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Abstract This article concentrates on the event-
triggered bumpless transfer control problem for swit-
ched linear systems. The goal is to reduce the con-
trol bumps induced by switchings and triggering, and
to ensure the stability of the system. First, a novel
descriptionof thebumpless transfer performance is pre-
sented, quantifying the suppression level on the control
bumps in both relative and absolute viewpoints. Then,
an improved switching mechanism, an event-triggered
scheme and a collection of event-driven controllers are
jointly designed. Further, under the designed switching
logic, event-triggered rule and controllers, a criterion is
established to attain the goal. Besides, Zeno behavior
is excluded. Finally, an application on a switched RLC
circuit is offered, verifying the efficiency of the devel-
oped event-triggered bumpless transfer control strat-
egy.
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1 Introduction

A switched system (SS) consists of a special rule called
switching rule and a group of conventional systems
called subsystems [1,2]. In the investigation of SSs,
switchings play a dual role [3–6]. One is that switching
logic design serves as an effective control approach,
which adds the freedom of control design. For exam-
ple, one can pursue a certain steady-state property,
like the input-to-state stability, of a SS by design of
a switching logic, even though the property is not
shared by subsystems [7,8]. The other is that unsuit-
able switching behaviors usually lead to unfavorable
transient responses as soon as a switching happens.
The mainly concerned undesired transient behaviors
produced by switchings are large and abrupt jumps
in the control signal called control bumps [9]. What
needs to be noticed is that almost all existing efforts on
SSs are made on the obtainment of steady-state proper-
ties by means of switchings rather than the attenuation
of unexpected control bumps generated by switchings,
whereas undesirable control bumps may result in per-
formance degradation and even instability of SSs [10].
Thus, it is indispensable to attenuate or alleviate those
unexpected control bumps.
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Bumpless transfer (BT) is known as an effective
strategy to restrain the unexpected control bumps
caused by switchings [11]. The attenuation level on
the control bumps is described by the BT performance
[12]. The original BT control schemes focus on the
amendments of the controllers which are designed in
prior. The modifications include the initial state value
of an off-line dynamic feedback controller [9,11,13]
or the structure of an off-line controller which may be
dynamic or static [12,14–16]. Notice that a premise of
the modification approaches is the partially or entirely
pre-known information on switching signals. This ren-
ders the amendment schemes unapplicable to general
SSs subjected to completely unknown switching logics
in advance. Fortunately, an idea of limiting the ampli-
tude of the control signalwas introduced by [17], where
the controllers and switching logic are simultaneously
designed to rule out the control bumps in thewhole state
space. References [18,19] extended the result of [17]
by restraining the magnitude of the control signal dur-
ing the operation time interval of subsystems. In [17–
19], although the benefit of switching scheme design is
employed, the constraint on the amplitude variation of
the control signal is relative to the amplitude of the sys-
tem state. Additionally, the constraint is imposed on the
active time interval of subsystems rather than only at
the switching instants. This requires toomany since the
actual task of BT control is to reduce great fluctuations
in the control signal only at switching instants. Thus, a
question arises:Whether can we determine a switching
mechanism and a collection of controllers to limit the
control bumps only at switching instants or not?

Recently, network control systems, establishing the
relationship among control components via network-
based data transmission, have gained growing attention
[20–23]. Usually, the data transmission time between
different components in a network control system is
decided by a time-triggered mechanism through which
the signals in the sensor and controller are updated
in a fixed time period [24]. Usually, a time-triggered
strategy has superiority in simple design approaches
and easy implementation procedures [25]. However,
unnecessary waste in the communication resources
and serious deterioration of system performance are
often brought by a time-triggered scheme. In order
to tackle this problem, event-triggered (ET) control
strategies were provided by [26,27], in which the data
are transmitted only when an ET criterion is satisfied.
Therefore, a reduction in the communication resources

is achieved. Under the ET mechanisms, the event-
driven controllers were designed to obtain stability
[28], robustness [29], synchronization [30], fast con-
vergence [31] and so on of networked control systems.

Note that big oscillations in the control signal may
also arise when an event is triggered. Such sudden chat-
tering in the control signal can also be treated as control
bumps and are undesirable transient behaviors needed
to be suppressed [32]. For a non-SS, if the triggering
frequency is big enough, the control bumps can be eas-
ily cut down. However, excessively frequent triggering
violates the original intention of ET control. There-
fore, a proper ET logic with less triggering frequen-
cies is welcome. For a SS, the adaption of the ET con-
trol makes the attenuation of control bumps more dif-
ficult. This mainly lies in the lack of effective tools.
When an ET rule is implemented on a SS, the SS may
encounter larger control bumps at switching instants.
This is because not only the controller gains may have
great variation once a switching happens, but also the
state value may have a big delay whenever a switching
occurs. However, different from the traditional delay in
the control signal, we do not know how long the asyn-
chronous phenomenon in the control signal lasts. This
makes the usual asynchronous switching techniques
[33–35] frequently utilized to address the delay in the
control signal unfeasible to deal with the control bumps
generated by switchings and triggering.

Moreover, for a SS, when each subsystem does not
share the BT performance, like [17–19], one can design
a state-dependent switching law for the SS to achieve
the BT performance. However, for a SS having an ET
rule, if we attend to design a state-dependent switching
logic to restrain the control bumps induced by trig-
gering, the avoidance of Zeno phenomenon generated
by the triggered mechanism is also challenging. This
is due to the interaction between the switchings and
triggering. In the existing researches on SSs with ET
rules, the elimination of Zeno behavior is mainly real-
ized in the framework of dwell-time-dependent switch-
ing rules [25,27], or sampling-based state-dependent
switching law [36].However, a state-dependent switch-
ing strategy usually does not share the time feature of
a dwell-time dependent switching logic. Thus, another
question is: Whether a state-dependent switching rule,
an ET mechanism and a family of controllers can be
jointly designed to restrain the control bumps caused
by switchings and triggering while preventing Zeno
behavior produced by switchings and triggering or not?
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In addition, there is another difficulty that needs to be
faced, even if the above question has a positive answer.
The difficulty lies in the conflict in the requirements on
the BT performance and the studied steady-state prop-
erty. Usually, it is relatively easy to design a control
scheme composed of a switching rule, an ET logic and
a series of controllers to purse only a certain steady-
state property. However, the designed control strategy
may not be useful to suppress the control bumps and to
avoid Zeno behavior. If a control approach is designed
to achieve only the BT performance, the concerned
steady-state property may be lost. In order to handle
this conflict, we must establish a control method to
ensure both the focused steady-state property and the
less control bumps, while avoiding Zeno behavior.

For the study of practical control problems based on
switched models, switched circuits are preferable test-
beds [37,38].What is verified by [39] is that a switched
RLC circuit can usually conduct low-frequency signal
processing in an integrated circuit. Lots of works on
switched RLC circuits have been done, including the
fault tolerance control [40], the output synchroniza-
tion [41], the adaptive tracking [42] and so on. Note
that almost all attention is paid to realizing steady-state
properties instead of attenuating the unexpected con-
trol bumps frequently induced by switchings. However,
those undesired control bumps usually cause perfor-
mance degradation and, in the worse situation, seri-
ous accidents. Further, when communication resources
saving from the sensor to the controller of a switched
RLC circuit is pursued, an ET scheme is a pretty choice
[43], whereas an unsuitably arranged ET rule may also
induce unexpected control bumps at triggering instants,
which may result in performance degradation and even
serious accidents too. Therefore, it is essential and
urgent to suppress those unwanted control bumps at
not only switching instants but also triggering instants
of a switched RLC circuit. Unfortunately, no results
have been reported on this vital topic.

In this paper, we investigate the ETBT control prob-
lem for switched linear systems. The BT performance
is described in a new way. By joint-design of an ET
mechanism, a switching rule and a series of controllers,
the control bumps brought by switchings as well as
triggering are restrained, while the stability is ensured.
Specifically, the features of this study are fourfold.

(i) A new definition of the BT performance for
switched linear systems is proposed. The restrain

level on control bumps caused by switchings and
triggering is quantified in both relative and abso-
lute ways. The magnitude jumps in the control
signal are limited only at switching and trigger-
ing instants. Thesemake the conceptmore general
than that in [10,13,17–19].

(ii) By co-design of an ET scheme, an improved
switching logic and a set of event-driven con-
trollers, we solve the ETBT control issue of a
switched linear system, even if no solution to the
problem of subsystems exists. Unlike the existing
ET rules of SSs [25], the ET strategy is mode-
dependent and can rule out the control bumps
resulting from triggering. The switching mech-
anism improves the traditional state-dependent
switching logic subjected to a certain dwell-time
limitation [8], allowing the Lyapunov functions to
be increasing over the minimal dwell-time inter-
vals of subsystems.

(iii) With the presented control strategy, we provide
a sufficient condition by which the BT perfor-
mance is satisfied, the stability is achieved, and
no Zeno behavior occurs. In this study, Zeno
behavior possibly caused by triggering is avoided
by co-design of the ET rule and switching law,
which is different from [25] and [36] in which the
sampling mechanisms were employed to exclude
Zeno behavior.

(iv) The established ETBT control scheme is applied
to a switched RLC circuit to text the effectiveness
of the established control scheme.

Structure. This study includes five Sections. In
Sect. 2, the issue of ETBT control for the switched
linear systems is formulated. Section 3 provides a solu-
tion to the ETBT control problem by design of an ET
rule, a switching mechanism and a set of event-driven
controllers. An example is offered in Sect. 4 to ver-
ify the effectiveness of the developed control scheme.
Section 5 gives a conclusion of this study.

Notation. We denote ||υ|| as Euclidean norm of the
vector υ, Rn as the n−dimensional real space, Q0

as the set Q0 = {0, 1, . . . , q0 − 1} with q0 being a
positive integer, S = {1, 2, . . . , s} as the set of pos-
itive integers, N as the set of non-negative integers.
λmin(Π)andλmax(Π) indicate the minimal and max-
imal eigenvalues, respectively, of the square matrix
Π . For a vector ψ(t) ∈ Rn , we define ψ(t+k ) =
lim
t→t+k

ψ(t), ψ(t−k ) = lim
t→t−k

ψ(t).
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2 Problem formulation

Consider a system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (1)

where x(t) ∈ Rnx stands for the state, u(t) ∈ Rnu and
σ(t) represent the control signal and switching law,
respectively. Usually, the sequence

{x0; (i0, t0), (i1, t1), . . . , (in, tn), . . . |in ∈ S, n ∈ N }
is employed to express the switching signal σ(t), where
x0, t0, tn and s stand for the initial state, initial time,
nth switching instant and the number of subsystems,
respectively. Also, the in th subsystem is in operation
whenever σ(t) = in .

We define {t im}∞m=1 as the sequence of ET instants for
the i th subsystem with t im+1 > t im . We call the interval
[t im, t im+1) the ET interval. With the ET sequence, for
the i th subsystem, we consider the controller described
by

u(t) = Ki x(t
i
m), t ∈ [t im, t im+1), (2)

where x(t im) denotes the last transmitted state value
held by a zero-order holder till the next ET instant t im+1,
Ki indicates the controller gain to be selected.

Let ei (t) = Ki x(t) − Ki x(t im), t ∈ [t im, t im+1) be
the ET error of the i th subsystem. Replacing the control
signal u(t) in (1) by its specific form in (2), we infer
the closed-loop system

ẋ(t) = Eσ(t)x(t) − Bσ(t)eσ(t)(t), t ∈ [tσ(t)
m , tσ(t)

m+1),

(3)

where Ei = Ai + Bi Ki , i ∈ S.
We now describe the BT performance of the sys-

tem (3) at the triggering instant t im .

Definition 1 System (3) has the BT performance with
respect to (α, β) if for any instant t im ,

||u(t i
+
m ) − u(t i

−
m )|| ≤ α||x(t im)|| (or α‖x(t im−1)‖) + β (4)

is satisfied, where α ≥ 0, β > 0 are pre-specified
scalars called the BT performance level.

Remark 1 The relation (4) characterizes the limitation
on the amplitude chattering of the control signal u(t)
at triggering instants. Compared with [18,19], we do
not introduce an additional reference signal. Again, the
magnitude variations of the control signal u(t) are not
limited during the whole active time intervals of sub-
systems but at only triggering instants. ThismakesDef-
inition 1 more suitable for the original goal of the BT
control.

Remark 2 The terms α||x(t im)|| and β are the rela-
tive measure and absolute measure, respectively, for
the control bump ||u(t i

+
m ) − u(t i

−
m )||. First, the term

α||x(t im)|| is relevant to the control bump ||u(t i
+
m ) −

u(t i
−
m )|| since the control signal u(t) is expressed by

u(t) = Kσ(t)x(t
σ(t)
m ). Therefore, the term α||x(t im)||

quantifies the BT performance in a relative way. Sec-
ond, the term β is irrelevant to the control bump
||u(t i

+
m ) − u(t i

−
m )||. Therefore, the term β quantifies

the BT performance in an absolute way.

Traditionally, the ET instant t im+1 is decided by the
ET scheme

t im+1 = inf
{
t > t im

∣∣ ||x(t) − x(t im)|| > α̃||x(t)||
}

(5)

with α̃ being a constant (see [28]). Under the ET strat-
egy (5), the communication resource from the system
(1) to the original controller u(t) = Ki x(t) is saved
to a great extent. However, such an ET logic usually
cannot ensure less control bumps at triggering instants
t im , which may result in bad performance of the system
(3). To cope with this drawback, we propose a new ET
mechanism.

The ET instant t im+1 of the i th subsystem is deter-
mined by

t im+1 =
{
tn, if a switching happens,
inf

{
t > t im

∣∣ gi (t) > 0
}
, otherwise,

(6)

where gi (t) = ||ei (t)|| − α0||x(t)|| − β0e−λ0t , α0 ≥
0, β0 = ν||x(t0)||, ν > 0, λ0 > 0 are pre-specified
constants. Here, the triggering condition

t im+1 = inf
{
t > t im

∣∣ gi (t) > 0
}

(7)

is mode-dependent.
Notice that in the ET rule (6), ||ei (t i−m )|| is the con-

trol bump at the triggering instant t im . For the ET rule
(6) without switching considered, the control bump

||ei (t i−m )|| does not exceed α0||x(t im−1)||+β0e
−λ0t im−1 .

Since β0e
−λ0t im−1 ≤ β0, if α ≥ α0 ≥ 0 and β ≥ β0 >

0, then the control bump ||ei (t i−m )|| is suppressed. The
terms α0||x(t im−1)|| and β0e

−λ0t im−1 quantify the con-

trol bump ||ei (t i−m )|| in an absolute way and a relative
way, respectively.

Our control task is to design the event-driven con-
trol signal (2) and a switching rule σ(t) to enforce the
stability and the BT performance (4) of the system (3)
under the ET mechanism (6). If there exists a control
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scheme to make the system (3) globally asymptotically
stable and satisfy the BT performance (4), then we call
the ETBT control problem of the system (3) is solvable.

3 Main result

This section focuses on the solution to the ETBT con-
trol problem of the system (3). Through design of the
triggered strategy (6), switching logic σ(t) and con-
trollers (2), the control bumps are suppressed, and the
stability is realized.

Theorem 1 Consider the system (3). Suppose that it
switches at the switching instant tn to σ(tn) = i . If
there exist scalars li j ≤ 0, l ′i j ≤ 0, λi p ≥ 0, matri-
ces Ki , positive definite matrices Zi,q , Zi,q0 , negative
definite matrices Wi , vector η such that for given pos-
itive constant Ts , constants α ≥ α0 ≥ 0, β ≥ β0 >

0, , μ > 0, ξ > 0, λ0 > 0, the following inequalities

Φi,q + μZi,q + 2α2
0 I + Zi,q Bi B

T
i Zi,q < 0,

q = 0, 1, . . . , l, (8)

Φi,q+1 + μZi,q+1 + 2α2
0 I + Zi,q+1Bi B

T
i Zi,q+1 < 0,

q = 0, 1, . . . , l, (9)

Φ̄i,q − ξ Zi,q + 2α2
0 I + Zi,q Bi B

T
i Zi,q < 0,

q = l + 1, l + 2, . . . , q0 − 1, (10)

Φ̄i,q+1 − ξ Zi,q+1 + 2α2
0 I + Zi,q+1Bi B

T
i Zi,q+1 < 0,

q = l + 1, l + 2, . . . , q0 − 1, (11)

Γi + μZi,q0 + 2α2
0 I

+
s∑

j=1, j 	=i

li j (Zi,q0 − Z j,0) < 0, (12)

Λ̄i p − Wi ≤ 0, (13)

λ(WiηηTWi ) ≤ α2β2, (14)

ηTWiη + β2 ≥ 0, (15)
Tus [tn, tn + Ts)

Tss [tn, tn + Ts)
≤ μ − μ∗

ξ + μ∗ , (16)

μ∗ > 2λ0 (17)

hold for any q ∈ Q0, i, p ∈ S, i 	= p, where μ∗ ∈
(0, μ), Tss[tn, tn + Ts) and Tus[tn, tn + Ts) denote the
lengths of the time intervals over which the Lyapunov
functions of subsystems must be decreasing and can
be increasing within the time interval [tn, tn + Ts),
respectively,

Φi,q = ET
i Zi,q + Zi,q Ei

+ (Zi,q+1 − Zi,q)q0/Ts,

Φi,q+1 = ET
i Zi,q+1 + Zi,q+1Ei

+ (Zi,q+1 − Zi,q)q0/Ts,

Φ̄i,q = ET
i Zi,q + Zi,q Ei + (Zi,q+1 − Zi,q)q0/Ts,

Φ̄i,q+1 = ET
i Zi,q+1 + Zi,q+1Ei

+ (Zi,q+1 − Zi,q)q0/Ts,

Λi p = (Ki − Kp)
T(Ki − Kp)

+ λi p(Zi,q0 − Z p,0),

Λ̄i p = Λi p +
s∑

j=1, j 	=i

l ′i j (Zi,q0 − Z j,0) − α2 I,

Γi = ET
i Zi,q0 + Zi,q0Ei + Zi,q0Bi B

T
i Zi,q0 ,

then, the following logic for the next switching at t =
tn+1 :

σ(t) = i,∀t ∈ [tn, tn + Ts),

σ (t) = i,∀t > tn + Ts,

if xT(t)Zi,q0x(t)

≤ xT(t)Z j,0x(t), j ∈ S, j 	= i,

σ (tn+1) = argmin
j∈S {xT(t)Z j,0x(t)}, otherwise,

(18)

the ET rule (6) and the controller (2) can enforce the
system (3) to be globally asymptotically stable and to
satisfy the BT performance (4). Moreover, the switch-
ings and triggering do not yield Zeno behavior.

Proof The proof is threefold. First, let us show the
stability of the system (3). Define θq(t) = 1 − (t −
tn,q)q0/Tswith tn,q = tn + qTs/q0, q ∈ Q0. For
σ(t) = i , we exploit the Lyapunov function Vi (x, t) =
xTZi (t)x with

Zi (t)=
⎧
⎨
⎩

θq (t)Zi,q + [1 − θq (t)]Zi,q+1, t ∈ [tn,q , tn,q+1),

Zi,q0 , t ∈ [tn,q0 , tn+1,0),

Zi0,q0 , t ∈ [0, t1),

where n = 1, 2, . . ., tn,q0 = tn + Ts . �

Letting Tss[tn,q , tn,q+1) = ⋃l
q=0 [tn,q , tn,q+1),

Tus[tn,q , tn,q+1)= ⋃q0−1
q=l+1 [tn,q , tn,q+1). For ∀t∈

Tss[tn,q , tn,q+1), the minimal dwell-time interval of
the i th subsystem inwhich the Lyapunov functionmust
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be decreasing, differentiating Vi (x, t) associated with
the trajectory of the system (3) generates

V̇i (x(t), t) = 2ẋT(t)Zi (t)x(t) + xT(t)Żi (t)x(t)

= xT(t)[ET
i Zi (t) + Zi (t)Ei + Żi (t)]x(t)

− 2xT(t)Zi (t)Bi ei (t)

= θq (t){xT(t)[ET
i Zi,q + Zi,q Ei + Żi (t)]x(t)

− 2xT(t)Zi,q Bi ei (t)} + [1 − θq (t)]{xT(t)

[ET
i Zi,q+1 + Zi,q+1Ei + Żi (t)]x(t)

− 2xT(t)Zi,q+1Bi ei (t)}
= θq (t){xT(t)Φi,q x(t) − 2xT(t)Zi,q Bi ei (t)}

+ [1 − θq (t)]{xT(t)Φi,q+1x(t)

− 2xT(t)Zi,q+1Bi ei (t)}.

(19)

Following from (19) and the inequalities

− 2xT(t)Zi,q Bi ei (t)

≤ xT(t)Zi,q Bi B
T
i Zi,q x(t) + eTi (t)ei (t),

− 2xT(t)Zi,q+1Biei (t)

≤ xT(t)Zi,q+1Bi B
T
i Zi,q+1x(t) + eTi (t)ei (t),

one can infer

V̇i (x(t), t) = θq (t){xT(t)Φi,q x(t) − 2xT(t)Zi,q Bi ei (t)}
+ [1 − θq (t)]{xT(t)Φi,q+1x(t)

− 2xT(t)Zi,q+1Bi ei (t)}
≤ θq (t)[xT(t)(Φi,q + Zi,q Bi B

T
i Zi,q )x(t)]

+ [1 − θq (t)][xT(t)(Φi,q+1

+ Zi,q+1Bi B
T
i Zi,q+1)x(t)] + eTi (t)ei (t).

(20)

It is deduced from the triggered scheme (6) that as long
as t ∈ [t im, t im+1)

||ei (t)||2 ≤ [α0||x(t)|| + β0e
−λ0t ]2

= α2
0 ||x(t)||2 + 2α0β0e

−λ0t ||x(t)|| + ρ(t)

≤ 2[α2
0 ||x(t)||2 + ρ(t)], (21)

where ρ(t) = β2
0e

−2λ0t . Due to (20) and (21), we know
that for any t ∈ [t im, t im+1)

V̇i (x(t), t) ≤ θq(t)[xT(t)(Φi,q + Zi,q Bi B
T
i Zi,q)x(t)]

+[1 − θq(t)][xT(t)(Φi,q+1

+Zi,q+1Bi B
T
i Zi,q+1)x(t)] + eTi (t)ei (t)

≤ θq(t)[xT(t)(Φi,q

+Zi,q Bi B
T
i Zi,q + 2α2

0 I )x(t)]
+[1 − θq(t)][xT(t)(Φi,q+1 + 2α2

0 I

+Zi,q+1Bi B
T
i Zi,q+1)x(t)] + 2ρ(t).

From (8) and (9), we deduce

V̇i (x(t), t) ≤ θq(t)[xT(t)(Φi,q + Zi,q Bi B
T
i Zi,q

+ 2α2
0 I )x(t)]

+ [1 − θq(t)][xT(t)(Φi,q+1 + 2α2
0 I

+ Zi,q+1Bi B
T
i Zi,q+1)x(t)] + 2ρ(t)

≤ −μVi (x(t), t) + θq(t)[xT(t)(Φi,q

+ 2α2
0 I

+ μZi,q + Zi,q Bi B
T
i Zi,q)x(t)]

+ [1 − θq(t)][xT(t)(Φi,q+1 + 2α2
0 I

+ μZi,q+1

+ Zi,q+1Bi B
T
i Zi,q+1)x(t)] + 2ρ(t)

≤ −μVi (x(t), t) + 2β2
0e

−2λ0t .

Thus, we derive

V̇i (x(t), t) ≤ −μVi (x(t), t) + 2ρ(t),

∀t ∈ Tss[tn,q , tn,q+1). (22)

Similarly, it can be inferred from (10) and (11) that

V̇i (x(t), t) ≤ ξVi (x(t), t) + 2ρ(t),

∀t ∈ Tus[tn,q , tn,q+1). (23)

Further, for t ∈ [tn,q0 , tn+1,0), that is, the time interval
after the minimal dwell-time interval and before the
next switching instant, along the solution of the system
(3), differentiating Vi (x, t) gives rise to

V̇i (x(t), t) = 2ẋT(t)Zi,q0x(t)

= xT(t)(ET
i Zi,q0 + Zi,q0Ei )x(t)

− 2eTi (t)BT
i Zi,q0x(t).

Because of

− 2eTi (t)BT
i Zi,q0x(t)

≤ xT(t)Zi,q0Bi B
T
i Zi,q0x(t) + eTi (t)ei (t),

we obtain

V̇i (x(t), t) = xT(t)(ET
i Zi,q0 + Zi,q0Ei )x(t)

− 2eTi (t)BT
i Zi,q0x(t)

≤ xT(t)Γi x(t) + eTi (t)ei (t).

In virtue of (21) again, one can claim that for t ∈
[t im, t im+1)

V̇i (x(t), t) ≤ xT(t)Γi x(t) + eTi (t)ei (t)

≤ xT(t)Γi x(t) + 2(α2
0 ||x(t)||2 + ρ(t))

= xT(t)(Γi + 2α2
0 I )x(t) + 2ρ(t) (24)
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is true. According to the switching strategy (18), when
t ∈ [tn,q0 , tn+1,0),

xT(t)
s∑

j=1

li j (Zi,q0 − Z j,0)x(t) ≥ 0 (25)

holds. In conjunctionwith (24), for all t ∈ [tn,q0 , tn+1,0),
it yields that

V̇i (x(t), t) ≤ xT(t)(Γi + 2α2
0 I )x(t) + 2ρ(t)

≤ xT(t)

⎡
⎣Γi + 2α2

0 I

+
s∑

j=1

li j (Zi,q0 − Z j,0)

⎤
⎦ x(t)

+ 2ρ(t).

(26)

Through (12) and (26), one can further obtain

V̇i (x(t), t) + μVi (x(t), t)

≤ xT(t)

⎡
⎣Γi + 2α2

0 I + μZi,q0

+
s∑

j=1

li j (Zi,q0 − Z j,0)

⎤
⎦ x(t)

+ 2ρ(t)

over the time interval [tn,q0 , tn+1,0). This means

V̇i (x(t), t) ≤ −μVi (x(t), t) + 2ρ(t),

∀t ∈ [tn,q0 , tn+1,0). (27)

Combing (22), (23) and (27) renders that

V̇i (x(t), t)

≤
{−μVi (x(t), t) + 2ρ(t),∀t ∈ Tss[tn, tn+1),

ξVi (x(t), t) + 2ρ(t), ∀t ∈ Tus[tn, tn+1).

(28)

Defining Ω(r, v) = ξTus(r, v) − μTss(r, v). Recalling
ρ(t) = β2

0e
−2λ0t and noticing (28), one can deduce

that for any t ∈ [tn + Ts, tn+1),

Vσ(tn)(x(t), t) ≤ e−μ(t−tn−Ts )Vσ(tn)(x(tn + Ts), tn + Ts)

+ 2β2
0

∫ t

tn+Ts

e−μ(t−δ)e−2λ0δdδ

≤ e−μ(t−tn−Ts )
[
eΩ(tn ,tn+Ts )Vσ(tn)(x(tn), tn)

+2β2
0

∫ tn+Ts

tn
eΩ(δ,tn+Ts )e−2λ0δdδ

]

+ 2β2
0

∫ t

tn+Ts

e−μ(t−δ)e−2λ0δdδ

= eΩ(tn ,t)Vσ(tn)(x(tn), tn)

+ 2β2
0

∫ t

tn
eΩ(δ,t)e−2λ0δdδ

≤ eΩ(tn ,t)
[
eΩ(tn−1,tn)Vσ(tn−1)(x(tn−1), tn−1)

+2β2
0

∫ tn

tn−1

eΩ(δ,tn)e−2λ0δdδ

]

+ 2β2
0

∫ t

tn
eΩ(δ,t)e−2λ0δdδ

= eΩ(tn−1,t)Vσ(tn−1)(x(tn−1), tn−1)

+ 2β2
0

∫ t

tn−1

eΩ(δ,t)e−2λ0δdδ

≤ · · ·
≤ eΩ(t0,t)Vσ(t0)(x(t0), t0)

+ 2β2
0

∫ t

t0
eΩ(δ,t)e−2λ0δdδ.

It follows (16) that

Ω(t0, t) ≤ −μ∗(t − t0), (29)

which results in

Vσ(tn)(x(t), t) ≤ eΩ(t0,t)Vσ(t0)(x(t0), t0)

+ 2β2
0

∫ t

t0
eΩ(δ,t)e−2λ0δdδ

≤ eΩ(t0,t)Vσ(t0)(x(t0), t0)

+ 2β2
0

∫ t

t0
e−μ∗(t−δ)e−2λ0δdδ

= e−μ∗(t−t0)Vσ(t0)(x(t0), t0)

+ 2β2
0

μ∗−2λ0
e−2λ0t

− 2β2
0

μ∗−2λ0
e(−2λ0+μ∗)t0e−μ∗t .

(30)

Obviously, it is observed from the definition of Zi (t)
that Zi (t) is bounded. Thus, keeping this point in mind
and noting (30), we get for all i ∈ S that

λmin(Zi (t))||x(t)||2 ≤ Vi (x(t), t)

≤ λmax(Zi (t))||x(t)||2,
in conjunction with (17), it holds that

||x(t)|| ≤ √
ae− 1

2μ∗(t−t0)||x(t0)|| +
√
2β0√

μ∗−2λ0
e−λ0t .

where a = sup
t

{
min
i∈S

{
λmax(Zi (t))
λmin(Zi (t))

}}
. Letting

c1 = √
ae

1
2μ∗t0 ||x(t0)||, c2 = √

2β0

/√
μ∗−2λ0,
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we have

||x(t)|| ≤ c1e
− 1
2μ

∗t + c2e
−λ0t . (31)

Thus, the stability of the system (3) is realized.
Then, we show the exclusion of Zeno behavior, that

is, infinite switchings or triggering does not occur in a
finite time interval [Te, T f ] with t0 ≤ Te < T f < ∞.
In what follows, two cases are considered.

Case (i) Adjacent triggering instants are induced by
switchings or the event (7) only.

It is easily claimed that switchings do not bring Zeno
behavior owing to the minimal dwell-time property of
subsystems. Thus, we just need to show that if two con-
secutive triggering instants are only caused by events,
Zeno behavior does not happen too. Based on the defi-
nition of the ET error, for σ(t) = i , we get the system

ėi (t) = Ki ẋ(t) = Ki Ei x(t) − Ki Bi ei (t). (32)

For ∀t ∈ [t im, t im+1), the solution of the system (32) is
solved by

ei (t) = e−Ki Bi (t−t im )ei (t
i
m)

+
∫ t

t im

e−Ki Bi (t−τ)Ki Ei x(τ )dτ.

It is generated from the ET strategy (6) that for any
triggered instant t im , ei (t

i
m) = 0. This leads to

ei (t) =
∫ t

t im

e−Ki Bi (t−τ)Ki Ei x(τ )dτ.

Letting b = c1 + c2 and following from (31), one can
infer

||x(t)|| ≤ c1e
− 1
2μ

∗t + c2e
−λ0t ≤ b. (33)

That is, ||x(t)|| ≤ b. Thereby, we know

||ei (t)|| =
∥∥∥∥∥
∫ t

t im

e−Ki Bi (t−τ)Ki Ei x(τ )dτ

∥∥∥∥∥

≤
∫ t

t im

e||−Ki Bi ||(t−τ)||Ki Ei ||||x(τ )||dτ

≤
∫ t

t im

be||−Ki Bi ||(t−τ)||Ki Ei ||dτ

= b||Ki Ei ||e||−Ki Bi ||t
∫ t

t im

e−||−Ki Bi ||τdτ.

(34)

It is further deduced from the triggered logic (6) that
for ∀t ∈ [t im, t im+1], the relation

α0||x(t)|| + β0 ≤ b||Ki Ei ||e||−Ki Bi ||t
∫ t

t im

e−||−Ki Bi ||τdτ

holds, which means

β0 ≤ b||Ki Ei ||e||−Ki Bi ||t
∫ t

t im

e−||−Ki Bi ||τdτ.

Let us set t = t im + Te with Te standing for the length
of the triggered interval. If || − Ki Bi || = 0, then

β0 ≤ b||Ki Ei ||Te,

which results in a positive value of Te. If ||−Ki Bi || 	=
0, then

β0 ≤ b||Ki Ei ||e||−Ki Bi ||(t im+Te)

−|| − Ki Bi ||
.
[
e−||−Ki Bi ||(t im+Te) − e−||−Ki Bi ||t im

]
,

which also implies that Te > 0.
Case (ii) Consecutive triggering instants result from

the interactions between switchings and the event (7).
We first focus on the time interval [tn+r , t im+1)

with tn+r indicating a certain switching instant within
[Te, T f ], and t im+1 indicating the latest triggering
instant produced by the triggered mechanism (6) after
tn+r . It is inferred from the triggered logic (6) that
switching instants are also triggering instants. This
implies that tn+r is a triggering instant. Consequently,
this case becomes the same as Case (i), and thus,
the positive inter-event length is ensured. Then, let
us turn our attention to the time interval [t im, tn+r )

with t im representing the last triggering time brought
by the triggered rule (6) before tn+r . Assume that
tn+r , tn+r+1, . . . , tn+q , t im+1 are the next triggering
instants, where k is a finite positive integer standing for
the number of switchings and satisfying r ≤ q < k. As
discussed above, the interval [tn+q , t im+1) owns a pos-
itive lower bound. This further means that there does
not exist Zeno behavior.

Next, we prove the BT performance (4) of the sys-
tem (3). First, let us show the BT performance (4) at
switching instants tn . The switching logic (18) ensures

xT(t)
s∑

j=1, j 	=i

l ′i j (Zi,q0 − Z j,0)x(t) ≥ 0,

∀t ∈ [tn + Ts, tn+1). (35)
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Combing (13) and (35) ensures that for ∀t ∈ [tn +
Ts, tn+1), p ∈ S,

||Ki x(t) − Kpx(t)||2 − (α||x(t)|| + β)2

+ λi px
T(t)(Zi,q0 − Z p,0)x(t)

= xT(t)Λi px(t) − [α2xT(t)x(t)

+ 2αβ||x(t)|| + β2]
= xT(t)(Λi p − α2 I )x(t) − 2αβ||x(t)|| − β2

≤ xT(t)Λ̄i px(t) − 2αβ||x(t)|| − β2.

(36)

Note that if xT(t)Wiη ≥ 0, then

− αβ||x(t)|| ≤ xT(t)Wiη, (37)

if xT(t)Wiη < 0, via (14), we have

xT(t)WiηηTWi x(t) ≤ α2β2xT(t)x(t),

which also renders (37). By means of Wi < 0, (15),
(36) and (37), one can know

||Ki x(t) − Kpx(t)||2 − (α||x(t)|| + β)2

+ λi px
T(t)(Zi,q0 − Z j,0)x(t)

≤ xT(t)Λ̄i px(t) − 2αβ||x(t)|| − β2

≤ xT(t)Λ̄i px(t) + 2xT(t)Wiη − β2

≤ xT(t)Λ̄i px(t) + 2xT(t)Wiη + ηTWiη

≤ [x(t) + η]TWi [x(t) + η]
≤ 0

(38)

when t ∈ [tn + Ts, tn+1]. Suppose that the system (3)
switches from the i th subsystem to the pth subsystem
at the switching instant tn+1. Thus, it is known from
λi p ≥ 0 and the switching rule (18) that

xT(tn+1)(Z p,0 − Zi,q0)x(tn+1) = 0.

Incorporating with (38), we are in a position to declare
that at the switching instant tn+1,

||Ki x(tn+1) − Kpx(tn+1)||2 − (α||x(tn+1)|| + β)2

≤ λi px
T(tn+1)(Z p,0 − Zi,q0)x(tn+1) = 0

which implies the BT performance (4). Further, we
show how the BT performance (4) is ensured at the
triggering instants t im caused by the event (7). Recall-
ing the triggered rule (6) and noticing α0 ≤ α, β0 ≤ β,
we can easily infer the BT performance (4).

Remark 3 Theorem 1 develops a criterion under which
the stability of the system (3) is obtained, the control
bumps are restricted, and the communication resources

Fig. 1 Lyapunov function of the i th subsystem

are saved. Again, Zeno behavior generated by trigger-
ing and switchings is excluded. (8)–(12), (16) and (17)
are utilized to force the stability. The BT performance
(4) is ensured by (13)–(15). Further, we make some
explanations on the switching law (18). The switching
mechanism (18) is a state and time mixed switching
rule. When Ts = 0, the switching law (18) degrades
into the classical state-dependent switching law of [1].
A switching law with the same construction way as
(18) has been used by [8] to obtain only the steady-
state property of the switched systems. Different from
[8], in this manuscript, the switching law (18) is used to
achieve both the steady-state property and the transient
performance of the switched systems. Also, when only
the steady-state property is considered, the condition is
looser than that in [8]. This is due to the fact that the
Lyapunov functions are allowed to be increasing dur-
ing the ensured minimal working time intervals. The
Lyapunov function of the i th subsystem is shown by
Fig. 1. However, in [8], the Lyapunov functions must
be decreasing during the ensuredminimalworking time
intervals. This renders the switching strategy (18) more
general than the traditional mixed switching rule of [8].

Remark 4 Now, we explain how to verify the condi-
tion (16). It is not difficult to know that if there exists
a nonnegative constant v satisfying Tus[tn, tn + Ts) =
Tss[tn, tn + Ts) · μ−μ∗

ξ+μ∗ − v, then the condition (16)
is ensured. Combining Ts = Tus[tn, tn + Ts) +
Tss[tn, tn + Ts) andTus[tn, tn+Ts) = Tss[tn, tn + Ts)·
μ−μ∗
ξ+μ∗ −v yieldsTs = Tss[tn, tn + Ts)·(1+ μ−μ∗

ξ+μ∗ )−v.
Then, replacing Ts in the inequalities (8)–(11) by
Tss[tn, tn + Ts) · (1 + μ−μ∗

ξ+μ∗ ) − v, we can obtain
Tss[tn, tn + Ts) and v. Further, taking advantage of
Tus[tn, tn + Ts) = Tss[tn, tn + Ts) · μ−μ∗

ξ+μ∗ − v, we can
obtain Tus[tn, tn + Ts).
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Remark 5 In practice, it is not difficult to realize the
switchingmechanism (18). This is because theminimal
dwell time is pre-given and the switching signal value
is kept unchanged during theminimal dwell-time inter-
val. Also, for the time interval after the minimal dwell-
time interval and before the next switching instant, the
switching signal is determined by a well-known min
logic rule which has been widely used in practical sys-
tems [1,44,45].

Remark 6 The condition of Theorem 1 is used to guar-
antee both the switching signal (18) and the triggering
rule (6) instead of the switching signal or the triggering
rule. Also, for each subsystem, the triggering rule (6)
is not a stabilizing triggering rule.

Remark 7 In addition, it is not difficult to find that
under the switching law (18), the event (6) only trig-
gers during the switching interval [tn, tn+1]. If no event
occurs during the switching interval [tn, tn+1], the ET
mechanism (6) is useless, that is, the control problem
considered degrades into the BT control problem for
the system (1).

Note that the constraints in Theorem 1 are nonlin-
ear and thus usually difficult to be calculated. To over-
come this drawback, we design an algorithm to solve
a series of linear matrix inequalities. The main idea
of the algorithm is twofold. First, taking advantage
of the fact that the usual min-switching rule [1] may
still have a minimal dwell time even though it can-
not always guarantee the minimal dwell time, we can
solve a part of parameters. Then, by substituting the
derived parameters into the remaining constraints, we
can check whether the minimal dwell time and the BT
performance are ensured or not.

Before offering the algorithm, we simplify several
matrix inequalities of Theorem 1.

First, let us consider (12). Recalling Ei = Ai +
Bi Ki , setting Mi,q0 = Z−1

i,q0
, Z−1

j,0 = Mj,0, Ni,q0 =
KiMi,q0 and multiplying the expression on the left side
of (12) by Mi,q0 on the both sides generates

⎡
⎢⎢⎣

Υi,q0 +
s∑

j=1, j 	=i
li j Mi,q0 Mi,q0 ρi,q0Mi,q0

∗ − 1
2α

−2
0 I 0

∗ ∗ −Ωi,q0

⎤
⎥⎥⎦<0,

(39)

Υi,q0 = Mi,q0 A
T
i + Ai Mi,q0 + NT

i,q0
BT
i + Bi Ni,q0

+ Bi B
T
i + μMi,q0 ,

Ωi,q0 = diag
{
M1,0, . . . , Mi−1,0, Mi+1,0, . . . , Ms,0

}
,

ρi,q0 =
[√−li1 · · · √−li i−1

√−li i+1 · · · √−lis
]
.

Then, we turn to (14) and (15). When the matrices Wi

are calculated, (14) and (15) can be ensured by
[−α2β2 I Wiη

∗ −I

]
≤ 0 (40)

and[−β2 I ηT

∗ W−1
i

]
≤ 0, (41)

respectively.
Now, the algorithm is provided in detail.

Algorithm. Calculation of the controller gains Ki .

Step 1. Fix the scalars li j and then solve the matrices
Ki , Mi,q0 , Mi,0 from (39).

Step 2. Substitute the derived matrices Ki , Mi,q0 , Mi,0

into (8)–(11) to test whether the timeTs exists or not. If
Ts exists, then maximize Ts and turn to the next step.
Otherwise, turn back to Step 1 and choose different
constants li j .

Step 3. Substitute the derived matrices Ki , Mi,q0 , Mi,0

into (13) to calculate the matrices Wi and scalars l ′i j . If
(13) has solutions, then turn to the next step. Otherwise,
turn back to Step 1 and then update li j .

Step 4. Determine the vector η from (40), (41) with
calculated matrices Wi . If η exists, then terminate the
algorithm and export the solved parameters. Otherwise,
adjust the constants li j and iterate Steps 1-4.

4 Application to switched RLC circuits

This section devotes to the demonstration of the supe-
riority for the proposed ETBT control strategy.

We apply the developed control scheme to the
switched RLC circuit in [40,43].

Figure 2 depicts the switched RLC circuit which is
composed of a resistance R, an inductor L , an input
voltage u(t) and a collection of capacitors Ci , i =
1, 2, . . . , s. The model of the switched RLC circuit is
described by

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (42)
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Fig. 2 Switched RLC circuit

where xT(t) = [qc φL ], σ(t) takes its values in the set
S = {1, 2},

Ai =
[

0 1
L

− 1
Ci

− R
L

]
, Bi =

[
0
1

]
, i = 1, 2.

Set the initial state values xT(0) = [5 − 5], the
parameters L = 2.5, C1 = 100, C2 = 30, R =
2, μ = 0.001, ξ = 0.01, Ts = 0.1s.

For the verification on the superiority of the pre-
sented control method, we make a comparison simula-
tion. Two cases are considered.

Case (i) Both the BT performance and the stability
are ensured.

In this case, we select α0 = 10−5, β0 = 0.008,
λ0 = 0.001, α = 0.5, β = 1, l12 = −0.005, l21 =
−1, λ12 = λ21 = 1.By solvingAlgorithm1,weobtain
the controller gains

K1 = [−0.3080 − 0.3781],
K2 = [−0.3000 − 0.5374]

and the parameters

Z10 = 10−8 ∗
[
0.2465 0.0037
0.0037 0.2569

]
,

Z20 = 10−8 ∗
[
0.3965 0.0553
0.0553 0.3438

]
,

Z11 = 10−8 ∗
[
0.4199 0.1260
0.1260 0.3660

]
,

Z21 = 10−8 ∗
[
0.3965 0.0553
0.0553 0.3438

]
,

W1 =
[−0.1250 −0.0006

−0.0006 −0.1123

]
,

W2 =
[−0.1250 −0.0006

−0.0006 −0.1123

]
,

η = [−0.1461 − 0.1465]T, l ′12 = l ′21 = −1.0165.

Table 1 Comparison between Case (i) and Case (ii)

Case ||u(t i
+
m ) − u(t i

−
m )||max NumT NumS

(i) 0.0892 33 4

(ii) 0.8764 25 12

Case (ii) Only the stability is guaranteed.
In this case, we choose α0 = 0.6, β0 = 0.008, λ0 =

0.001, l12 = −0.005, l21 = −1 λ12 = λ21 = 1.
Here, we set α0 > α to indicate that the control bumps
induced by triggering are not suppressed. Then, we
work out the controller gains

K1 = [−0.3182 − 0.3644],
K2 = [−0.3022 − 0.5312]

and the variables

Z10 = 10−8 ∗
[
0.2454 0.0035
0.0035 0.2559

]
,

Z20 = 10−8 ∗
[
0.3968 0.0542
0.0542 0.3452

]
,

Z11 = 10−8 ∗
[
0.4146 0.1227
0.1227 0.3669

]
,

Z21 = 10−8 ∗
[
0.3968 0.0542
0.0542 0.3452

]
.

In the following table, we make a quantitative anal-
ysis on the proposed ETBT control scheme by compar-
ing the maximum value of the control bump ||u(t i

+
m )−

u(t i
−
m )||, the number of triggering and the number of

switchings in both cases.
In Table 1, the notations ||u(t i

+
m ) − u(t i

−
m )||max,

NumT and NumS denote the maximum value of
||u(t i

+
m ) − u(t i

−
m )||, the number of triggering and the

number of switchings, respectively.
Furthermore, several figures are provided. Figure 3

shows different switching logics. The differences of ET
sequences are exhibited by Fig. 4. Figure 5 compares
the different control signals. The trajectory compar-
isons are presented by Figs. 6 and 7. It is observed
from Fig. 3 that the value of the switching signal σ(t)
of Case (ii) varies more frequently. Figure 4 tells that
the ET frequency of Case (i) is greater than that of the
Case (ii), which reveals that the cost of the better BT
performance is frequently triggering. From Fig. 5, we
can see that the variation of the magnitude for the con-
trol signal obtained in the Case (i) is much less than that
in the other case. It is easily found from Figs. 6 and 7
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Fig. 4 Triggering instant sequences

that each state component of the model (42) is stable
in both situations. From Fig. 6, we can find that the tra-
jectory of the charge in the capacitor in Case (i) varies
more gently than that in Case (ii). It is observed from
Fig. 7 that the trajectory of the flux in the inductance in
Case (i) varies more gently than that in Case (ii). Fig-
ures 6 and 7 indicate that the presented ETBT control
scheme can improve the trajectories of the system (42).
Accordingly, the proposed ETBT control approach can
effectively reduce the transmission resources, suppress
the bumps in the input voltage andguarantee the steady-
state operation of the switched RLC circuit (42).

5 Conclusions

In this article, we have studied the issue of ETBT
control for a class of switched linear systems. In the
first place, the suppression level on the control bumps
induced by both switchings and triggering has been
described in both relative and absolute manners. Then,
by dual-design of a switching scheme, an ET logic and
a family of controllers, the magnitude difference in the
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Fig. 7 Flux in the inductance

control signal at switching and triggering instants has
been restrained, while the stability has been realized.
The switching rule has generalized the usual state-
dependent switching mechanism satisfying a certain
dwell-time constraint, permitting the increase in the
Lyapunov functions over the dwell-time intervals. Sec-
ond, under the designed switching rule, triggered strat-
egy and controllers, a criterion has been established,
ensuring both the BT performance and the stability.
Moreover, Zeno behavior has been excluded. At last,
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the developed control strategy has been effectively
applied to a switched RLC circuit, showing the effec-
tiveness of the presented control scheme.
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