained in closed forms. Ding et al. [28] inves-
tigated the dynamic response of infinite Timoshenko
beams under moving loads supported by nonlinear vis-
coelastic foundation, and the dynamic response of the
beam was obtained.

As mentioned above, in most of the literature the
deformation of beams under moving loads or mass is
described either by the Euler or Timoshenko beam the-
ory. However, it is well known that the shear defor-
mation of the beam is neglected in Euler beam theory,
while the Timoshenko beam theory is based on an aver-
age shear strain. Furthermore, the cross section of the
beam is assumed to remain planar after deformation in
both of these theories. In addition, both the Euler and
Timoshenko beam theories do not accurately capture
the vibration response of the beam when the force is
large. To overcome such drawbacks, higher-order shear
deformable beam theories have been adopted to study
the dynamic response of beams under moving loads.
For the finite Timshenko–Rayleigh beam, Sapountza-
kis and Kampitsis [29] studied the nonlinear response
of beams under moving loads resting on a nonlinear
three-parameter viscoelastic foundation. Tabejieu et al.
[30] applied the standard averaging method to study
the response of a Rayleigh beam, subjected to moving
loads, that is resting on a fractional-order viscoelas-
tic Pasternak foundation. Hryniewicz [31] studied the
dynamic response ofRayleigh beams resting on nonlin-
ear viscoelastic foundations undermoving loads.Based
on a refined beam model and taking into account the
effect of the thermal and elastic foundation, Chen et
al. [32] investigated the nonlinear dynamic response of
functionally graded tubes under moving loads by the
Galerkin method.

Although existing higher-order shear deformable
beam theories take into account the shear deforma-
tion and rotation inertia of the beam, the effect of the
material parameter on the deformation is not consid-
ered. Moreover, as far as the authors are aware of,
most of the literature investigating the moving load-
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induced vibration problem considers the geometrical
nonlinear effect, but little is available on exploring
the dynamic response in a finite deformation setting.
One of the important engineering problems which can
be modeled as a simply supported beam undergoing
large deformations under a moving load is the vehicle-
bridge structure. For this structure, the moving vehi-
cle (e.g., a train) is ideally treated as a moving load
which is imposed on the (beams of the) bridges or
roads. Nowadays, some lighter and slender beams are
widely used in roads and bridges. The slender beams
may be subject to a large deformation when the load
or mass moves along it. Furthermore, the dynamic
response could become more severe than that of the
static loading case. In view of this, it is most desirable
to analyze the vibration of the beam in the framework
of finite deformation. However, most of the existing
models in the literature only consider the nonlinear-
ity that arises from the nonlinear foundations, without
considering nonlinear deformations of the beam. Thus,
for forced nonlinear vibration of beams, higher-order
model equations established in finite deformation set-
tings are crucial in analyzing the nonlinear dynamic
response. At this time, a model to support this analysis
is not available in the literature, which motivates the
present work.

In this paper, a recently developed beam theory [33]
(see also [34] for axially moving hyperelastic beams),
which takes into account the shear deformation and
the characteristics of the material, is applied to explore
the nonlinear vibration of beams that are subjected to
moving loads with finite deformation. The investiga-
tion reveals that both the material parameter and finite
deformation are important in exploring the dynamic
response of the beam. The arrangement of the remain-
ing parts of this article is as follows. In Sect. 2, in the
framework of finite deformation, the model equation
for planar vibration of a beam under a moving load is
derived through the Hamilton principle. With simply
supported boundary conditions, the model equation is
decoupled and simplified into a single integro-partial
differential equation of the transverse displacement at
the neutral axis. Several simplifiedmodels are also pre-
sented in this section. In Sect. 3, with the help of the
Galerkin method, the model equation is transformed
into a set of ordinary differential equations. The effects
of the material parameter, the geometrical parameter
and finite deformation on the forced and free vibrations

are discussed. Finally, some conclusions are drawn in
Sect. 4.

2 Model equations

A beam with simply supported boundaries under a
moving load P (with a constant transport velocity γ ) is
considered in the present study. The beam is assumed
to have length L , density ρ and uniform cross section
A. The x-coordinate is taken along the length of the
beam, and the y-coordinate is taken along the thickness
of the beam. The longitudinal and transverse displace-
ments of the beam at time t are denoted by u1(x, y, t)
and u2(x, y, t), respectively. For simplicity, only the in-
plane dynamic behavior of the beam is considered in
the model, while the out-of-plane motion and vibration
are not taken into account.

2.1 Model equations based on finite deformation

As reviewed in Sect. 1, the Euler–Bernoulli beam the-
ory, Timoshenko beam theory, Reddy beam theory
and some other higher-order shear deformable beam
theories are usually adopted to study the dynamic
behaviors of beams under moving loads. However,
one drawback of these beam theories is that the effect
of the material parameter on the deformation is not
taken into account. In fact, the displacement in the
axial direction may affect the lateral displacement
through material parameters, e.g., Poisson’s ratio. In
order to overcome this limitation, amaterial parameter-
dependent kinematic frame proposed in [33] is applied
to describe the deformation of the beam as fol-
lows
⎧
⎪⎨

⎪⎩

u1(x, y, t) = u0(x, t) − yw0x (x, t),

u2(x, y, t) = w0(x, t) − yν(u0x (x, t)

− 1
2 yw0xx (x, t)),

(1)

where u0 and w0 are, respectively, the longitudinal
and transverse displacements of the beam at the neu-
tral axis y = 0. The parameter ν is the in-plane
Poisson’s ratio of the material. For isotropic mate-
rials, ν is defined as the ratio of the lateral strain
in the y direction to the axial strain in the x direc-
tion. Hereafter, the subscripts x, y and t are used to
denote the derivativeswith respect to x, y and t , respec-
tively.
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Obviously, kinematic frame (1) reduces to the Euler
beam theory when ν = 0. It is to be noted that, in kine-
matic frame (1), the effect of the longitudinal displace-
ment u0 on the transverse displacementw0 is taken into
account. Also, as the cross section of the beam does not
remain planar after deformation and does not remain
normal to the deformed neutral axis, this implies that
the shear deformation of the beam is considered in this
frame. The detailed explanation of this issue as well
as comparisons with shear deformable beam theories
is included in “Appendix A”. Furthermore, only two
unknowns u0 and w0 are involved in the frame, which
is less than alternative higher-order shear deformable
beam theories (e.g., the Timoshenko beam theory has
three unknowns). Thus, it is expected that the complex-
ity of the resulting governing equations for the model
may be reduced. The results in [33,34] also show that
(1) can produce more accurate results for the displace-
ments than some other theories, as it takes into account
the effects of material parameter ν, the shear strain and
the rotation strain.

In order to describe the nonlinear vibration problem,
theLagrange strainE is used in this paper, and it is given
by

E = 1

2
(FTF − I), (2)

where the deformation gradient tensor can be calcu-
lated as

F =
⎛

⎝
1 + u1x (x, y, t) u1y(x, y, t) 0
u2x (x, y, t) 1 + u2y(x, y, t) 0

0 0 1

⎞

⎠ , (3)

and I is the identity tensor. Thus, the in-plane strain of
E can be expressed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E11 = u1x + 1
2u

2
1x + 1

2u
2
2x .

E22 = u2y + 1
2u

2
1y + 1

2u
2
2y .

E12 = E21 = 1
2u1y + 1

2u1yu1x + 1
2u2x

+ 1
2u2yu2x .

(4)

The second-, fourth- and sixth-order moments of the
area about y-axis are used in the coming sections. These
moments are
∫

A
dA = A,

∫

A
y2dA = I,

∫

A
y4dA = J,

∫

A
y6dA = Q. (5)

In order to develop an asymptotically consistent approx-
imate model for the problem, the terms with fourth-

and sixth-order moments are neglected in the following
derivations, and a justification for it is given in Remark
1.

The work done by the moving load P is given by

W =
∫ L

0

∫

A
Pu2(x, y, t)δ(x − γ t)dAdx . (6)

Substituting (1) into (6) and integrating the resulting
equation over the cross section, it yields

W =
∫ L

0
P

(

(w0δ(x − γ t) + I

2
νw0xxδ(x − γ t))

)

dx .

(7)

The kinetic energy T of the beam can be written as

T = 1

2
ρ

∫ L

0

∫

A
(u21t + u22t )dxdA. (8)

By substituting (1) into (8) and integrating the resulting
equation over the cross section, the following expres-
sion can be obtained

T = 1

2
ρ

∫ L

0

(
Au20t + Aw2

0t

+ I (ν2u20xt + w2
0xt + νw0tw0xxt )

)
dx . (9)

As can be seen from (7) and (9), there are some
terms with coefficient ν which do not appear in most
of the existing beam theories. Such terms imply that
the effects of material parameter ν, the second-order
moment I on the work done by the moving load and
the kinetic energy of the beam are taken into account.

For two-dimensional isotropic linear materials, the
total potential energy Φ of the beam is given by

Φ =
∫ L

0

∫

A
VdAdx, (10)

where

V = 1

2
(S11E11 + S22E22 + 2S12E12), (11)

and Si j (i = 1, 2; j = 1, 2) are the nominal (First Piola-
Kirchhoff) stress tensors. As the cross-sectional bound-
ary of the beam is free of surface traction, the plane
stress assumption can be made. According to the gen-
eralized Hooke’s law, the relations between the stress
and strain are given by
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S11 = E

(1 − ν21 )

(
E11 + ν1E22

)
,

S22 = E

(1 − ν21 )

(
ν1E11 + E22

)
,

S12 = S21 = E

(1 + ν1)
E12,

(12)

where E is Young’s modulus and ν1 is Poisson’s ratio.
It should be pointed out that, in general, the range of
Poisson’s ratio is −1 < ν1 < 0.5. For some graphene
materials, Poisson’s ratio may fall within the range
of −1 < ν1 < 0. As engineering solid material
is considered in this paper, Poisson’s ratio of com-
mon stable solid materials falls within the range of
0 < ν1 < 0.5. In the calculations, Poisson’s ratio ν1
is replaced by in-plane Poisson’s ratio ν through the
relation

ν1 = ν

1 + ν
, or ν = ν1

1 − ν1
, (13)

from which one can also find that in-plane Pois-
son’s ratio falls within the range of 0 < ν <

1.
By substituting (1), (11) and (12) into (10), after

some further manipulations one can obtain the total
potential energyΦ in terms of the displacements (refer
to “Appendix B” for details).

Now, the governing equations in terms of the dis-
placements for the vibration problem can be derived
using the Hamilton principle

δ

∫ t2

t1
(T − Φ − W )dt = 0. (14)

The resulting approximate model equations are
included in “Appendix B”; they are Eqs. (45) and
(46).

By introducing some dimensionless parameters as
follows

x = Lx∗, u0 = Lu∗, w0 = Lw∗, t =
√

E

ρL2 t
∗,

p∗ = P

E
, ks = I

AL2 , γ ∗ =
√

E

ρL4 γ, (15)

model Eqs. (45) and (46) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt+a1uxx+a2wxwxx+ks(a3wxxwxxx

+a4uxxxx + a5wxwxxxx − ν2uxxtt ) = 0,

wt t + a2(wxuxx + wxxux ) + a6w2
xwxx

+ ks
(
a7w3

xx + (ν − 1)wxxtt + a8uxxwxxx

+wxx (a9uxxx + 4a7wxwxxx ) + a5wxuxxxx
+ 1

2a8uxwxxxx + (−a1 + a7w2
x )wxxxx

)

= pδ(x − γ t) + 1
2 pksνδxx (x − γ t),

(16)

where, for convenience, the superscript “∗” has been
removed, and the transformation of the Dirac delta
function δ(x∗−γ ∗t∗) = 1

l δ(x−γ t) has been used. The
geometrical parameter ks , for a beam with rectangular
cross section, can be expressed as

ks = I

AL2 = 1

12

(
d

L

)2

, (17)

with d being the width of the cross section of the
beam. Obviously, ks is relatively small for a slender
beam.

It is crucial to set up the boundary conditions for
a model with finite deformation setting. For the sim-
ply supported boundary considered here, the conditions
imposed on the nondimensionalized displacements can
be expressed as
{
u = 0, uxx = 0, at x = 0, 1,

w = 0, wxx = 0, at x = 0, 1.
(18)

The details of the derivations are shown in “Appendix
B”.

Compared with existing models in the literature,
model Eq. (16) has four new features: (a) the finite
deformation kinematics is adopted, where the effect
of the second-order moment on the kinetic energy
and total potential energy is taken into account. The
effect is reflected by the terms with coefficient ks ,
such as ksa4uxxxx , 1

2 pksδxx (x − γ t), ksa3wxxwxxx

and so on. (b) The effect of the longitudinal vibra-
tion on the transverse vibration is represented, as indi-
cated with the occurrence of the terms with coeffi-
cient ν. (c) The total potential energy is established
for the entire system as a result of the deformation
of the beam. (d) The higher-order nonlinear terms
of the longitudinal and transverse displacement are
involved, whereas it is not usually the case for some
existing models in which the nonlinear terms arise
from the elastic foundation of the beam. Thus, it is
expected that the present model can capture more fea-
tures of nonlinear vibration of beams than existing
models.
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Remark 1 In developing approximate model Eq. (16),
terms were only kept up to the second-order moment I ,
while terms associated with the fourth-order moment
J , sixth-order moment Q and some other higher-
order moments in Eqs. (9) and (43) (“Appendix B”)
were neglected. It can be shown that the contribu-
tion of J, Q and other higher-order moments are rel-
atively small as compared with that of the second-
order moment I . In fact, after nondimensionalization,
J becomes J

AL4 , which means that J
AL4 ∼ (ks)2 (c.f.

(17)). Similarly, for the sixth-order moment Q, it leads
to Q

AL6 ∼ (ks)3. As ks is relatively small for a slen-
der beam, J, Q and other higher-order moments can
be dropped to obtain an approximate model equa-
tion.

2.2 Simplified model equations

Model (16) is rather complex. In this subsection, a
decoupled and simplified version of it shall be derived
with appropriate assumptions. In [35], for transverse
vibration of axially moving beams, the stretch of the
beam was assumed to be quasi-static, and hence, the
effect of velocity on longitudinal displacement was
neglected. For the present problem, it is also reasonable
to make similar assumptions. Thus, the fast dynamic
terms in Eq. (16)1 can be neglected (utt = 0). Further-
more, as geometrical parameter ks is considered to be
small, the related terms in Eq. (16)1 can be neglected.
Then, (16)1 can be approximately written as

a2wxwxx + a1uxx = 0. (19)

With boundary conditions (18), Eq. (19) gives

u(x, t) = a2x

2a1

∫ 1

0
w2
s ds − a2

2a1

∫ x

0
w2
s ds. (20)

After substituting (20) into (16)2, this yields a single
equation for the transverse displacement as follows

wt t+a10w
2
xwxx+ks

((
a7− a2a9

a1

)
w3
xx+(ν−1)wxxtt

+ a11wxwxxwxxx − a1wxxxx + a12w
2
xwxxxx

)

+ ( a22
2a1

wxx + a2a8
4a1

kswxxxx
)
∫ 1

0
w2
xdx

= pδ(x − γ t) + 1

2
pksνδxx (x − γ t), (21)

where
⎧
⎪⎪⎨

⎪⎪⎩

a10 = a6 − 3a22
2a1

, a11 = − 3a2a5
a1

+ 4a7 − a2a8
a1

− a2a9
a1

,

a12 = − a2a5
a1

+ a7 − a2a8
4a1

.

(22)

If the transverse displacement is relatively small, the
nonlinear terms in (21) can be neglected to obtain the
following linear equation

wt t + ks
(
(ν − 1)wxxtt − a1wxxxx

)

= pδ(x − γ t) + 1

2
pksνδxx (x − γ t). (23)

If ν = 0, (21) reduces to the following higher-order
nonlinear equation

wt t − 3

2
w2
xwxx + ks

( − 2w3
xx − wxxtt

−5wxwxxwxxx + wxxxx − 1

2
w2
xwxxxx

)

− (1

2
wxx − 3

2
kswxxxx

)
∫ 1

0
w2
xdx

= pδ(x − γ t). (24)

Equation (24) can be viewed as amodel equation for the
vibration problem which considers the effect of finite
deformation based on Euler–Bernoulli beam theory.
Further, if the nonlinear terms in (24) are neglected,
it then reduces to the following equation

wt t + ks
( − wxxtt + wxxxx

) = pδ(x − γ t), (25)

which can be viewed as a linear model derived on the
basis of finite deformation and Euler–Bernoulli beam
theory.

2.3 Model equations based on Euler beam theory

In this subsection, the model equation is reformulated
usingEuler beam theory [i.e., material parameter ν = 0
in Eq. (1)] based on small deformation assumption. The
superscript E in the following formulae denotes the
corresponding quantity in Euler beam theory.

The work WE done by the moving load P , the
kinetic energy T E and the total potential energy ΦE

of the beam can be given, respectively, by

WE =
∫ L

0

∫

A
Pw0δ(x − γ t)dAdx, (26)

T E = 1

2
ρ

∫ L

0

∫

A

(
u20t + w2

0t

)
dAdx . (27)
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and

ΦE = 1

2

∫ L

0

∫

A
eExxσ

E
xxdAdx, (28)

with

eExx = u0x + 1

2
w2
0x , σ E

xx = EeExx . (29)

With a similar method as described in Sect. 2.2, the
model equation of the vibration for a Euler beam under
a moving load can be obtained as

wt t + kswxxxx − 1

2
wxx

∫ 1

0
w2
xdx = pδ(x − γ t). (30)

If the nonlinear terms in (30) are dropped, it becomes

kswxxxx + wt t = pδ(x − γ t), (31)

which is the classical linear model equation for a Euler
beam under a moving load.

It is to be noted that, as compared with Euler beam
model (31), an additional term wxxtt appears in (25).
Such a discrepancy can be interpreted as: The effect
of finite deformation is taken into account in the novel
formulation (24), while such an effect is neglected in
the Euler beam model. In other words, the Euler beam
model (30) is based on the small deformation formula-
tion.

3 Numerical solutions and discussions

In this section, the Galerkin method is used to solve
integro-differential Eqs. (21) and (30) presented in
Sect. 2, and then, some discussions for various models
will be made.

According to boundary condition (18) and the
Fourier harmonics, the asymptotic solution to w(x, t)
can be expressed as

w(x, t) =
N∑

i=1

pi (t)φi (x), (32)

where φ(x) = sin(iπx)(i = 1, 2, . . . N ) are the linear
fundamental vibration modes and pi (t) denotes the i th
generalized coordinate for the transverse motion.

As tomodel (21), after substituting (32) into (21) and
applying the Galerkin method, it can be transformed
into the nonlinear ordinary differential Eq. (33).

N∑

i=1

( ∫ 1

0
φiφ j dx

)

pitt

+ a10

N∑

i=1

N∑

l=1

N∑

k=1

( ∫ 1

0
φi xφlxφkxxφ j dx

)

pi pl pk

+ ks

[(

a7 − a2a9
a1

) N∑

i=1

N∑

k=1

N∑

l=1

×
( ∫ 1

0
φkxxφi xxφlxxφ j dx

)

pi pk pl + (ν − 1)

×
N∑

i=1

( ∫ 1

0
φi xxφ j dx

)

pitt

+ a11

N∑

i=1

N∑

l=1

N∑

k=1

( ∫ 1

0
φkxφi xxφlxxxφ j dx

)

pi pk pl

− a1

N∑

i=1

( ∫ 1

0
φi xxxxφ j dx

)

pi

+ a12

N∑

i=1

N∑

l=1

N∑

k=1

( ∫ 1

0
φkxφi xφlxxxxφ j dx

)

pi pkql

]

+
∫ 1

0

( N∑

i=1

N∑

k=1

φi xφkx pi pk

)

dx

×
[
a22
2a1

N∑

i=1

( ∫ 1

0
φi xxφ j dx

)

pi

+ a2
4a1

a8ks

N∑

i=1

( ∫ 1

0
φi xxxxφ j dx

)

pi

]

= p sin( jπγ t) − 1

2
νpks j

2π2 sin( jπγ t),

j = 1, 2, . . . N , (33)

In the derivations, the following formulae concerning
δ function are used
∫ 1

0
f (x)δ(x − x0)dx = f (x0),

∫ 1

0
f (x)δxx (x − x0)dx = fxx (x0), (34)

with f (x) being an arbitrary function.
In this paper, (33) is solved numerically using a

direct time integration by the variable step-size Runge–
Kutta method. For simplicity, N = 8 is used in the
calculations. The initial conditions are

pi (0) = 0, pit (0) = 0, i = 1, 2, . . . 8. (35)
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(a) (b) (c)

(d) (e) (f)

Fig. 1 The buckled configurations of the neutral axis of the beam in forced vibration at different time instants for p = 0.01, ν =
0.5, γ = 0.05 and ks = 0.01

The vibration amplitude of the beam is defined as the
displacement of the beam center w(0.5, t), which is
given by

w(0.5, t) = p1(t) − p3(t) + p5(t) − p7(t). (36)

It is the same case for (30), which is omitted for
brevity. It should be mentioned that the dimensionless
time τ = γ t is used in the following discussions. Thus,
if τ ∈ [0, 1], then the beam is in the forced vibration
state, while τ > 1 means that the load leaves the beam.

3.1 Analysis of the solutions to the new model

In this subsection, the nonlinear dynamic response of
the beam based on nonlinear model (21) will be ana-
lyzed.

With the numerical solutions obtained, the shape of
the neutral line of the beam in forced vibration is plotted
for some time instants in Fig. 1. As verification for the
truncation in model Eq. (43) in “Appendix B”, Fig. 2
shows some typical solutions for the vibration of the
midpoint of the beam with given parameters. It can be
seen that the longitudinal displacement ismuch smaller
than the transverse displacement. A closer examination
provides the following approximate relation

u(x, t) = O(w(x, t)2). (37)

Effect of the parameters
The effects of the material parameter ν, geometrical
parameter ks and γ on the dynamic response of (21)
are shown in Figs. 3, 4 and 5.

Figure 3 shows that in the forced vibration, the vibra-
tion amplitude decreases with the increase in the mate-
rial parameter ν, while in the free vibration such cor-
relation becomes ambiguous. The reason may be that
the amplitude of the free vibration also depends on the
amplitude as the point load leaves the beam. Also, it
can be seen from Fig. 3 that, as ν increases, the fluc-
tuation of the forced vibration becomes faster and the
frequency of the free vibration increases. It should be
pointed out that in the open literature, there are very
few results for the effect of the material parameter.

As canbe seen fromFig. 4, in the forced vibration the
geometrical parameter ks reduces the vibration ampli-
tude. However, due to different initial amplitudes, this
effect is not obvious in the free vibration state. Fur-
thermore, as ks increases, the fluctuation of the forced
vibration becomes faster and the frequency of the free
vibration increases. It seems that ks plays a similar role
as ν in the dynamic response.
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Fig. 2 Nonlinear vibration
of the midpoint of the beam
for ν = 0.5, ks = 0.005 and
γ = 0.05. The blue and red
solid lines denote the
amplitude for p = 0.02 and
p = 0.01, respectively.
(Color figure online)

(a) (b)

Fig. 3 The effect of ν on the dynamic response of the beam for
p = 0.01, γ = 0.05 and ks = 0.005. The black, red and blue
lines denote the results for ν = 0.1, 0.4 and 0.8, respectively.
Solid line: forced vibration, dotted line: free vibration. (Color
figure online)

Fig. 4 The effect of ks on the dynamic response of the beam for
p = 0.01, γ = 0.05 and ν = 0.6. The black, red and blue lines
denote the results for ks = 0.0025, 0.005 and 0.01, respectively.
Solid line: forced vibration, dotted line: free vibration. (Color
figure online)

Figure 5 shows that, as γ increases, the fluctuation
of the forced vibration becomes slow and the frequency
of the free vibration decreases. The effect of γ on the
amplitude of forced vibration is shown in Fig. 6. As can
be seen from thefigure, there is a valueγc: Ifγ < γc, the
maximum vibration amplitude (corresponding to each
γ ) gradually increases and reaches a maximum value

Fig. 5 The effect of γ on the dynamic response of the beam
for p = 0.01, ν = 0.6 and ks = 0.005. The purple, blue, black
and red lines denote the results for γ = 0.01, 0.05, 0.1 and 0.2,
respectively. Solid line: forced vibration, dotted line: free vibra-
tion. (Color figure online)

with the increase of γ . Otherwise, if γ > γc, the max-
imum vibration amplitude decreases with the increase
of γ . Thus, γ plays an important role in determining
the dynamic response. The numerical experiments (not
included) also show that, when γ increases, the ampli-
tude of the forced vibration decreases. As this con-
tinues, the amplitude becomes very small and almost
independent of the parameters ν and ks .

Critical velocity
In the literature, for beams under moving loads, criti-
cal velocity has different meanings. Many articles such
as [21–23] call the velocity which leads to the largest
amplitude for the beam as the critical velocity. Thus,
the critical value γc described above falls into this cat-
egory. It can be obtained numerically, and the effect of
the parameters ks and ν on γc is shown in Fig. 7. It is
found that γc increases with the growth of ks and ν.

Another kind of critical velocity is described in [2].
It corresponds to the velocity which leads to the res-
onance phenomenon. Assuming that the moving load
only induces a harmonic excitation with the frequency
equaling a natural frequency of the beam, then accord-
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Fig. 6 The curve of the
maximum amplitude of
forced vibration versus γ

based on model Eq. (21)
with p = 0.01. a The blue,
red and black lines denote
the results for
ks = 0.005, 0.01, and 0.02,
respectively. b The blue, red
and black lines denote the
results for ν = 0.25, 0.5 and
0.75, respectively. (Color
figure online) (a) (b)

Fig. 7 The curve of the
critical velocity γc versus
the parameters based on
Eq. (21). a The black, red
and blue lines denote the
results for ks = 0.02, 0.01
and 0.005, respectively. b
The black, red and blue
lines denote the results for
ν = 0.9, 0.5 and 0.1,
respectively. (Color figure
online)

(a) (b)

Fig. 8 The critical velocity
γcr based on Eq. (38). a The
black, blue and red lines
denote the results for
ks = 0.02, 0.01 and 0.005,
respectively. b The black,
blue and red lines denote the
results for ν = 0.75, 0.5 and
0.25, respectively. (Color
figure online)

(a) (b)

ing to Eq. (33), the critical velocity in model (21) can
be obtained as

γcr = Ω1

π
, (38)

where Ω1 is the first natural frequency of the beam.
According to Eq. (38), the effect of ks and ν on γcr
is shown in Fig. 8. The results indicate that γcr also
increases with the growth of ks and ν. Furthermore, it
can be found from Figs. 7) and 8 that γc is less than γcr .
It should be pointed out that γcr obtained in (38) only
induces a single-mode resonance, whereas the critical
velocity may induce a combination of resonances in
general.

3.2 Comparison between the nonlinear and linear
models

To reveal the nonlinear effect, the solution to nonlinear
model (21) is compared with that of the corresponding
linear model (23). These results are shown in Figs. 9,
10 and 11.

Figure (9) shows that, in the forced vibration, the
vibration amplitude of linear model (23) is gener-
ally larger than that of the nonlinear model, and the
discrepancy becomes smaller as p decreases. When
p = 0.001, they are almost identical as shown in
Fig. 9d. Furthermore, the decrease in p reduces not
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Fig. 9 The vibration
amplitude of the beam for
different values of the point
load, with
ν = 0.5, ks = 0.005 and
γ = 0.05 (fixed). Solid line:
nonlinear model (21), dotted
line: linear model (23)

(a) (b)

(c) (d)

Fig. 10 The vibration
amplitude of the beam in
both forced and free
vibration states, with
p = 0.01, γ = 0.05 and
ks = 0.005 (fixed). Blue
line: nonlinear model (21),
black line: linear model
(23). (Color figure online)

(a) (b)

Fig. 11 a The effect of γ

on the maximum vibration
amplitude of the beam; b
the effect of the material
parameter ν on the critical
velocity γc. Blue line:
nonlinear model (21), red
line: linear model (23).
(Color figure online)

(a) (b)

only the transverse displacement w(x, t) but also the
fluctuations of the two models. Additionally, some fur-
ther numerical experiments show that, if the geometri-
cal parameter ks is large enough, the dynamic response
of the nonlinear model is similar to that of the linear
model. In the free vibration state, Fig. 10 shows that

the relation between the vibration amplitudes of the two
models is ambiguous, as they are both dependent on the
initial values. Generally speaking, the nonlinear effect
in (21) reduces the vibration amplitude and speeds up
the fluctuation in the forced vibration. When the trans-
verse displacement w(x, t) is small, linear model (23)
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Fig. 12 The vibration
amplitude of the beam with
ks = 0.005 and γ = 0.02
(fixed). Solid line: model
(24), dotted line: model (30)

(a) (b)

Fig. 13 For
p = 0.02, ks = 0.005 and
γ = 0.05, a the free
vibration of the Euler beam
model (30), b the forced and
free vibrations of models
(24) and (30). Blue line:
model (24), black line:
model (30). (Color figure
online)

(a) (b)

is capable of capturing themain features of the dynamic
response.

Figure 11a shows that the difference between the
maximum vibration amplitudes (corresponding to a
given γ ) of the nonlinear and linear models firstly
increases with the growth of γ . Subsequently, after
reaching a maximum it decreases with the increase of
γ . Figure 11b shows that the critical velocity γc of lin-
ear model (23) is less than that of nonlinear model (21).
Moreover, it can be found that if the material param-
eter ν is small, then γc for the two models is almost
independent of ν.

3.3 Comparison with the Euler beam model: the
effect of finite deformation

To investigate the effect of finite deformation on the
vibration of the beam, the dynamic response of finite
deformation-based model (24) and small deformation-
based Euler beam model (30) are compared. It is to
be noted that their corresponding linear models are
Eqs. (25) and (31), respectively.

Figure 12 shows that, even for small values of p,
the vibration amplitude of (24) is smaller than that of
(30) in the forced vibration state. It is expected that the

difference becomes largerwith the growthof the load p.
According toFig. 13a, the free vibration of themidpoint
of the Euler beam (30) is not a harmonic vibration,
while Fig. 13b shows that the free vibration of (24) is a
harmonic one. The above-mentioned differences result
from the different calculations for the strain in the two
models. It also implies that finite deformation does play
an important role in determining the dynamic response.

In order to compare the response of the beam when
the point load moves at or near the critical velocity γcr
[c.f. (38)], it is necessary to firstly calculate and com-
pare the natural frequency of the novel formulation (21)
with that of Euler beam model (31). The natural fre-
quency of these twomodels can be easily determined as

ω = k2π2(1 + ν)
√
ks

√(
1 + k2π2(1 − ν)ks

)
(1 + 2ν)

ωE = k2π2
√
ks, k = 1, 2, . . . . (39)

The effects of the material parameter ν and geometri-
cal parameter ks on the natural frequency are plotted
in Fig. 14. In Fig. 14a, the results show that the natu-
ral frequency ω increases with the increase of ν, and it
exceeds ωE when ν is large enough. Furthermore, the
difference between ω and ωE becomes larger with the
growth of wave number k. Similar conclusions can be
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Fig. 14 The effect of the
parameters on the natural
frequency of the beam. a
The effect of ν, with
ks = 0.008; b the effect of
ks , with ν = 0.5. Solid line:
nonlinear model (21), dotted
line: Euler beam model (31).
The red, blue and black
lines in each case denote the
results for wave numbers
k = 1, 2 and 3, respectively.
(Color figure online) (a) (b)

Fig. 15 The effect of ks on the critical velocity γcr with p =
0.01. Blue line: model (25), black line: model (31). (Color figure
online)

drawn for the effect of ks (Fig. 14b). The natural fre-
quency formodel (24) or (25) can be obtained by setting
ν = 0 in (39)1. Based on (38) and (39), the curves of
γcr for the corresponding linear models (25) and (31)
are plotted in Fig. 15. It shows that, for small values of
ks , the critical velocity γcr of (25) is almost identical
to that of (31). However, the difference becomes larger
with the growth of ks .

The following comparisons between the models are
made when the point load moves at or near the critical
velocity γcr , with p = 0.01 fixed.

Letting ks = 0.001, the values of γcr for (24) and
(30) can be obtained as 0.0988592 and 0.0993459,
which are very similar. The corresponding curves of
the forced vibration with γ = 0.0988592 for (24),
(30) and their linear counterparts (25), (31) are plot-
ted in Fig. 16a. It shows that, as the point load moves at
the critical velocity, the vibration amplitude of (24) is
smaller than (30). Interestingly, the dynamic response
of (25) and (31) are almost identical.

Letting ks = 0.015, the value of γcr for (24) and
(30) is then 0.359101 and 0.384765, respectively. Fig-
ure 16b shows the dynamic response of models (24),
(25), (30) and (31) when γcr = 0.359101. It can be

seen that, for a larger value of ks , the dynamic responses
of the small deformation-based models (30) and (31)
become closer to the finite deformation-based models
(24) and (25). Figure 16c shows the dynamic responses
of (24) and (25) with γ = 0.359101, and also the
dynamic response of (30) and (31) with γ = 0.384765.
It is found that the four curves are almost the same. In
fact, if ks is appropriately large, the dynamic response
of the former models with γ = γcr is identical to that
of the latter models.

Letting ks = 0.002 and ks = 0.018 in turn, the criti-
cal velocity γcr is 0.13913 and 0.388398, respectively.
Figure 17 shows the response of the beam when the
point load moves at a speed γ which is close to γcr . It
is found that, similarly to the case where γ = γcr , the
vibration amplitude of (24) is less than that of (30), and
this discrepancy becomes smaller as ks increases.

To summarize, the finite deformation-based model
predicts a smaller vibration amplitude than the small
deformation-based model regardless of the velocity of
the moving load, and this difference becomes smaller
as ks gets larger.

4 Conclusions

In this paper, with a recently developed kinematic
frame, the vibration of a beam under a moving load
is investigated in the finite deformation setting. The
effects of both the material and geometrical parameters
on the dynamic response are examined thoroughly, and
comparisons are also made with the Euler beammodel.
The following conclusions can be drawn:

(1) Both the in-plane Poisson’s ratio and geometri-
cal parameter reduce the amplitude of the forced
vibration, increase the speed of the fluctuation and
increase the critical velocity (both γc and γcr ).
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Fig. 16 Dynamic responses
of the beam with γ = γcr .
Blue solid line: (24), blue
dotted line: (24), red solid
line: (30), red dotted line:
(31). (Color figure online)

(a) (b)

(c)

Fig. 17 Dynamic responses
of (24) (in solid line) and
(30) (in dotted line) when γ

takes values near γcr . a The
blue, red and black lines
denote the results for
γ = 0.13913, 0.16913 and
0.10913, respectively; b the
blue, red and black lines
denote the results for
γ = 0.388398, 0.428398
and 0.34839, respectively.
(Color figure online)

(a) (b)

(2) If the vibration amplitude is relatively small,
higher-order linearmodel (23)may be used instead
of nonlinear model (21) while preserving the main
features.

(3) As compared with small deformation formula-
tions, the effect of finite deformation herein is to
reduce the vibration amplitude, especially for slen-
der beams.

In summary, the present model can capture more
features of the point load-induced vibration problem,
especially for slender beams undergo large deforma-
tions. In future work, it can be applied to study non-
linear vibration of beams under moving loads or mass
with nonlinear foundations.
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Appendix A

Some details about kinematic frame (1) is presented in
this “Appendix”.Thenotations have the samemeanings
as they are in the main body.

Assuming that u1, u2 are sufficiently smooth in y,
as y is a small variable for a beam structure, the Taylor
series expansions in the neighborhood of y = 0 read

123



Dynamic response of beams under moving loads 181

⎧
⎪⎨

⎪⎩

u1(x, y, t) = u0(x, t) + yu10(x, t) + · · · ,

u2(x, y, t) = w0(x, t) + yw10(x, t)

+y2w20(x, t) + · · · .

(40)

Since the transverse displacement is a key factor in
the deformation, u2 is expanded up to the second order
of y in the derivation. Substituting Eq. (40) into the
field equation of the beam and by the vanishing of each
power of y, the relations among u10, w10 and w20 can
be obtained, after which (40) can be rewritten as (1). It
should be pointed out that such a procedure is similar
to the method presented in [36–38], and the parameter
ν can also determined as [33].

In Eq. (1)2, the second term u0x implies that the
effect of the axial strain on the transverse displacement
is taken into account, and the third termw0xx (curvature
of the beam due to shear) means that shear deformation
is taken into account [39,40].

After deformation, the slope of the tangent line of
the cross section is given by

k = −1 − νu0x + yνw0xx

wx
, (41)

which means that the cross section in the deformed
beam does not remain planar due to shear deformation.
If the shear deformation is neglected, the slope reduces
to

k = −1 − νu0x
wx

, (42)

which implies that the cross section of the beam
remains planar. In Timoshenko beam and Reddy beam
theories, the cross section of the beam remains pla-
nar. However, in the present formulation (1) the cross-
sectional warps after deformation. Furthermore, as
comparedwithTimoshenkobeamandReddybeam the-
ories, the present formulation (1) can well capture the
homogenous deformation of the beam under axial load.

Appendix B

This “Appendix” includes some details of the deriva-
tion of the model equations as well as the boundary
conditions for the vibration problem.

Substituting (7), (9) and (10) into (14), after integra-
tion by parts and some manipulations, the correspond-
ing equation which keeps terms up to the second-order
moment I can be obtained. The resulting equation is
intractable, and its lengthy expressions are omitted for

brevity. To further approximate this equation and get a
model consistently in the order of the displacements, it
is important to note that u(x, t) is much smaller than
w(x, t), and to bemoreprecise,u(x, t) ∼ O(w(x, t)2).
This can be confirmed from the numerical solutions in
Fig. 2. Thus, to be consistent, the transverse and longi-
tudinal displacements in the aforementioned equation
are kept up to the fourth order and second order, respec-
tively. To summarize, for a slender beam, the variational
equation with accuracy to the fourth order of the trans-
verse displacement can be achieved, which is shown in
(43).
∫ L

0

∫ t2

t1

(

Aρu0t t + AE
(
a1u0xx + a2w0xw0xx

− Iρν2u0xxtt
)

+ E I
(
a3w0xxw0xxx + a4u0xxxx

+ a5w0xw0xxxx
)
)

δu0dxdt

+
∫ L

0

∫ t2

t1

(

APδ(x − tγ ) + 1

2
I Pνδxx (x − γ t)

+ Aρw0t t

+ AE
(
a2w0xu0xx + a2u0xw0xx + a6w

2
0xw0xx

)

+ Iρ(ν − 1)w0xxtt + E I
(
a7w

3
0xx

+ a8u0xxw0xxx + a9u0xxxw0xx

+ 4a7w0xw0xxw0xxx + a5w0xu0xxxx

+ 1

2
a8u0xw0xxxx

− a1w0xxxx + a7w
2
0xw0xxxx

)
)

δw0dxdt

+
∫ L

0

(

− Aρ
(
u20tδu0|t2t1 + w2

0tδw0|t2t1
)

− Iρν2u0t xδu0x |t2t1
− Iρwt xδw0x |t2t1 − 1

2
Iρνw0xxtδw0|t2t1

− 1

2
Iρνw0tδw0xx |t2t1

)

dx

+
∫ t2

t1

(

AE
(
b1w0xu0x + 4b2w

3
0x

)

+ Iρ
(
wt t x − 1

2
νw0xxt − 1

2
νw0t t x

)

+ E I
(
νb1w0xxu0xx − νb1

(
w0xxu0xx + w0xu0xxx

)

− 2b3w0xxx − 2b5w0xxxw
2
0x − 2b5w

2
0xxw0x

+ 6νb2w
2
0xw0xxx

+ 6νb2w
2
0xxw0x − 2b6(w0xxxu0x + w0xxu0xx )
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+ 1

2
νb1u0xw0xxx

+ 1

2
(u0xxxw0x + 2u0xxw0xx + u0xw0xxx )

)

− 1

2
I Pνδx (x − γ t)

)

δw0|L0 dt

+
∫ t1

t0

(

AE
(
b1w

2
0x + b3u0x

) + Iρν2u0t t x

− E I
(
2b4u0xxx + νb1(w

2
0xx + w0xw0xxx )

− b6w
2
0xx − 1

2
νb1w0xw0xxx

)
)

δu0|L0 dt

+
∫ t2

t1

(

E I
(
νb1w0xu0xx + 2b3w0xx

− 3b2νw2
0xw0xx + 2b5w

2
0xw0xx

)

+ E I
(
2b6w0xxu0x

− 1

2
νb1(u0xxw0x + u0xw0xx )

)
)

δw0x |L0 dt

+
∫ t2

t1

(

E I (2b4ν
2u0xx + νb1w0xw0xx )

)

δu0x |L0 dt

+
∫ t2

t1

(

E Iν

(

b2w
3
0x

+ 1

2
b1u0xw0x

))

δw0xx |L0 dt = 0. (43)

The constants b1, · · · , b6 and ai , i = 1, · · · , 9 are
given by

b1 = 1

2
(1 − ν)(ν + 1), b2 = ν + 1

4
,

b3 = ν4 + 2ν + 1

4ν + 2
, b4 = ν + 1

4(2ν + 1)
,

b5 = (ν + 1)(ν(ν2 + ν + 2) + 1)

4ν + 2
,

b6 = −3(ν + 1)(ν(ν3 + ν − 1) − 1)

4ν + 2
,

a1 = −ν4 + 2ν + 1

2ν + 1
, a2 = ν2 − 1,

a3 = 12ν5 + 2ν4 + 7ν3 + 10ν2 − 19ν − 12

8ν + 4

a4 = ν2(ν + 1)

4ν + 2
, a7 = 2ν4 − 2ν3 − 3ν2 + 3ν + 2

4ν + 2

a8 = −6ν5 − 4ν4 − 5ν3 − 2ν2 + 11ν + 6

2ν + 1
,

a6 = −3(ν + 1)

a9 = −12ν5 − 10ν4 − 11ν3 − 2ν2 + 23ν + 12

8ν + 4
.

(44)

By the Hamilton principle, Eq. (43) leads to the two
following coupled model equations for the problem

Aρu0t t + AE
(
a1u0xx + a2w0xw0xx − Iρν2u0xxtt

)

+ E I
(
a2w0xxw0xxx + a3u0xxxx

+ a4w0xw0xxxx
) = 0, (45)

APδ(x − tγ ) + I Pνδxx (x − γ t) + Aρw0t t

+ AE
(
w0xu0xx + a1u0xw0xx + a5w

2
0xw0xx

)

+ Iρ(ν − 1)w0xxtt

+ E I
(
a6w

2
0xx + a7u0xxw0xxx + a8u0xxxw0xx

+ 4a6w0xw0xxw0xxx + a4w0xu0xxxx

+1

2
a7u0xw0xxxx

− a1w0xxxx + a6w
2
0xw0xxxx

) = 0. (46)

As can be found from Eq. (43), there are five natural
boundary terms
(
AE

(
b1w0xu0x + 4b2w

3
0x

)

+ Iρ
(
w0t t x − 1

2
νw0xxt − 1

2
νw0t t x

)

+ E I
(
νb1w0xxu0xx − νb1

(
w0xxu0xx + w0xu0xxx

)

− 2b3w0xxx

− 2b5w0xxxw
2
0x − 2b5w

2
0xxw0x + 6νb2w

2
0xw0xxx

+ 6νb2w
2
0xxw0x

− 2b6(w0xxxu0x + w0xxu0xx ) + 1

2
νb1u0xw0xxx

+ 1

2
(u0xxxw0x

+ 2u0xxw0xx + u0xw0xxx )
)

− 1

2
I Pνδx (x − γ t)

)
δw0|L0 = 0, (47)

(
AE

(
b1w

2
0x + b3u0x

) + Iρν2u0t t x − E I
(
2b4u0xxx

+ νb1(w
2
0xx + w0xw0xxx ) − b6w

2
0xx

− 1

2
νb1w0xw0xxx

))
δu0|L0 = 0, (48)

(
E I

(1

2
νb1w0xu0xx + 2b3w0xx

+ (2b5 − 3b2ν)w2
0xw0xx

+ (2b6 − νb1)u0xw0xx
))

δw0x |L0 = 0. (49)
(
E I

(
2b4ν

2u0xx + νb1w0xw0xx
))

δu0x |L0 = 0. (50)
(
E Iν

(
b2w

3
0x + 1

2
b1u0xw0x

))
δw0xx |L0 = 0. (51)
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The above five natural boundary terms correspond to
the five terms u0, w0, w0x , u0x andw0xx as involved in
(1), which is similar to the case of the vibration prob-
lem for Reddy beam in [41]. If the material parameter
ν = 0, the last two boundary conditions (50) and (51)
vanish. Further, if the effect of finite deformation is
neglected, the remaining boundary conditions (47),(48)
and (49) would be exactly the ones for Euler–Bernoulli
beam.

In some of the beam theories, the boundary condi-
tions can be expressed in terms of the stress resultants,
such as N = ∫

A Sxxd A, M = ∫

A ySxy and so on.How-
ever, for the model considered in the finite deformation
setting in this paper, the stress resultants involved in the
boundary conditions such as

∫

A Syyd A,
∫

A ySyy, . . . .
are lengthy expressions of the displacements, and the
physical meaning is not sound. So, the boundary con-
ditions for the model shall be expressed in terms of the
displacements u(x, t) and w(x, t).

The simply supported boundary condition assumes
that the two ends of the beam are in-plane immovable.
Thus, combining Eqs. (47) and (48), it leads to

w0(x, t) = 0, u0(x, t) = 0, at x = 0, L . (52)

Furthermore, the bendingmoment M(x, t) of the beam
with simply supported boundaries should be zero at the
boundary, which then leads to

M(x, t) =
∫

A
y ∗ Sxxd A = 0. at x = 0, L . (53)

After some manipulations, (53) can be rewritten as

M(x, t) = E I (1 + ν)2

(1 + 2ν)

( − νw0xu0xx + (ν2 − 1 − ν

1 + ν

−(
1 + ν3

1 + ν

)
u0x

)
w0xx

) = 0, at x = 0, L . (54)

Equation (54) implies that the cross section of the beam
at the boundary can be freely rotated. This yields

∂u1(x, y, t)

∂y
�= 0, at x = 0, L . (55)

Based on Eqs. (1), (55) yields the following condition

w0x (x, t) �= 0, at x = 0, L . (56)

With (56), the boundary condition in (49) can be
rewritten as
(
E I

(1

2
νb1w0xu0xx + 2b3w0xx + (2b5 − 3b2ν)w2

0xw0xx

+(2b6 − νb1)u0xw0xx
)) = 0, at x = 0, L . (57)

By eliminating the term w0xu0xx from (54) and (57),
it gives
(
a13u0x + a14 + a15w

2
0x

)
w0xx = 0, at x = 0, L ,

(58)

where

a13 = (ν − 1)(11 + ν(31 + ν(28 + ν(10ν + 19)))),

a14 = −ν(6 + ν(2 + ν(2ν + 3))) − 3,

a15 = (−ν − 1)(4 + ν(4ν2 − 2ν + 5)). (59)

In view of Eqs. (51) and (58), w0(x, t) should satisfy
the following conditions

w0xx (x, t) = 0, at x = 0, L . (60)

From (57), another boundary condition for u0(x, t) is
given by

u0xx (x, t) = 0, at x = 0, L . (61)

To summarize, the boundary conditions for a simply
supported beam can be given by

w0(x, t) = 0, u0(x, t) = 0, at x = 0, L .

w0xx (x, t) = 0, u0xx (x, t) = 0, at x = 0, L .

(62)
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