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Abstract The control and motion planning of bioin-
spired swimming robots is complicated by the fluid–
robot interaction, which is governed by a very high
(infinite)-dimensional nonlinear system. Many high-
dimensional nonlinear systems, often have
low-dimensional attractors. From the perspective of
swimming robots, such low-dimensional attractors
simplify the analysis of the mechanics of swimming
and prove to be useful to design controllers. This
paper describes such a low-dimensional model for the
swimming of a class of robots that are propelled by
the motion of an internal reaction wheel. The model
of swimming on a low-dimensional attractor is itself
motivated by recent work on the dissipative Chaply-
gin sleigh, a well-known nonholonomic system, that
exhibits limit cycle dynamics. We show that the gov-
erning equations of the Chaplygin sleigh are a very
useful surrogate model for the swimming robot. The
Chaplygin sleigh model is used to demonstrate certain
maneuvers by the robot through computations. Experi-
ments with such a robot provide evidence of limit cycle
dynamics. Computational models based on discrete-
point vortex–body interaction confirm this behavior.
Our work also suggests that there is a close phe-
nomenological and mathematical similarity between
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the dynamics of swimming robots and those of ground-
based nonholonomic robots, which could motivate the
development of very low-dimensional mathematical
models for the motion of other fish-like swimming
robots.
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constraints · Limit cycles

1 Introduction

Natural swimmers like fish have many characteristics
such as high propulsive efficiency, agility and stealth
[1–3] that are highly desirable in a swimming robot.
The last two decades have seen the development of
several bioinspired swimming robots, perhaps themost
famous of which is MIT’s robot-tuna [4,5]. The loco-
motion of carangiform and sub-carangiform fish has
inspired the design of robots with a compliant body
or a compliant tail, see, for example, [6–13], as well
as articulated joints to imitate fish vertebrae, [14–16].
Other multisegmented robots such as in [17–20] have
been inspired by the motion of eels and snakes. In
recent years, the authors and others investigated a class
of swimming robots propelled by an internal reac-
tion wheel [21,22,49] whose mathematical model was
inspired by that of fish-like swimming [21,23–26].

Besides the practical design of swimming robots,
accompanying mathematical models of swimming
dynamics and motion control are necessary. Here, one
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has to contend with the coupled robot-hydrodynamic
interactionswhich are very challenging tomodel.Mod-
eling the hydrodynamics by the Navier–Stokes equa-
tion is a significant challenge and can lead to intractable
analytical models or purely numerical simulations that
are computationally resource intensive. In such cases,
the lack of simplified models makes the task of design-
ing controllers for the robots challenging. The goal of
this paper is to put forth a simplified model of fish-like
swimming, based on the identification of limit cycles
in the dynamics of robot–fluid interaction. The reduced
order model is achieved in two steps: first by adopting
a simplified model of the fluid flow and the interac-
tion with the robot. In the second step, the dynamics
of the swimming body is recognized to be similar to
that of the Chaplygin sleigh, a nonholonomic system.
It is shown through computations and experiments that
a limit cycle exists in the velocity space of the swim-
mer. This identification is motivated by the previous
work [21,25] on the swimming of a fish-shaped body (a
Joukowski foil), which showed that the vortex shedding
past the sharp edge of the foil imposes a nonholonomic
constraint on its motion that is similar to the constraint
on a Chaplygin sleigh. The main contribution of the
paper is showing the similarity of fish-like swimming
to the dynamics of certain nonholonomic systems, in
this paper specifically, the Chaplygin sleigh. In both the
cases the dynamics are shown to converge to qualita-
tively similar limit cycles. Analytical approximations
of these limit cycles are used to create a low dimen-
sional surrogate model of the a rigid swimmer and this
model is used to control its motion.

To obtain a simplified model of the fluid–swimmer
interaction, the fluid ismodeled to be ideal and the force
on the body is computed through potential flow theory.
The effects of viscosity which are important only in a
thin boundary layer around the body are such that they
lead to vortex shedding. This phenomenon is included
in the inviscid models via the creation of singular dis-
tributions of vorticity at some point(s) close to the sur-
face of the body of the robot. The Kutta–Joukowski
condition [27] in one form or the other is often used to
model this vortex shedding behavior. While the prob-
lem of dynamics of point vortices interacting with a
body has a rich history, one of the early examples of
this approach in the context of swimming can be found
in [28–30]. More recently, it has been recognized that
the interaction of point vortices with a rigid body has a
Hamiltonian structure [31–34] and the associated con-

servation of linear and angular impulse has been used
tomodel the propulsion of a fish-shaped bodywith pre-
scribed deformations [35,36]. The essential physics of
these models is that a fish-shaped body (a Joukowski
foil) with prescribed deformations can achieve propul-
sive motion through the vorticity that is created at the
cusp of the Joukowski foil. While the changes in the
inertia tensor of the body due to the shape deformations
could result in small, perhaps reversible motion, vortex
shedding is the more significant propulsive factor.

Inspired by this physics, it has been observed in
[21,23,24] that vortex shedding can be induced at the
cusp of a Joukowski foil through themotion of an inter-
nal reaction wheel. That this vortex shedding can be
useful for propulsion was demonstrated in [22]. More
interestingly, the simplicity of such swimming robot led
to the identification of the vortex shedding condition in
inviscid flowmodels as a nonholonomic constraint. An
explicit calculation of thiswas shown in [21,25] assum-
ing the Kutta condition was in the steady state. The
nonholonomic constraint on the motion of a Joukowski
foil imposed by the Kutta condition was shown to be
similar to the constraint on theChaplygin sleigh, awell-
known nonholonomic system [37–41]. The motion of
the Chaplygin sleigh propelled by the rotation of an
internal reaction wheel was investigated in [41–43];
however, the motion of the classical Chaplygin sleigh
differs somewhat from that of the swimming robot with
an internal reaction wheel, mainly due to the presence
viscous dissipation in swimming. In [44], the dynam-
ics of the Chaplygin sleigh in the presence of viscous
dissipation were investigated and it was found that for
periodic rotation of the reaction wheel, a globally sta-
ble limit cycle solution existed for the velocity of the
sleigh.

In this paper, we first demonstrate the existence
of limit cycle solutions for a Chaplygin sleigh with
a prescribed periodic slip velocity, a so-called affine
nonholonomic constraint. This is important because
numerical simulations suggest that the transverse veloc-
ity of the fluid at the trailing edge of the Joukowski foil
is not zero, but instead is periodic with a small magni-
tude. We then present experimental evidence that the
velocity of a swimming robot with a reaction wheel
has a limit cycle. This limit cycle is topologically sim-
ilar to that of the dissipative Chaplygin sleigh. We also
show through numerical simulations that the velocity
dynamics of a Joukowski foil excited byperiodic torque
has a topologically similar limit cycle. An analytical
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approximation of the limit cycle is obtained by the har-
monic balance approach for the swimming Joukowski
foil based on a similar approximation for the Chaply-
gin sleigh in [44]. This approximation is used to sim-
ulate the controlled motion of the Joukowski foil. We
essentially model the very complicated dynamics of
the swimming robot by the equations of motion of the
dissipative Chaplygin sleigh.

While the results presented here utilize a specific
model of a swimming robot, they can be generalized to
other fish-like robots with actuated or passive tail- or
fin-like appendages. Within the framework of inviscid
fluid flows, theKutta–Joukowski condition that leads to
vortex shedding at sharp edges is a nonholonomic con-
straint. Inspired by this, nonholonomic systems simi-
lar to a Chaplygin sleigh with appendages have been
investigated in [45–47] and the equivalent swimming
robots have been studied in [48], [?]. The motion of the
swimming robots with tails in [?] demonstrates peri-
odic limit cycle motion that is similar to the limit cycle
dynamics discussed in this paper. It can therefore be
expected that dissipative nonholonomic systems with
appendages and multiple constraints can be computa-
tionally cheap and very useful control-oriented surro-
gate models of swimming robots.

The organization of the paper is as follows. In
Sect. 2, we will first review the dynamics of the Chap-
lygin sleigh with a homogeneous nonholonomic con-
straint based on the work in [44,50]. We will then
extend this model to present new results on the dynam-
ics of the Chaplygin sleigh with a periodic affine non-
holonomic constraint in the form of a prescribed peri-
odic slip velocity. The limit cycles of the Chaply-
gin sleigh with a homogeneous constraint and a peri-
odic affine constraint are topologically similar, and an
approximation is constructed based on the harmonic
balance approach. The dynamics of the sleigh with the
affine constraint are investigated and shown to be nearly
identical to the dynamics of the Chaplygin sleigh with
a zero slip velocity constraint. In Sect. 2.1, the limit
cycle solutions are used to control the heading and
the speed of the Chaplygin sleigh. In Sect. 3, we will
present experimental evidence of limit cycles in the
dynamics of a swimming robot. In Sect. 4, we will
discuss the numerical simulations of a Joukowski foil
whose hydrodynamic interactions aremodeled by point
vortex dynamics. The steady Kutta–Joukowski vortex
shedding condition at the sharp edge of the foil is an
affine nonholonomic constraint. Through simulations

P
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X

Y

XbYb

θ

b

φ

Fig. 1 The Chaplygin sleigh—the body frame is denoted by the
axes Xb − Yb. The point P on the sleigh has zero velocity in the
Yb direction

based on panel methods and point vortex dynamics, it
will be shown that the unsteady Kutta condition is a
periodic affine nonholonomic constraint. In Sect. 5, we
show the utility of the sleigh-like surrogate models by
applying the control algorithm developed for Chaply-
gin the sleigh, described in Sect. 2.1, to the swimming
Joukowski foil, to steer it in a desired direction with a
prescribed speed.

2 The dissipative Chaplygin sleigh

The Chaplygin sleigh is a well-known nonholonomic
system. The system consists of a sleigh with a knife
edge at the rear that is in contact with the ground at a
single point. The sleigh is shown in Fig. 1. The axes
denoted by X and Y in Fig. 1 correspond to a fixed
inertial frame of reference. The axes denoted by Xb and
Yb correspond to a body frame. The point of contact of
the knife edge with the ground is denoted by P . The
position of the center of the sleigh measured in the
inertial frame of reference is denoted by (x(t), y(t))
and its orientation by θ(t). The velocity of the point of
contact P of the rear wheel with the ground is denoted
by (ux , uy) asmeasured in the body frame of reference.
The sleigh can slip freely along the longitudinal axis,
Xb, of the sleigh but the transverse velocity of the knife
edge is constrained to be zero. This constraint is

− ẋ sin θ + ẏ cos θ − bθ̇ = uy = 0. (1)

To propel the sleigh, a balanced momentum or reac-
tion wheel is placed on top of it that can execute oscil-
latory motion. The relative angle of the reaction wheel
with respect to the body frame is denoted by φ. The
configuration space of the system is Q = SE2 × S1.
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Because of the nonholonomic constraint, the motion
of the sleigh can be described by a reduced num-
ber of equations, through the nonholonomic reduction.
These reduced equations of motion of the sleigh with
the nonholonomic constraint are well known, see for
instance, [38] for a derivation using Newton’s laws
of motion [41,43] for a derivation using the Lagrange
multiplier approach and [42,51] for a derivation of the
nonholonomicmomentum equations using the reduced
Lagrangian.

In this section, we derive the equations of motion
of the Chaplygin sleigh with a more general nonholo-
nomic constraint as well as a viscous friction force
that acts in the allowable direction of motion. We will
assume that the transverse velocity uy of the knife edge
is prescribed. The case of uy = 0 can be obtained
as a special case of the general equations. A possibly
nonzero constraint velocity, uy , that is prescribed gen-
erates a so-called affine nonholonomic constraint [52].

The velocity of the center of mass of the sleigh, vc,
can be written as

vc = ux îb + (uy + bω) ĵb (2)

where ib and jb represent unit vectors aligned with the
body axes. The acceleration of the center of mass of
the sleigh is then

v̇c = (u̇x − bω2 − ωuy)îb + (u̇ y + bω̇ + ωux ) ĵb. (3)

Suppose the constraint force at the point of contact
of the knife edge P is Fy ĵb and the viscous frictional
force at the knife edge in the allowable direction of
motion is Fx = −cux , then the equations of motion of
the sleigh are

m(u̇x − bω2 − ωuy) = Fx (4)

m(u̇ y + bω̇ + ωux ) = Fy (5)

I ω̇ = τ − bFy . (6)

Here, τ is the torque acting on the sleigh and ω = θ̇ is
the angular velocity of the sleigh. Eliminating the con-
straint force Fy by combining (5) and (6), the equations
of motion become

u̇x = bω2 + ωuy − c

m
ux (7)

ω̇ = τ − mbωux − mbu̇y

I + mb2
(8)

In the special case uy = 0 and u̇ y = 0, one obtains
the standard nonholonomic equations of motion of the
Chaplygin sleigh.

The motion of the sleigh in the plane is described by
the equations

ẋ = ux cos θ − (uy + ωb) sin θ (9)

ẏ = ux sin θ + (uy + ωb) cos θ (10)

θ̇ = ω. (11)

When a periodic torque τ = A cosΩt acts on the
sleigh, the dynamical system described by (7) and (8)
has a stable limit cycle [44,50]. An approximation to
the limit cycle can be obtained through the harmonic
balance method. We extend these results to the general
case where uy �= 0 is a prescribed periodic function

uy = Ay sin(Ωt) + By cos(Ωt). (12)

Following the harmonic balancemethod, we assume
a periodic solution to (7)–(8) of the form

ux = uc + Ax sin(2Ωt) + Bx cos(2Ωt) (13)

ω = Aw sin(Ωt) + Bw cos(Ωt). (14)

Substituting the assumed periodic solutions into (7)–
(8) and equating the coefficients of the sine and cosine
functions up to the second order as well as the constant
terms yield the following system of nonlinear equa-
tions:

A2
wbm + B2

wbm − 2cuc + AwAym + BwBym = 0
(15a)

2AwBwbm − 2Axc + 4mΩBx

+ AwBym + Ay Bwm = 0 (15b)

− A2
wbm + B2

wbm − 2Bxc − 4mΩAx

− AwAym + BwBym = 0 (15c)

− Ax Bwbm + AwBxbm − 2Awbmuc

+ 2A + 2αΩBw + 2ByΩbm = 0 (15d)

− Ax Awbm − Bx Bwbm − 2Bwbmuc

− 2αΩAw − 2AyΩbm = 0 (15e)

where α = I + mb2. Equations (15a)–(15e) can then
be solved using a numerical technique such as the
Newton–Raphson method.

A numerical solution of Eqs. (7) and (8) is shown
in Fig. 2. The black dotted line in Fig. 2a shows the
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Fig. 2 Dynamics of the Chaplygin sleigh. The figures a and b in
the top panel are for the case when uy = 0, and the figures c and
d in the lower panel are for the case when uy is a small-amplitude
periodic function (Ay = 0.03, By = 0.03). The solid blue line
in a and c shows the predicted limit cycle in the velocity space,
and the black dotted line shows the evolution of longitudinal
and angular velocity of the sleigh and their convergence to the
respective limit cycles. The path of sleigh in the plane is shown
in b and d for the two cases of the transverse velocity uy . (Color
figure online)

solution of the system for the nonholonomic constraint
uy = 0. The solution converges to a periodic solution,
the stable limit cycle, shown in blue. The trajectory of
the sleigh in the plane obtained by integrating (9)–(11)
is shown in Fig. 2b.

A numerical solution of (7) and (8) for the case
where a periodic transverse slip velocity is prescribed
is shown in Fig. 2c and the corresponding trajectory
of the sleigh in the plane is shown in Fig. 2d. The
prescribed slip velocity has a small magnitude, with√
A2
y + B2

y = 0.03
√
2. The approximate solution of

the limit cycle given by (13) and (14), shown in blue, is
a closed curve shaped as the number ‘8.’ In case of both
the type of constraints, the equation of the limit cycles
(13) and (14) is a close approximation of the numer-
ical solution of the limit cycle. More importantly, the
limit cycle solutions of the sleigh are nearly identi-
cal in the two cases with the constraint uy = 0 and
uy = Ay sin(Ωt) + By cos(Ωt). The average value of
the longitudinal velocity is u0 = 0.2533 in the case of
the no-slip constraint and u0 = 0.2545 in the case of the
periodic slip velocity. The limit cycle solutions show

negligible differences in cases where the slip veloc-
ity has a small magnitude. A supplementary video of
the motion of the sleigh with a periodic transverse slip
velocity and the convergence of its longitudinal and
angular velocity is available online.

2.1 Steering the sleigh and velocity tracking

The approximate solution to the limit cycle shows that
the average angular velocity of the sleigh converges to
zero, i.e., the change in the heading angle of the sleigh
during one time period T = 2π

Ω
is

Δθ =
∫ T

0
ωdt

=
∫ T

0
(Aw sinΩt + Bw cosΩt)dt = 0

(16)

The average longitudinal velocity of the sleigh u0 is in
general nonzero. This is also borne out in the simulated
trajectories of the sleigh in Fig. 2b and d, where average
heading of the sleigh becomes constant. On the velocity
limit cycle, the average velocity of the sleigh can be
defined as

v = 1

T

∫ t1+T

t1
(ẋ î + ẏ ĵ)dt (17)

Since the average heading angle converges to a constant
value, for the purpose of computing the average speed,
one can assume that the average heading angle is θ = 0,
i.e., 1

T

∫ t1+T
t1

ẏdt = 0. The average speed of the sleigh
is then

v = 1

T

∫ t1+T

t1
ẋdt

= 1

T

∫ t1+T

t1
(ux cos θ − (uy + ωb) sin θ)dt (18)

where it should be noted that 1
T

∫ t1+T
t1

ωb sin θdt = 0.
Suppose the reference average speed of the sleigh

is vr , the amplitude of the applied torque, τ =
A cosΩt , can be used as the control input to track
this reference speed. The required amplitude A can
be treated as an unknown. In this case, (15a)–(15e)
together with (18) form six equations in the six
unknowns, (Aw, Bw, Au, Bu, u0, A). These unknowns
can be found using a numerical method like the
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Newton–Raphson method. The velocity tracking con-
trol is illustrated for the case of the Chaplygin sleigh
with a periodic affine constraint, for the specific case
of the no-slip constraint, see [44].

When the solution to (7) and (8) converges to the
limit cycle, the average heading angle of the sleigh con-
verges to a constant value, as shown in Fig. 2b, d. This
average heading angle can be controlled by a torque that
is proportional to the error in average heading angle,
i.e.,

τI = −KI

∫ t

t−T
(θ(t) − θr )dt (19)

where θr is the reference average heading angle of
the sleigh. Numerical simulations for a large range of
sleigh parameters, reference angles and average veloc-
ities of the sleigh show that an input torque of the form

τ = A cosΩt + τI (20)

allows simultaneous control of the average speed of
the sleigh and its heading. The first term A cos(Ωt)
allows the sleigh to track reference average speed,
and the second term τI allows the sleigh to track a
desired average angle. A proof that the control input
τ = A cos(Ωt) + τI can lead to tracking both average
speed and heading is left for future work.

The utility of the limit cycle solutions can be demon-
strated through a simulated maneuver of the sleigh,
where it is required to first track an average heading
of zero degrees and then make a 90◦ turn while track-
ing an average speed of v = 0.2. The results of the
simulation are shown in Fig. 3.

The sleigh’s average heading angle first converges
toward zero and then to 90◦ (Fig. 3b, d) while its aver-
age speed tracks the reference value (Fig. 3a). The
sleigh’s velocity–angular velocity converge to the limit
cycle, then experience a perturbation away from the
limit cycle when the torque τI is added to the input
and converge back to the limit cycle as τI converges to
zero, see Fig. 3c. The control input for executing this
maneuver is such that τI is much smaller in magnitude
than A as shown in [44,50].

τI → 0 ⇐⇒
∫ t
t−T θ(t)dt

T
→ θr .

The average heading angle approaches the desired aver-
age heading angle.

(a) (b)

(c) (d)

Fig. 3 Turningmotion of the Chaplygin sleighwith periodic slip
(Ay = 0.03, By = 0.03). a The average speed of the Chaplygin
sleigh tracks the reference speed of v̄ = 0.2. b The path of the
sleigh in the plane. c Convergence of the velocity of the sleigh
to a limit cycle. d Heading angle of the Chaplygin sleigh, with
the average changing from zero to 90

◦

3 Swimming on limit cycles: experiments

The swimming robot used in the experimental inves-
tigation is shown in Fig. 4. The body of the robot is
shaped as a Joukowski foil. The robot is propelled
through the rotational oscillations of an internal reac-
tion or momentum wheel attached to a right angle
geared DC motor. The horizontal cross section of the
robot was modeled after a NACA 0030 symmetric air
foil, with total length of 36 cm and is 14 cm at its
widest. Thebodywas 3Dprinted fromABSplastic. The

Fig. 4 Experimental robot shaped as a Joukowski foil. The inter-
nal rotor (blue) is driven with a periodic angular velocity by a
DC motor, which exerts a periodic torque on the torque on the
robot. (Color figure online)
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internal momentum wheel is the blue circular object in
Fig. 4.The internalmomentumwheel is a steal ringwith
an outer diameter of 13.2cm and an inner diameter of
10.2cm and is 0.95cm thick. The moment of inertia
of the momentum wheel about an axis passing through
its center of rotation is approximately 14.6kgcm. The
DC motor is controlled by an Arduino Micro, both the
motor andMicro were powered by a 7.4VLipo battery.
The DC motor has a max angular velocity of 220 RPM
and a maximum torque of 1.7kgcm. The robot with all
of its components weighs approximately 1100g. Dur-
ing the experiments, the rotor is forced to turn by the
motor with a periodic angular velocity φ̇,

φ̇ = A sinΩt .

The oscillations of the internal momentum wheel peri-
odically change the heading angle of the robot so when
we refer to straight-line swimming, we are referring
to the motion on the average being in a straight-line
and the periodic trajectory is demonstrated in Fig. 6. In
Fig. 6, the solid red line represents the position of the
approximate center of gravity (C.G.) of the robot dur-
ing part of one experiment. The black circles represent
the position of the C.G. at a time instant where we have
included a blue line to give a visual representation of
the robots angular orientation.

The amplitude A and frequency Ω
2π of the input

function were changed to get results for 12 dif-
ferent input parameters with amplitude A varying
between (255, 225, 200) and the input frequency vary-
ing between (0.5, 0.75, 1, 1.25) Hz. We have only
included one representative result.

The experiments were performed in a pool that mea-
sures 4.87m× 2.43m, with the depth of water being
about 1.2m. The position and the orientation of the
robot are recorded by three cameras placed over the
pool at a height of about 1.2m from the surface of the
water. The cameras recorded video at 1080p quality and
a frame rate of 60 FPS. The robot is almost neutrally
buoyant. When the robot is placed in water, the surface
of the water reaches about 1cm from the top face of
the robot. A whiteboard is stuck on the top face of the
robot. The white board has two filled circles drawn on
it, as shown in Fig. 5. The circles lie on chord of the
foil such that the center of mass of the robot is at the
midpoint of the line joining these circles. The filled cir-
cles stand in contrast against the white background of
the board. The image processing toolbox in MATLAB

Fig. 5 Foil-shaped robot swimming in a pool. A whiteboard
with two black filled circles is placed on top of the robot. The
circles are detected in images to track the motion of the robot.
The whiteboard is above the water level and does not contact the
water surface

was used to track the positions of the circles in each
image recorded by the cameras.

In each frame recorded by the cameras, the centers
of the filled circles are identified. The center of the line
joining these circle centers is the center of the robot.
The slope of the line joining the centers of the circles
identifies the orientation of the robot with respect to a
fixed spatial frame of reference. Knowing the position
of the center of the robot, (x(tk), y(tk)) and the orien-
tation angle θ(tk) at consecutive times tk , the velocity
(Vx , Vy) and the angular velocity ω of the robot are
calculated using Euler forward differences. A sample
experimental trajectory obtained by tracking the filled
circles is shown in Fig. 6, where the blue lines are the
imaginary lines joining the filled circles and the mid-
point of these blue lines tracks the position of the center
of the robot along its trajectory (red curve).

The velocities thus calculated are in the spatial ref-
erence frame. In the next step, the velocity of the body
in a body frame is calculated.With the estimated global
velocities, we apply a rotation matrix to determine the
velocity in the body-fixed frame,

123



2460 B. Pollard et al.
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Fig. 6 Trajectory during one experiment, with the bodies angu-
lar orientation shown by the solid blue lines. (Color figure online)

[
ux (tk)
uy(tk)

]
=

[
cos θ(tk) sin θ(tk)

− sin θ(tk) cos θ(tk)

] [
Vx (tk)
Vy(tk)

]
. (21)

Rather than plotting the velocity or angular veloc-
ity of the robot as functions of time, we instead plot
the longitudinal velocity of the robot versus the angu-
lar velocity. This is inspired by the dynamics of the
Chaplygin sleigh in the reduced velocity space. Fig-
ure 7 shows such a plot for one experiment, where the
input torque parameters areΩ = 2π , A = 12. Starting
from (ux = 0, ω = 0), the trajectory in the reduced
velocity space converges to a limit cycle shaped as the
number 8. A supplementary video of the motion of the
robot and the convergence of its velocity to a limit cycle
is available. One feature of the limit cycle is that the
angular velocity is periodic with a frequency equal to
that of the frequency of the torque applied via the inter-
nal rotor. The angular velocity of the robot on the limit
cycle has zero mean. This is expected since the robot
rotates in an opposite direction to that of the internal
rotor. Furthermore, the robot’s heading angle converges
to a constant value on the limit cycle. A more interest-
ing feature of the limit cycle is that the velocity ux is
periodic with a frequency that is twice that of the fre-
quency of the forcing torque. The longitudinal velocity
has a nonzero mean, which is the speed of the robot
averaged over one time period. Across the range of fre-
quencies and amplitudes we tested, the robot’s velocity
converges to a limit cycles shaped as the Fig. 8, with
the same features.

4 Numerical simulation of limit cycle dynamics of
the swimming robot

A simplified computation of the robot–fluid interaction
can be performed by assuming that the fluid is mostly

0 5 10 15
ux

-100

-50

0

50

100

ω

Fig. 7 Velocity (cm/s)–angular velocity (◦/s) of the robot. The
trajectory in this reduced velocity space converges to the limit
cycle shaped as ‘8.’ The convergent solution is shown by the
black dashed line

Fig. 8 Representation of the foil broken into N panels. The body
frame is denoted by the axes xb − yb. On each panel, the local
normal and tangential directions are shown by the red lines. On
a generic panel A, a source distribution of strength σ is placed.
A vortex wake panel of length Δ is shown by the blue line at the
trailing edge of the foil with a circulation Γ . The existing wake
in the fluid is shown by the blue and red swirls behind the vortex
wake panel. (Color figure online)

inviscid except in a small region close to the bound-
ary of the robot. This is justified, since the Reynolds
number in our experiments varies between 5000 and
15,000. Such an assumption is common and standard
in fluid mechanics [27,53]. The viscous effects that
dominate around the boundary of the robot lead to vor-
tex shedding. Within an inviscid flow framework, this
complex process is approximated by the creation of
inviscid point vortices at the sharp edges of a body. This
is achieved through the so-called Kutta condition [27].
There is no universal agreement on the exact statement
of the Kutta condition, the interested reader is referred
to [54] for a discussion on the Kutta condition. The
steady Kutta condition states that the velocity of the
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fluid at the sharp edge of a body such as the Joukowski
foil should be zero. In [21,25], it was shown that the
steady Kutta condition implies that

− 2ẋ sin θ + 2 ẏ cos θ − K θ̇ = uv. (22)

Here, ẋ and ẏ are the velocity of the center of mass
of the Joukowski foil and θ̇ its angular velocity. The
velocity of the fluid at trailing in a direction transverse
to the trailing edge due to any existing wake is denoted
by uv . The term K is the numerical value of the Kirch-
hoff potential, associated with the spinning motion of
the foil, evaluated at the trailing edge. This affine non-
holonomic constraint is the same as the constraint on
Chaplygin sleigh except for the nonhomogeneous part
of the constraint,uv . This nonhomogeneous component
exists because the velocity of the foil at the trailing edge
should not be zero, but rather equal to the velocity of
the fluid, since the trailing edge is a stagnation point.

The drawbackof the pure inviscid flowmethodusing
point vortex dynamics and the steady Kutta condition
is that viscous drag like effects are entirely ignored.
In fact, the motion of the Joukowski foil is computed
using the conservation of linear and angular impulse.
The second drawback is related to the validity of the
application of the steadyKutta condition itself. To over-
come these drawbacks, we adopt a numerical method
that includes a drag force as well as incorporates an
unsteady Kutta condition within a framework of an
unsteady panel method, see, for example, [55,56]. The
unsteady Kutta condition states that there is no pres-
sure gradient across the trailing edge. This version of
the Kutta condition has been used to investigate the
motion of fish-like bodies in other well-known work,
see, for instance, [28,30].

In the panel method simulation, the boundary of the
two-dimensional cross section of the foil is broken up
into N straight panels as shown in Fig. 8. On the i th
panel at time step k, there are a continuous source dis-
tribution σi and a constant circulation distribution γ as
shown in Fig. 8a. Additionally, there is a wake panel
at the trailing edge of the foil, shown in Fig. 8b, with
a circulation value equal to the change in circulation
at the current time frame relative to the previous time
frame. In the panel method, the boundary condition of
no normal flow is only enforced at the center of each
panel, known as the control point. The general outline
of the panelmethod used for these simulations is shown
in Fig. 9.

Calculate the affects of foil 
panels on body (An, At,Bn, Bt)

Assume previous wake panel 
parameters or update values

Solve for no normal velocity at 
each panel

Solve for Kutta Condition at 
trailing edge and find 

Determine new panel parameters 
based on 

Does 

Advance vortices and foil position 
and orientation

Move to next time step

Yes

No

Compute pressures, forces and 
new velocity for foil

Yes

Assume body velocity from 
previous time step or update value

No

Fig. 9 Flowchart describing the panel code used

The simulation starts each new time frame by esti-
mating the current parameters using extrapolation from
previous time frames. It then uses these parameters to
determine the At , An matrices and the Bn , Bt , Cn , Ct ,
Wt and Wn vectors, where the superscripts n and t
denote the normal and tangential components, respec-
tively. The A matrices describe the affects of the N
source distributions on the N panels, while the B, C
and W vectors describe the affects of the circulation
γ on each panel, the affects of all point vortices pre-
viously shed and the affect of the circulation on the
wake panel, respectively. The Neumann normal flow
boundary condition can now be applied,

N∑
j=1

An
i, j (σ j )k + γk B

n
i +

k−1∑
d=1

Cn
i,d

L

Δk
(γd−1 − γd)

+Wn
i

L

Δk
(γk−1 − γk) = Vi · ni . (23)
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In Eq. 23, L is the total perimeter of the foil and Δk is
the length of the current wake panel. The left-hand side
of equation 23 describes the fluid velocity on the i th
panels control point at time frame k, which equals the
right-hand side describing the translational velocity of
the i th control point. In Eq. 23, the only unknowns are
the σ vector and the scalar γ and all other parameters
are approximated from either the previous time frame
or the previous iteration of the current time frame.Thus,
(σ )k can be rewritten as a function of γk ,

(σ )k = (At
i, j )

−1γk

(
−Bn

i + Wn
i
L

Δ

)

+ (At
i, j )

−1

(
V · n −

k−1∑
d=1

Cn
i,d

L

Δ
(γd−1 − γd)

−Wn
i
L

Δ
γk−1

)
(24)

Equation 24 can be written in a more compact form
by introducing variables b1=(At

i, j )
−1

(−Bn
i + Wn

i
L
Δ

)

and b2 = +(At
i, j )

−1
(
V · n −∑k−1

d=1 C
n
i,d

L
Δ

(γd−1 −
γd) − Wn

i
L
Δ

γk−1
)
. So now Eq. 24 can be written as,

(σ )k = b1γk + b2. (25)

Recognizing that we have N equations and N + 1
unknowns, we apply the Kutta condition on the trailing
edge to solve for our current circulation strength γk .
The Kutta condition sets the pressures on the first and
last panel equal to each other. This is represented math-
ematically by altering the unsteady form of Bernoulli’s
equation

p + 1

2
||u||2 + ∂φ

∂t
= constant

p1+ 1

2
||u1||2+ ∂φ1

∂t
= pN + 1

2
||uN ||2+ ∂φN

∂t

p1− pN =0= 1

2
(||uN ||2−||u1||2) + ∂φN

∂t
− ∂φ1

∂t
.

(26)

If two points x1 and x2 are connected by a path s, then
the change in potential between the two points is given
by

Δφ =
∫ x2

x1
u · ds (27)

whereu is the fluid velocity along the path s. Evaluating
the integral along the surface of the foil in the clockwise
direction canbedefined as being equal to the circulation
enclosed by the path:
∫ N

1
u · ds = Γb. (28)

So the change in Γb can be written as

ΔΓb

Δt
= 2L

(γ )k − (γ )k−1

Δt
, (29)

thus resulting in

||u1||2 − ||uN ||2 = 2L
(γ )k − (γ )k−1

Δt
. (30)

Thefluidvelocities tangential to the panels canbedeter-
mined using an equation similar to Eq. 23 but the At ,
Bt , Ct and Wt matrix and vectors are used. The mag-
nitude of the fluid velocities on panel 1 is expressed as
a function of the scalar γk value,
||u1||2 = (ut1)

2 + (un1)
2

=
[
γk

(
N∑
i=1

b1i A
t
1,i +

N∑
i=1

Bt
1,i + Wt

1
L

Δk

)

×
(

N∑
i=1

b2i A
t
1,i + Wt

1
γk−1L

Δk
+

k−1∑
d=1

Ct L(γd−1 − γd )

)]2

+ (V1 · n1)2.
(31)

Equation 31 can be simplified by assigning variables
to the product of the matrix and vector multiplications,
similar to the process used to get Eq. 25, resulting in

||u1||2 = (γkd11 + d21)
2 + (V1 · n1)2.

The same process is used to determine themagnitude of
the fluid velocity on the N th panel, and these velocity
terms can be plugged back into Eq. 30,

(γkd11 + d21)
2 + (V1 · n1)2 − (γkd11 + d21)

2

+ (V1 · n1)2 = 2L
(γ )k − (γ )k−1

Δt
.

(32)

Equation 32 is solved to determine the γk value; note
that the equation is quadratic which will result in two
γk values. We always select the value of γk that results
in the fluid flowing off of both the upper and lower
trailing edge panels, meaning that utN > 0 and ut1 < 0.

The determined γk value is then plugged into Eq. 25
to determine the source strengths on each panel. With
the source strengths determined, thewake panel param-
eters can be updated based on the fluid velocity at the
trailing edge,

Δk = Δt
√

(uxwp)
2 + (uy

wp)
2

αk = arctan

(
uy

wp

uxwp

)
.

(33)

With the updated wake panel parameters, the code
begins again solving for the new b1 and b2 vectors
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and then determining a new γk , (σ )k and wake panel
parameters until these values converge to within a cer-
tain tolerance.

With the key foil parameters estimated, the unsteady
Bernoulli’s equation is applied on each panel to deter-
mine the pressure forces. The method of solving the
Bernoulli equation is similar towhatwas done in Eq. 26
except that here the pressure on the panels is found rel-
ative to the pressure infinitely far away, i.e., there is no
fluid velocity or change in potential. This allows us to
use,

pi = −1

2
||ui ||2 − ∂φi

∂t
(34)

Equation 34 can be rewritten in the body-fixed frame of
reference eliminating the affects of shape changing in
the potential function calculation. When changing the
reference frame, the magnitude of the fluid velocities
does not change but the ∂φi

∂t does. It can be rewritten by
(

∂φ

∂t

)

inertial
=

(
∂φ

∂t

)

body
+ ∂X

∂t

∂φ

∂x
+ ∂Y

∂t

∂φ

∂y

=
(

∂φ

∂t

)

body
+ V · ∇x,yφ

(35)

where V = −V0 − Ω × r . Or in other words, V is the
velocity of the fluid due to the motion of the body rela-
tive to a body-fixed frame. The ∇x,yφ can be rewritten
as[

∂φ
∂x
∂φ
∂y

]
=

[
cos(β) sin(β)

− sin(β) cos(β)

] [
ux

uy

]
(36)

where ux and uy are the inertia fluid velocity compo-
nents calculated on each panel by
[
uxi
uy
i

]
=

[
cos(θi ) − sin(θi )
sin(θi ) cos(θi )

] [
uti
uni

]
(37)

where θi is the angle of the i th panel.
Now Eqs. 35–37 can be put back into Eq. 34,

p = −
(

∂φ

∂t

)

body
− 1

2

(
u′2 + v′2)

− 1

2

[
(−V x

b + Ωy)(ux cos(θ) + uy sin(θ))

+(−V y
b − Ωx)(−ux sin(θ) + uy cos(θ))

]
.

(38)

The only term unknown in Eq. 38 is the
(

∂φ
∂t

)
body

,

which is approximated using the backward finite dif-
ference method. With the pressures known, we know
the forces on the body and thus we utilize

∑
F = mV̇

Fig. 10 The foil and the point vortex wake from one of the
simulations

and
∑

M = I ω̇ to determine translational and angular
accelerations of the foil which are used to determine
the velocity for the foil during the current time frame.
The code then starts again, determining the foil param-
eters with the updated foil velocities. This process is
repeated for each time frame until the foil parameters
and velocities both converge.

Once the foil parameters and velocities both con-
verge, the circulation of the wake panel is concentrated
at its midpoint and represented by a point vortex, which
is shed into the fluid. The positions of the foil and all
previously shed point vortices are updated, and the code
starts from the very beginning at a time tk = tk−1+Δt .

In our simulations, the input to the body is a periodic
torque τ = A cos(Ωt). A simulation image of thewake
formed behind a foil subjected to periodic torque is
shown in Fig. 10.

When the foil is subjected to a periodic torque, the
velocity of the foil and its angular velocity converge to
a periodic function. A plot of the angular velocity of the
foil versus the longitudinal velocity of the foil (in the
body frame) is represented by the blue line in Fig. 12. In
this velocity space, the trajectory of the state of system
converges to a limit cycle that is shaped as the Fig. 8.
The simulated motion of the foil and the associated
wake, when the foil is subjected to a periodic torque,
is shown in the supplementary video, along with the
convergence of its longitudinal and angular velocity to
the limit cycle.

We ran simulations for a range of forcing amplitudes
and frequencies to find that such a limit cycle exists in
all cases.
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Fig. 11 Velocity of the foil’s trailing edge in red and the fluid
velocity at the trailing edge from the vortex wake represented by
the dashed blue line. (Color figure online)

5 Chaplygin sleigh-like surrogate model for a
swimming Joukowski foil

The dynamics of the swimming Joukowski foil are
described by a high-dimensional dynamical system.
However, the dynamics of the system are confined to a
low-dimensional attractor that is topologically similar
to the attractor of the velocity equations of the Chap-
lygin sleigh. The existence of such a low-dimensional
attractor allows the Chaplygin sleigh to serve as a sur-
rogate model for the swimming Joukowski foil. More
formally, the unsteady Joukowski condition at the trail-
ing edge ensures that the velocity of the fluid relative
to the sharp edge is periodic with small amplitude. Fig-
ure 11 shows the transverse velocity (along the Yb axis
in the body frame) of the trailing edge (red) and the
transverse velocity of the fluid at the same point (blue).
The difference between the two, which represents the
slip velocity, is periodic with a small amplitude. The
simulations of the foil–vortex interaction suggest that
the foil’s motion is like that of a Chaplygin sleigh with
a periodic affine nonholonomic constraint. We use the
harmonic balance equations to define such a reduced
order surrogate model of the foil. The Chaplygin sleigh
with a no-slip constraint will be used as the surrogate
model as opposed to the sleigh with an affine con-
straint, even though the unsteady Kutta condition could
impose a small periodic affine constraint. As observed
in Sect. 2, the limit cycles for both the types of sleigh
are nearly identical when the prescribed slip velocity
is small in magnitude. The analytical approximation
of the limit cycles is, however, easier to compute if
the surrogate model is the Chaplygin sleigh with the
homogeneous constraint.

A surrogate model for the swimming foil is con-
structed by first finding the amplitudes (Ax , Bx , Aw,
Aw) of the harmonics of the limit cycle solution
as well as the velocity constant uc from (13) and
(14). With an approximate solution for the foil limit
cycle known, the remaining problem is to determine
the parameters of a Chaplygin sleigh that produce a
limit cycle with the same solution. This requires the
solution to an inverse problem where the parameters
(m, b, c, α = I + mb2) are the unknowns and the
parameters (Ax , Bx , Aw, Aw, uc) in (15) are known.
The parameters (Ax , Bx , Aw, Aw, uc) are determined
from the foil simulations by first assigning the cosine
(A) amplitudes based on the foil velocities at the begin-
ning of one input period.Next, an initial sine (B) ampli-
tude is assigned and the error is summed between the
estimated velocities and the simulation data for one
complete timeperiod.The (B)values are updatedbased
on the error from the previous iteration, and the process
is repeated until the errors converge. The same iterative
process is then repeated to determine the uc value. This
leaves the system of Eq. (15) overdetermined with five
equations and four unknowns.

The overdetermined system of equations can be
approximately solved through a constrained least
squares method, the constraint being that all the four
unknowns (m, b, c, α) should be nonnegative,

min
x

1

2
||Cx − d||22

s.t. Ax ≤ b
(39)

where

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

A2
w + B2

w 0 −2uc 0

B2
w − A2

w −4ΩAx −2Bx 0

AwBw 2BxΩ −Ax 0

Ax Aw + Bx Bw + 2ucBw 0 0 2ΩAw

Bx Aw − Ax Bw − 2uc Aw 0 0 2ΩBw

⎤
⎥⎥⎥⎥⎥⎥⎦

,

x =

⎡
⎢⎢⎢⎢⎣

δ

m

c

α

⎤
⎥⎥⎥⎥⎦

,d =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

2A

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, A = −I4×4, b =

⎡
⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎦

.

We used MATLAB’s lsqlin function to perform
this calculation. As an example, using the limit cycle
parameters Ax = 0.001779, Bx = −0.000932, Aw =
0.115531, Bw = 0.699560, and uc = 0.434879 the
least squares computation yielded the following surro-
gate sleigh parameters m = 401.2119, b = 0.0959,

123



Swimming on limit cycles with nonholonomic constraints 2465

u
x
 [BL/s]

0.3 0.32 0.34 0.36 0.38

ω
 [

ra
d/

s]

-1

-0.5

0

0.5

1

Foil Sleigh

(a)

u
x
 [BL/s]

0.38 0.385 0.39 0.395

ω
 [

ra
d/

s]

-0.5

0

0.5

Sleigh
Foil

(b)

Time [s]
0 20 40 60

V
ne

t [
B

L
/s

]

0

0.1

0.2

0.3

0.4

Sleigh
Foil

(c)

Fig. 12 a Foil and sleigh velocities as they converge to their
respective limit cycles. b Foil and sleigh limit cycles. c The aver-
age velocities of the foil and the equivalent sleigh converge to
nearly the same value

c = 22.3925, α = 0.4450. These parameters were
plugged into the sleigh equations (7)–(8) to simulate
the dynamics of the surrogate sleigh. The solution of
(7)–(8) is shown in (red) Fig. 12a. For comparison,
the same trajectory for the swimming foil is shown in
red. As the sleigh and foil approach their steady-state
speeds, the dynamics converge to limit cycles as shown
in Fig. 8. The trajectories of both the systems converge
to limit cycles that are nearly identical. The limit cycles
themselves obtained from the simulations are shown in
Fig. 12b.

It should be noted from Fig. 12a that the transient
trajectories of the foil do not match those of the sleigh
very well. This is expected since only dynamics on the
limit cycles have been modeled and matched with each
other.

Beyond a qualitative match of the limit cycles, the
average speeds of the sleigh and foil can be used as a
quantitative measure of the accuracy of the sleigh as a
surrogate model for the swimming foil. Their average
speeds, v, calculated using (18) are shown in Fig. 12c.
In Fig. 12c, the blue dashed line is the average veloc-
ity for the foil, while the red solid line is the average
velocity of the equivalent sleigh given the same peri-
odic input. It is obvious that the transient dynamics of
the two systems differ but both the foil and the sleigh’s
average speeds converge to nearly the same value, with
the difference in the two being ≈ 0.0006 [BL/s] or
≈ 0.18%. The small error arises due to the least squares
approximation of the sleigh model, (39). The close-
ness of the average speeds is also seen in Fig. 12b. The
point of intersection of the two branches of the limit
cycle which also lies on the horizontal axis is the aver-
age speed. This is very close in magnitude for both the
limit cycles shown in Fig. 12b.

Here, we remark once again that while Kutta condi-
tion could lead to an affine nonholonomic constraint,
the limit cycle of the foil’s dynamics is close to that
of the Chaplygin sleigh with a homogeneous nonholo-
nomic constraint. Since itwas shown that the limit cycle
of the sleigh with an affine periodic constraint is nearly
the same, it implies that the limit cycle of the foil’s
dynamics is close to that of the sleigh with an affine
periodic constraint.

6 Turning control

The utility of having a low-dimensional Chaplygin
sleigh surrogate model for the swimming foil is that
it can prove useful in controlling the dynamics of the
swimming foil. Determining the control input that pro-
duces the desired motion and path of the swimming
foil is greatly simplified by the very low-dimensional
equivalent sleigh model. Essentially, a control input is
designed to steer the surrogate Chaplygin sleigh with
prescribed average speed. Such an input is given by
(20) discussed in Sect. 2.1. The same control input is
then applied to the swimming foil.
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This control via the surrogate Chaplygin sleigh is
demonstrated through a numerical simulation of the
turning maneuver of the foil. The foil first starts from
rest and tracks an average speed of v = 0.385 body
lengths per second and an average heading angle θ = 0.
It is then required to make a 90◦ turn while tracking the
same speed. The necessary control inputs for the turn-
ing maneuver are the amplitude and frequency of oscil-
lations of the applied torque via the internal reaction
wheel. One can freely choose a frequency and deter-
mine the necessary amplitude of the torque to accom-
plish the prescribed maneuver. The frequency of the
control torque is chosen to be the same as in the com-
putations described earlier. The amplitude of the con-
trol torque is determined by first obtaining the equiva-
lent sleigh parameters (m, b, I, c). These parameters of
such an equivalent sleigh were computed in the previ-
ous section from the numerical simulations of the foil–
vortex interactions and using (39), where the parame-
ters are determined as described in the previous section.
Once the equivalent sleigh parameters are determined
using (39), the control torque (20) is applied on the foil
to steer it tomake a 90◦ turn, while tracking the average
speed of v = 0.385.

The average heading angle from the simulation of
the surrogate Chaplygin sleigh and the coupled fluid
foil is shown in Fig. 13a, where the angle (θ̄) is the
angular position of the body averaged over one time
period of the forcing function. In Fig. 13a, the red
dashed line is the average heading angle for the sur-
rogate Chaplygin sleigh while the blue solid line is the
average heading angle for the foil with the same torque
input. The heading angle is originally 0 degreeswith the
foil swimming along a horizontal line. The foil begins
its turning maneuver at t = 50. At about t = 70, the
difference in the final heading angle of the foil and the
sleigh was ≈ 1

◦
. The average speed of the foil and the

surrogate sleigh is shown in Fig. 13b, which converges
to the desired speed and deviates only slightly during
the turning maneuver. During the turning motion, the
trajectory of the foil deviates from the limit cycle before
converging back to it as shown in Fig. 13c. Here, we
remark that the small differences between the average
speed of the surrogate sleigh and the foil during the
turning motion seen in Fig. 13b cannot be attributed
solely to errors to the numerics. The Chaplygin sleigh
is a good surrogate model for the swimming foil, only
when the velocities of the two systems are close to
their respective limit cycles. During the turningmotion,
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Fig. 13 Turning maneuver of the foil by 90◦ while tracking
a specified average speed, with control torque computed from
the surrogate sleigh model. a Average heading angle of the foil
(blue solid line) and equivalent sleigh (red dashed line). b Aver-
age speed of the foil (blue solid line) and equivalent sleigh (red
dashed line). cThe sleigh’s velocity and angular velocity undergo
a perturbation from the limit cycle during the turn, but converge
back to the limit cycle. (Color figure online)

when the trajectories in the velocity space deviate from
the limit cycle, differences arise between the dynamics
of the two systems.

7 Conclusion

The dynamics of fish-like swimming robots have a
close resemblance with the dynamics of terrestrial non-
holonomic systems that are also subjected to a viscous
‘drag’-like force. The reason for this similarity is that

123



Swimming on limit cycles with nonholonomic constraints 2467

the vortex shedding phenomenon at the sharp edge of
a swimming body imposes a nonholonomic constraint
on the swimmer. Specifically, we show that the sys-
tem of the Chaplygin sleigh has limit cycle solutions
when actuated by a periodic torque and a topologi-
cally similar limit cycle solution exists in the swimming
motion of a Joukowski foil-shaped robot actuated by
a periodic torque. We demonstrated this through both
numerical simulations and experiments. This similar-
ity in the limit cycle solutions for the two disparate
systems allows the Chaplygin sleigh to serve as a sim-
plified surrogate model for the dynamics of the swim-
ming robot. Once such a simplified model is created,
one can set aside the complicated coupled dynamics of
the fluid–robot interaction. Such simplified models are
extremely useful to control the dynamics of swimming
robots. The utility of such amodel is shown in this paper
through the numerical simulation of a turning maneu-
ver of a swimming robot while tracking a net speed.
While we have only demonstrated the utility of the sur-
rogate Chaplygin sleigh for controlling the motion of
the foil, through numerical simulation, future workwill
address development of practical feedback control for
a swimming robot based on this surrogate model.

A larger significance of this paper is that it advances
a framework to model the dynamics of articulated mul-
tisegmented swimming robots. Terrestrialmultiple seg-
mented systems similar to the Chaplygin sleigh with
possibly more than one physical nonholonomic con-
straint can allow one to model the dynamics of articu-
lated fish-like robots.
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