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Abstract Many real systems canbedescribed through
time-varying networks of interactions that encapsulate
information sharing between individual units over time.
These interactions can be classified as being either
reducible or irreducible: reducible interactions pertain
to node-specific properties, while irreducible interac-
tions reflect dyadic relationships between nodes that
form the network backbone. The process of filtering
reducible links to detect the backbone network could
allow for identifying family members and friends in
social networks or social structures from contact pat-
terns of individuals. A pervasive hypothesis in exist-
ing methods of backbone discovery is that the specific
properties of the nodes are constant in time, such that
reducible links have the same statistical features at any
time during the observation. In this work, we release
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this assumption toward a new methodology for detect-
ing network backbones against time variations in node
properties. Through analytical insight and numerical
evidence on synthetic and real datasets,we demonstrate
the viability of the proposed approach to aid in the dis-
covery of network backbones from time series. By crit-
ically comparing our approach with existing methods
in the technical literature, we show that neglecting time
variations in node-specific properties may beget false
positives in the inference of the network backbone.

Keywords Activity-driven · Backbone network ·
Statistical filtering · Time-varying network

1 Introduction

Dealing with real, temporal datasets brings forward
several challenges. One of the most ambitious goals
is to elucidate the role of temporal interactions in com-
plex systems [1–5]. The presence of temporal interac-
tions questions the very basis of a network approach to
complex systems. As articulated in [6], temporal links
could be related to intrinsic node properties that do not
require the truly dyadic nature of a network. Such tem-
poral links are called reducible, whereby they are fully
explained by node-specific features. Devising robust
methodologies to filter out these reducible links for the
inference of the irreducible backbone of temporal inter-
actions is an open research topic.
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Fig. 1 Top: time evolution of a complex system, showing node-
specific, reducible interactions (solid red links), and the irre-
ducible backbone (dashed blue links). Bottom: empirical obser-
vations of temporal interactions between any node pair are used
by a filtering algorithm to reconstruct the backbone. The result-

ing backbone network is composed of a set of aggregated, static
links. Retaining a link in the backbone is informed by a statistical
comparison that tests the hypothesis of the link being explained
by the null model

A fruitful approach entails the formulation of null
models to explain the reducible part of the temporal
interactions and guide the process of filtering, as illus-
trated in Fig. 1. Filtering is carried out within a statis-
tically principled approach, where one seeks to detect
links that are incompatible with the null hypothesis of
links being produced by the null model [7–14]. More
concretely, the approach assigns a “strength” to link
candidates and filters out weak links, which are statis-
tically unlikely to pertain to the backbone network.

Despite significant progress, most research studies
assume that nodes have time-invariant properties, such
that the empirical time series are realizations of sta-
tionary stochastic processes. However, time-varying
connections might be affected by several factors, such
as individual propensity to generate links over time
and physical constraints on the network evolution. In
addition, connections may vary non-uniformly in time,
exhibiting highly dynamic patterns that could chal-
lenge the possibility of network reconstruction. The
chief objective of our work is to explore the feasibility
of inferring the backbone network in the presence of
richer time-varying connections.

1.1 Background and related studies

A key step toward the inference of the backbone net-
work is the formulation of reliable and comprehensive
nullmodels.Apromisingmodeling paradigm is offered
by activity-driven networks (ADNs) [15]. Within the
ADN paradigm, individual propensity of generating
links over time is encapsulated by a single, hetero-
geneously distributed parameter, called activity. In its
original formulation, the activities of all the nodes are
assumed to be constant in time and the process of net-
work assembly is carried out in a discrete-time setting.
A similar approach can be undertaken in continuous
time [16].

Because of its analytical tractability, activity-driven
models have been extended to comprehend features of
real networks, such asmemory effects in the linkwiring
[17], self-exciting mechanisms in individual activities
[18], presence of communities [19], and spreading over
multiple layers [20,21]. For example, recent studies
have examined adaption of individual activities based
on the node’s health status [22,23]. Building on this
promising line of research, a predictive model of the
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2014 Ebola spreading in Liberia has been established
[24]. Finally, circadian and weekly patterns have been
included in the ADN paradigm in [25].

Upon formulating a valid null model, the next step
to backbone inference entails a statistical test to iden-
tify irreducible links. The simplest approach is to set
a threshold that filters out links with lower strength
[26]. However, such an approach could fail to capture
the inherent heterogeneity of many complex systems
where the formationof reducible links drastically varies
in time and throughout the network. The disparity filter
[9], which has been recently extended to consider self-
exciting mechanisms [14], could address inference of
heterogeneous networks. A more established approach
is the statistically validated network (SVN) [10], first
introduced to study bipartite networks, and then applied
to temporal networks [11,27–29].

The SVN approach works on an aggregated ver-
sion of the temporal network, that is, a static weighted
network formed by retaining all the links occurring at
any time instant. Each link has a weight equal to the
total number of temporal connections formed over time
between two nodes. The SVN approach has helped to
elucidatemany aspects of real systems, such as connec-
tions between the backbone network and the network’s
community structure [30], the influence of time corre-
lations [28,29], and the time evolution of the backbone
network [27].

A further improvement on the SVN approach is
constituted by the temporal fitness model (TFM) [7].
The TFM utilizes an ADN as a null model, in which
individual activities are considered to be constant in
time. Their values are identified through maximum
likelihood estimation. The approach can be extended
to study daily patterns and circadian rhythms, within
the so-called TFMrhythm [7], which utilizes a common
function to modulate the overall network evolution.
The SVN, TFM, and TFMrhythm are summarized in
“Appendix”.

Overall, these approaches assume that individual
properties of the nodes are constant in time. As a result,
they cannot be utilized to infer backbone networks in
the presence of changes in individual behavior.

1.2 Our contribution

Here, we seek to propose a new methodology to
improve the detection of a backbone network in the

presence of complex temporal variations of activity
patterns. To this end, we introduce an extended ver-
sion of ADNs, where individual activities are piece-
wise constant in time and heterogeneously distributed
throughout the network. The null model assumes that
all connections are formed uniformly at random, that
is, the probability of creating a link at a specific time
instant between two nodes is the product of the indi-
vidual activities of the nodes at that time. In this vein,
a very active node is more likely to form connections
with another high active node than with a low active
one.

Accounting for time-varying activities in the null
model calls for two main steps to find irreducible
links. First, it is necessary to estimate activity values as
piece-wise constant functions of time. Then, links are
included in the backbone network if their overallweight
is significantly higher than what would be expected
from the null model.

While the latter step can be tackled through a statis-
tical test similar to [7,10], dealing with estimation of
activity values requires a novel scheme. Specifically,
we divide the total observationwindowof network evo-
lution in independent intervals, containing a uniform
total number of connections. Activities are then esti-
mated according to the weighted configuration model
[31,32], which has been shown to offer reliable esti-
mates for large networks.

Partitioning the observation window into indepen-
dent intervals is a crucial step that can be carried out
in three ways, depending on the available information
of the network evolution. If these intervals are known a
priori, they can be used as inputs for the estimation of
activity values. If only the number of these intervals is
known, then a supervised method is necessary, which
takes the number of intervals as an input and returns
an interval partition. Finally, if no information is avail-
able, an unsupervised method is necessary to identify
the interval partition from the available time series.

The simplest supervisedmethod entails choosing the
length of the intervals at random, such that their sum
equals the length of the total observation window. This
naïve approach should set a lower bound for the per-
formance of our approach to the backbone inference.
Other effective supervised methods include the parsi-
monious temporal aggregation [33], piece-wise con-
stant approximation [34], and V-optimal histograms
[35]. A freeware software that implements these meth-
ods is available in [36].
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A convenient unsupervised method is the Bayesian
blocks (BB) representation [37]. The BB method
employs maximum likelihood and marginal posterior
functions to separate statistically significant features
from randomobservational errors. In thisway, it relaxes
common assumptions regarding the smoothness or
shape of the overall temporal evolution, without con-
straining the process of partitioning the observation
window.We refer to ourmethodology toward backbone
inference as evolving activity-driven model (EADM),
encompassing the null model formulation, the identifi-
cation of the time-varying activities, and the statistical
test.

We acknowledge that partition into intervals is not
always necessary. For instance, if a system is station-
ary, then the number of connections generated at each
time step is constant. In this case, the total observation
window is contained in only one interval. To investi-
gate such a scenario, we examine a simplified version
of the EADM,where only one interval is present so that
the EADM reduces to a classical ADN (referred to as
EADMI=1).

Beyond comparing our approach with its simplest
incarnation that utilizes a single time interval, we fur-
ther consider three different methods, sharing similar-
ities with the EADM: SVN, TFM, and TFMrhythm. We
consider both an artificial, synthetic network (bench-
mark) and seven real-world networks (datasets). For
each network (artificial or real), we set the maximum
computational time of 24h, thereby dismissing longer
processes.

The synthetic network is useful for validating our
model in a controlled setting. In fact, it considers activ-
ity values as piece-wise constant functions in time with
a ground truth on the backbone network. We consider
three different scenarios. First, we assume knowledge
about the interval partition, thereby fully exploiting
the capabilities of our method. Then, we consider the
case in which limited information is available about the
interval partition. When only the number of intervals
is available, we use the naïve supervised method and
estimate the length of the intervals at random. When
no information about the interval partition is accessi-
ble,we utilize the unsupervisedBBmethod.Afterward,
when tackling backbone detection of real systems, we
focus on theBBmethod, aswehave noprior knowledge
about the interval partition.

1.3 Main results

A critical result of our study is the analytical character-
ization of the conditions in which one must account for
time-varying individual properties to accurately infer
backbone networks. Our analysis suggests that con-
sidering time-varying properties is necessary when the
system is not stationary or when the activation pattern
of a node is correlated with the activation pattern of
another node.

Further, from the analysis of synthetic networks, we
conclude that our methodology outperforms the SVN,
TFM, and TFMrhythm, whereby it leads to a more reli-
able inference of backbone networks in synthetic data,
where a ground-truth backbone is known. Interestingly,
in both synthetic and real networks, we find that our
approach reconstructs a backbonewith a subset of links
found by other methods, thereby diminishing the num-
ber of false positive links (links wrongly identified
as part of the backbone network). Overall, the three
methods available in the literature result in equivalent
inferences, similar to the special case of EADMI=1,
in which we execute our approach without partitioning
the observation window.

Thus, we propose that assuming individual activities
to be constant in time could lead to incorrect classifica-
tion of irreducible links and parts of the backbone net-
work. Considering individual activities as piece-wise
constant functions of time offers improved estimates
and more reliable results.

1.4 Paper organization

The rest of the paper is organized as follows: In Sect. 2,
we introduce the null model and articulate our proce-
dure to detect significant interactions in time-varying
networks. In Sect. 3, we describe our main findings by
comparing the performance of our approach with other
methods on synthetic networks, in which the backbone
network is known, and on real datasets where differ-
ent claims can be formulated depending on the method
that is pursued. Finally, in Sect. 4, we draw our main
conclusions and outline potential directions for further
inquiry.

2 Significant links

In this section, we articulate the EADM, our approach
to the detection of the irreducible backbone from the
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time series of each individual link. First, we present
the null model, which defines the process of generat-
ing temporal interactions fromnode-specific and piece-
wise constant properties. Then, we elucidate the infer-
ence procedure of the nodes’ activities within the null
model from available time series, assuming to be able
to access the switching events. Further, we present the
statistical test from which we filter reducible links and
retain irreducible ones, thus finding the backbone net-
work. Finally, we discuss the computational complex-
ity of our methodology.

2.1 Null model

We consider a time-varying network of N nodes evolv-
ing in a observation window of T � 1 time steps,
labeled by the discrete time index t = 1, . . . , T , with
a unitary resolution. The same modeling framework is
valid for a continuous time evolution.

At each time step t , nodes are connected through
a binary, possibly disconnected, undirected network
whose adjacency matrix, A(t), stochastically varies in
time. Each temporal connection is the realization of
a Bernoulli variable, whereby the probability that two
distinct nodes i and j are connected at time t is equal
to

pi j (t) = ai (t)a j (t), (1)

where ai (t) and a j (t) are the so-called activities of
nodes i and j at time t , respectively.

Activities vary according to a switching rule,
whereby they are kept constant over I disjoint time
intervals indexed by Δ = 1, . . . , I . The generic Δth
time interval starts at time tin(Δ) and has a duration
τ(Δ), such that

∑I
Δ=1 τ(Δ) = T . The interval parti-

tion might be a priori known or it should be determined
from the time series as explained below.

When only the number of intervals I is known, a
supervised method should be used to determine the
interval partition. A crude possibility is to assume a
random partition in I intervals, which strains the use of
the null model and sets a lower bound for the EADM
performance. On the contrary, if I is unknown, then
an unsupervised method should be used. Specifically,
we use the BB representation [37]. In this case, we
analyze the total number of temporal links created at
time t

Ω(t) =
N∑

i, j=1;i< j

Ai j (t), (2)

where Ai j (t) is the i j th entry of the network adjacency
matrix at time t . The BB method returns a set of inde-
pendent intervals containing a uniform total number of
connections.

To characterize the network evolution at the inter-
mediate time scale of the switching rule, that is, over
successive intervals, we define aweight matrix for each
interval, summing the number of occurrences of links
between any two nodes. Specifically, in theΔth interval
we define the random variable

wi j (Δ) =
tin(Δ)+τ(Δ)−1∑

t=tin(Δ)

Ai j (t). (3)

To count the overall number of temporal connections
between nodes i and j forming a link i j along the obser-
vation window, it is sufficient to sum the corresponding
weights, resulting in the following aggregated random
variable:

wi j =
I∑

Δ=1

wi j (Δ) =
T∑

t=1

Ai j (t). (4)

By construction, the weight wi j (Δ) is a binomial
variable andwi j the sum of non-identical binomial ran-
dom variables, described through a Poisson binomial
distribution. Since no closed-form expression is avail-
able for the Poisson binomial distribution, this is usu-
ally approximated by the Poisson distribution [38–40],
with expected value

E
[
wi j

] =
T∑

t=1

pi j (t). (5)

From the weight matrix, we define the strength of
the i th node in the Δth interval as

si (Δ) =
N∑

j=1

wi j (Δ). (6)

This quantity encapsulates the total number of temporal
links generated by the i th node within an interval. The
total number of temporal links generated in the whole
network in the Δth interval is therefore
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W (Δ) = 1

2

N∑

i=1

si (Δ). (7)

Both si (Δ) andW (Δ) can be approximated by Poisson
random variables, being linear combinations of inde-
pendent non-identical binomial random variables.

2.2 Estimation of the activities from time series

In order to compute the probability that two distinct
nodes i and j are connected at time t , as given inEq. (1),
we must estimate the time-varying activities ai (t) and
a j (t), assumed to be piece-wise constant over known
successive intervals. A possible line of approach entails
the use of the weighted configuration model [31,32],
which implies that the activity of node i in theΔth time
interval tin(Δ), . . . , tin(Δ)+τ(Δ)−1 can be estimated
from the time series of the temporal connections Ats

i j (t),
where we utilize a superscript “ts” to identify that the
realizations from the corresponding random variables
are experimental or numerical time series.

Hence, we obtain

ai (t) = stsi (Δ) /τ(Δ)
√(

2W ts(Δ) − 1
)
/τ(Δ)

= stsi (Δ)
√(

2W ts(Δ) − 1
)
τ(Δ)

,

(8)

where stsi (Δ) and W ts(Δ) are estimated from the time
series and τ(Δ) is derived from the interval partition. In
Eq. (8), the activity ai (t) in theΔth interval is estimated
as the ratio between the average number of temporal
links created per time step by node i , stsi (Δ) /τ(Δ),
over a measure of the same quantity for the entire net-

work,
√(

2W ts(Δ) − 1
)
/τ(Δ). We note that the use

of a square root in the denominator is for consistency
with the weighted configuration model [31]. Further,
when only one link is created in the Δth interval,
W ts(Δ) = 1, such that, the factor 2W ts(Δ)− 1 = 1, in
agreementwith the static configurationmodel [32]. The
accuracy of the estimate relies on the assumption that
W ts(Δ) � 1 and the network is large, that is, a large
number of events is occurring in each interval and a
large number of nodes is participating in the system’s
evolution. In “Appendix”, we examine the accuracy of
Eq. (8) as a function of the network size.

By replacing Eq. (8) in Eq. (1), we obtain the prob-
ability1 of observing a link i j in the Δth time interval
tin(Δ), . . . , tin(Δ) + τ(Δ) − 1 as

pi j (t) = stsi (Δ) stsj (Δ)
(
2W ts(Δ) − 1

)
τ(Δ)

. (9)

2.3 Statistical analysis

To determine whether a link is a node-specific tempo-
ral connection or part of the irreducible backbone, we
compute a p-value αi j for each link observed at least
once in the evolving network and compare it with a
proper significance threshold. If the p-value is below
the significance threshold, then the corresponding link
appearsmore often thanwhat the nullmodelwould pre-
dict and should therefore be associated with the back-
bone.

Thus, we examine the probability distribution of the
generic weight of the i j th link over the entire observa-
tion window. As previously stated, the distribution is
conveniently described by a Poisson distribution as

P
(
x;E [

wi j
]) = 1

x !E
[
wi j

]x
e−E[wi j ], (10)

where x is the realization of the random variable. The
distribution inEq. (10) can be explicitly computed from
empirical data, using Eq. (5) and the estimation of
pi j (t) in Eq. (9), as

P
(
x;E [

wi j
]) = 1

x !

[
I∑

Δ=1

stsi (Δ) stsj (Δ)

2W ts(Δ) − 1

]x

×

exp

[

−
I∑

Δ=1

stsi (Δ) stsj (Δ)

2W ts(Δ) − 1

]

. (11)

The p-value αi j of the link i j in the overall network
evolution is then computed according to the cumulative
function of the Poisson distribution

αi j ≡ 1 −
wts
i j−1
∑

x=0

P
(
x;E [

wi j
])

. (12)

Upon computing a p-value for every pair of nodes
in the network, one should perform a statistical test

1 According to theweighted configurationmodel [31,32],Eq. (9)
represents the expected number of links formed between node i
and j in each of the τ(Δ) snapshots of the Δth interval. Since
most temporal networks are sparse, we can assume that pi j (t) ∈
[0, 1) and refer to it as a probability.
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on all the links observed at least once in the evolving
network. Given that multiple hypotheses are tested, a
multiple hypothesis test correction is required [41]. We
use the Bonferroni correction which modifies the sig-
nificance threshold to β∗ = β/NE = 0.01/NE, where
NE is the number of links observed at least once in the
evolving network [42]. This correction ensures that no
false positiveswill be includedwith probability 1−β. A
possible, less restrictive alternative may be a procedure
that controls the false discovery rate [43]. Specifically,
such a procedure ensures that the fraction of false pos-
itive is less than β.

2.4 Computational complexity

Here, we examine in detail the computational complex-
ity of our method to detect significant links. For clarity,
we discuss separately the three required steps: (i) find-
ing the interval partition; (ii) estimating the individual
activities ai and probability pi j in Eqs. (8) and (9); and
(iii) computing the p-values αi j in Eq. (12).

To find the interval partition, we use the BB rep-
resentation [37]. Given a time series composed of T
successive time steps, the total number of links Ω(t) is
computed according to Eq. (2) and used as an input
for the BB representation. This method determines
whether Ω(t) �= Ω(t + 1), ∀t = 1, 2, . . . , T − 1, to
identify the number of change points Tcp (when the time
series changes value). From the knowledge of Tcp, the
maximum number of possible intervals is computed as
Imax = Tcp+1. The interval partition is calculated with
a computational time that scales as O(I 2max), which is
affordable even for Imax ∼ 106 [37].

The next step is to estimate individual activities ai
and probabilities pi j in Eqs. (8) and (9). These empir-
ical estimations depend on the number of intervals I
and the amount of temporal links in each interval. The
latter might substantially affect the algorithm’s com-
plexity, which ranges fromO(N I ) for sparse networks,
to O(N 2 I ) for dense ones.

Finally, the p-values are computed according to
Eq. (12), which has a computational complexity of
O(NE), where NE is the number of links observed at
least once in the evolvingnetwork. For sparse networks,
this reduces to O(N ).

The above three steps are independent, and their
computational costs add up, such that for sparse net-
works, the bottleneck of our approach is either the

detection of the interval partition or the computation
of the p-values. If the time series is larger than the
number of links observed at least once in the evolving
network, then the complexity is O(I 2max). In the oppo-
site scenario, our approach has a computational cost of
O(N ).

3 Results

In this section,we assess the performance of theEADM
in detecting the backbone of temporal networks and
we compare such a performance with four models that
assume time-invariant activities. We specify our study
to the SVN, TFM, TFMrhythm, and EADMI=1 (a sim-
plified version of our model that uses time-invariant
activities). We limit the computational time for each
method to 24h, on an Intel(R) Xeon(R) CPU E5-2697
v3 @ 2.60GHz, which we consider a reasonable com-
putational burden for the backbone inference.

First,we analytically determine conditions forwhich
the EADM yields equivalent results to the EADMI=1,
which allows for speculating when time-varying activ-
ities could play a salient role in the backbone detec-
tion. This corresponds to cases where the system is not
stationary or the activation patterns of the nodes are
correlated.

Then, we numerically assess the performance of the
EADM, EADMI=1, TFM, and SVN in detecting the
backbone of temporal networks generated via an arti-
ficial network. Given that the TFMrhythm requires the
solution of N +T −1 equations, its implementation on
synthetic data exceeds the computational time limit of
24h per simulation. Therefore, its performance is not
assessed on synthetic datasets. The key findings of our
comparisons are: (i) the EADM offers improved per-
formance with respect to the other methods, thereby
reducing the number of false positives in the backbone
network; (ii) the EADMI=1, TFM, and SVNhave com-
parable performance for all situations under scrutiny;
and (iii) the EADM performs better when using the
BB method for time interval partitioning, rather than a
naïve interval partition.

Finally, we compare the irreducible backbone ext-
racted from all models under study on several real
datasets: Primary school, High school, and Museum
contact patterns are from the SocioPatterns project
[44]; Message, Email, and Stack overflow datasets
are from the SNAP database [45]; and Enron email
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dataset [46]. For the Primary school, High school, and
Museum datasets, we remove the time intervals when
no links are recorded. Some simulations of the TFM
(which solves N equations) and TFMrhythm exceed
our computational time limit. In all the seven datasets,
the EADM finds less links than other methods, which
perform very similar to each other. This observation
is in agreement with numerical computations on the
synthetic networks, suggesting that assuming individ-
ual activities as constant in time leads to an over-
estimation in the number of links of the backbone
network.

3.1 Analytical derivation

We start by estimating the probability of having the
occurrence of link i j in the EADMI=1, that is, when
individual activities are constant in time. In this case,
Eq. (9) reads as

pi j = stsi s
ts
j

(
2W

ts − 1
)
T

, (13)

where we define the total strength in the overall obser-
vation window stsi = ∑I

Δ=1 s
ts
i (Δ), and the total num-

ber of temporal links in the overall observation window
W

ts = ∑I
Δ=1 W

ts(Δ). Thus, the expected number of
links in the EADMI=1 is

EI=1
[
wi j

] = T pi j = stsi s
ts
j

2W
ts − 1

, (14)

which is equivalent to predictions of the weighted con-
figuration model [31].

In general, EI=1
[
wi j

]
in Eq. (14) is different from

E
[
wi j

]
in Eq. (5), thereby begetting different statis-

tical inferences of the backbone. Under the following
conditions, we show that the two inferences are similar:

(i) if the system is stationary, W ts(Δ) ≈ W
ts
/T , and

(ii) if, for any link i j , the activation pattern of node i
is independent of the one of node j .

To prove this claim,we computeE
[
wi j

]
anddemon-

strate that it converges to EI=1
[
wi j

]
for W

ts
>

W ts(Δ) � 1 and large networks. By replacing Eq. (9)
into Eq. (5) for W

ts
> W ts(Δ) � 1, we obtain

E
[
wi j

] 

I∑

Δ=1

stsi (Δ) stsj (Δ)

2W ts(Δ)
. (15)

First, we assume the system as stationary, as in condi-
tion (i), so that

E
[
wi j

] 
 T 2

2W
ts

1

T

I∑

Δ=1

stsi (Δ) stsj (Δ) . (16)

Then, we apply condition (ii), which for large networks
supports the mean-field approximation
〈stsi (Δ)〉〈stsj (Δ)〉 
 〈stsi (Δ) stsj (Δ)〉, leading to

E
[
wi j

] 
 T 2

2W
ts

[
1

T

I∑

Δ=1

stsi (Δ)

]

×
[
1

T

I∑

Δ′=1

stsj
(
Δ′)

]

,

(17)

and, from the time series of stsi and stsj in Eqs. (6), we
establish

E
[
wi j

] 
 stsi s
ts
j

2W
ts .

(18)

Finally, we observe that Eq. (18) corresponds to
EI=1

[
wi j

]
inEq. (14) under the assumption thatW

ts �
1, which concludes our proof.

If the system is not stationary or the activation pat-
terns of nodes are correlated, one might expect that
the EADM will yield different predictions than the
EADMI=1, supporting the need for properly parti-
tioning the observation window toward the successful
detection of the backbone network.

3.2 Performance comparison on synthetic data

The considered synthetic data begets a temporal net-
work where reducible links, generated by the EADM,
coexist with the irreducible backbone. Reducible links
evolve over an observation window T , partitioned into
I successive intervals. Nodes have interval-dependent
(piece-wise constant) activities a(t) drawn from a
power law distribution F(a) ∼ a−2.1, with a ∈
[amin, 1]. The value amin represents the minimum pos-
sible value for the individual activity in the system, and
it is chosen to be greater than zero to avoid divergence
in the distribution [15,24,47].
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Between two consecutive intervals, t1 ∈ [tin(Δ −
1), tin(Δ−1)+τ(Δ−1)−1] and t2 ∈ [tin(Δ), tin(Δ)+
τ(Δ) − 1], the activity values vary according to

ai (t2) = ai (t1)p + y(1 − p), (19)

where p is an autocorrelation parameter and y a ran-
dom number extracted from F(a). For p = 1, individ-
ual activities are time-invariant, while for p < 1, they
exhibit temporal correlations.

A small fraction δ of all the links observed at least
once in the network is arbitrarily assigned to the back-
bone network. An additional parameter λ is used to
measure the preponderance of the backbone during the
observation window, such that if λ = 1, these links are
always present, and if λ < 1, they could not be present
at all times. Details about the algorithm to construct
synthetic data are presented in “Appendix”.

Wenumerically assess the improvement provided by
theEADMin the backbone detectionwith respect to the
TFM, SVN, and EADMI=1. Performing our numerical
experiments using the TFMrhythm exceeds our allotted
computational time of 24 h, such that its performance
could not be tested against this artificial network. Per-
formance is otherwise scored using two well-known
metrics, precision and recall [48]. The former is com-
puted as the ratio between the number of links detected,
which belong to the irreducible backbone (true posi-
tives), divided by the total number of detected links
(sum of true and false positives). The latter metric is
the ratio between the true positives divided by the total
number of links in the irreducible backbone (sum of
true positives and false negatives).

First, we assume that the partition into intervals is
known and we estimate the activity values according to
Eq. (8), thereby applying the EADM. Then, we release
this assumption toward choosing the length of the inter-
vals at random or we employ the unsupervised BB
method to estimate such a partition.

3.2.1 The EADM improves backbone detection

In our comparison, we assess the role of two important
parameters: (i) the autocorrelation parameter p, which
regulates the variation of individual activities over time,
from p = 0 (completely uncorrelated individual activ-
ities) to p = 1 (time-invariant activities), and (ii) the
ratio between the average interval length and the total
length of the observation window 〈τ(Δ)〉/T , which
quantifies the fraction of switches in activity patterns.

(a)

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

P
re

ci
si

on

SVN

TFM

EADMI=1
EADM

(b)

10−2 10−1 100

τ(Δ) /T

SVN

TFM

EADMI=1
EADM

(c)

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

R
ec

al
l

SVN

TFM

EADMI=1
EADM

(d)

10−2 10−1 100

τ(Δ) /T

SVN

TFM

EADMI=1
EADM

Fig. 2 Performance comparison against the synthetic network,
assuming a priori knowledge of the interval partition for the
EADM implementation. We assess precision and recall as a
function of the autocorrelation parameter p and ratio between
the average interval length and the total observation window
〈τ(Δ)〉/T . The horizontal axis in (b) and (d) is obtained by
fixing T = 5000 and varying I to span different values of
〈τ(Δ)〉 = T/I . In a, c we hold 〈τ(Δ)〉 and I , fixed to 500 and
10, while in (b) and (d) we set p = 0.4. Other parameter values
are: N = 100, δ = 0.01, λ = 0.025, and amin = [√〈τ(Δ)〉]−1.
Markers indicate the average of 102 independent simulations;
95% confidence interval is displayed in gray

For 〈τ(Δ)〉/T = 1, individual activities are constant
in time, while as 〈τ(Δ)〉/T approaches zero, individ-
ual activities rapidly change over time. We select two
values of λ, which lead to different scenarios: a larger
value of λ that begets an easily detectable backbone
where all irreducible links can be discovered, exam-
ined in Fig. 2, and a smaller value of λ that results
in a partially hidden backbone where some irreducible
links cannot be discovered, considered in Fig. 3.
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Fig. 3 Performance comparison against the synthetic network,
assuming a priori knowledge of the interval partition for the
EADM implementation. We assess precision and recall as a
function of the autocorrelation parameter p and ratio between
the average interval length and the total observation window
〈τ(Δ)〉/T . The horizontal axis in (b) and (d) is obtained by
fixing T = 5000 and varying I to span different values of
〈τ(Δ)〉 = T/I . In a, c we hold 〈τ(Δ)〉 and I , fixed to 500 and
10, while in (b) and (d) we set p = 0.4. Other parameter values
are: N = 100, δ = 0.01, λ = 0.010, and amin = [√〈τ(Δ)〉]−1.
Markers indicate the average of 102 independent simulations;
95% confidence interval is displayed in gray

Figure 2a, c supports the claim that the EADM is
a valuable approach to infer the backbone networks
for any choice of the autocorrelation parameter, since
precision and recall are always close to one. Fig-
ure 3a, c confirms that no false positive is detected by
the EADM even if the backbone is not preponderant;
however, some irreducible links cannot be discovered
and the recall is lower than one. On the contrary, the
TFM, SVN, and EADMI=1 are successful only when
the value of the autocorrelation parameter approaches

1, such that individual activities are practically time-
invariant. In this case, we register values of the preci-
sion close to 1.

Figures 2b, d and 3b, d suggest that the EADM out-
performs the other methods for intermediate values of
the number of switching intervals in terms of preci-
sion. Performance is, on the other hand, comparable
for the extreme cases of 〈τ(Δ)/T 〉 approaching one or
zero.While the comparable predictions that we register
for the former case 〈τ(Δ)/T 〉 
 1 can be anticipated
due to the limited variability of the activity patterns,
the similar performance registered for the latter case
〈τ(Δ)/T 〉 
 0 deserves some comments. Under fast
switching conditions, none of the algorithms leads to
large values of the recall, such that only a small frac-
tion of the backbone can be reconstructed, although
with high accuracy. In fact, under fast switching condi-
tions, the SVN, TFM, andEADMI=1 would practically
capture an annealed version of the network that is not
representative of the backbone. On the other hand, an
algorithm like ours that tracks time variations requires
a large number of realizations for performing the sta-
tistical test, which become unfeasible for time series of
limited length with several switches. The similar per-
formance registered for the TFM, SVN, and EADMI=1

is discussed in “Appendix”.
Taken together, the higher precision of the EADM

and its comparable recall to other methods suggest that
the EADMis successful in reducing the number of false
positives. These advantages will be explored and fur-
ther detailed when we examine real networks.

3.2.2 The backbone inference does not require
knowledge about activity patterns

Thus far, we have assumed complete knowledge about
the interval partition, which is used as an input param-
eter in the EADM. However, this situation is rarely
met in reality, where only limited information about
the interval partition may be available. To improve the
degree of realism of the analysis, we consider two dif-
ferent scenarios. In the first one, we assume knowledge
about the number of intervals and choose their length
at random. This naïve approach sets a lower bound for
the EADM performance. We identify this setting as
EADM+R, where “R” stands for random. In the sec-
ond scenario, we assume no a priori knowledge about
the interval partition, and we resort to the unsupervised
BBmethod.We identify this situation as EADM+BB.
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Table 1 Performance comparison in the synthetic network, assuming limited information of the interval partition for the EADM
implementation

SVN TFM EADMI=1 EADM+R EADM+BB

Precision

λ = 0.025 0.483 (0.461, 0.504) 0.510 (0.488, 0.532) 0.490 (0.468,0.511) 0.995 (0.992, 0.998) 0.991 (0.985, 0.996)

λ = 0.010 0.365 (0.345, 0.385) 0.379 (0.355, 0.403) 0.361 (0.339, 0.384) 0.992 (0.988, 0.996) 0.987 (0.980, 0.995)

Recall

λ = 0.025 0.991 (0.988, 0.994) 0.984 (0.980, 0.988) 0.986 (0.983, 0.990) 0.999 (0.999, 1.000) 0.999 (0.998, 1.000)

λ = 0.010 0.617 (0.603, 0.631) 0.584 (0.569, 0.599) 0.594 (0.580, 0.609) 0.593 (0.577, 0.609) 0.602 (0.587, 0.616)

For the EADM+R, the number of intervals I is known. For the EADM+BB, no a priori information of the interval partition is assumed.
We study two values of λ, which exemplify two levels of preponderance of the backbone. Parameter values are: N = 100, T = 5000,
I = 10, 〈τ(Δ)〉 = 500, δ = 0.01, and amin = [√〈τ(Δ)〉]−1. Tabulated values are the average of 102 independent simulations; the 95%
confidence interval is displayed in brackets

In Table 1, we study precision and recall of the five
methods for two choices of the parameter values, con-
sidered in Figs. 2 and 3 . The two cases pertain to two
different choices of λ, where we were fully successful
in reconstructing the backbone or registered a recall
less than one with full knowledge about the interval
partitions.

Results in Table 1 indicate that all the five meth-
ods lead to a comparable recall, which is equiva-
lent to results in Figs. 2 and 3. However, we docu-
ment a remarkable improvement in precision for the
EADM+R and EADM+BB, when compared to the
other three methods that do not account for time vari-
ations of activity patterns. Given that the EADM+BB
does not require any knowledge about the intervals, it
should be the approach of choice in backbone infer-
ence. In “Appendix”, we report further insight on the
comparison between the EADM+R and EADM+BB,
which indicate that the EADM+R might lead to inade-
quate inferences if the number of intervals is not exactly
known. This is the case of real networks, which moti-
vates the systematic use of the EADM+BB in the dis-
covery process.

3.3 Application to real networks

Based on our previous assessment on synthetic data, we
turn to real networks, where we compare predictions of
the EADM+BB with other existing methods.

The comparison is carried out using three different
metrics: (i) the number of significant links; (ii) the Jac-
card index [49]; and (iii) the overlap coefficient [50].
We denote the set of irreducible links detected by our

method as LEADM+BB, and the others as Lx , where x =
EADMI=1, TFM, TFMrhythm, or SVN. The Jaccard
coefficient is defined as

J (LEADM+BB, Lx ) = |LEADM+BB ∩ Lx |
|LEADM+BB ∪ Lx | , (20)

where | · | indicates the set cardinality. The overlap
coefficient is defined as

O(LEADM+BB, Lx )= |LEADM+BB∪Lx |
min (|LEADM+BB|, |Lx |) . (21)

The Jaccard coefficient yields the fraction of common
links between the EADM+BB and each of the other
methods, while the overlap coefficient quantifies the
extent of the overlap between the two detected back-
bones.

Each real dataset is examined at four different time
resolutions obtained by counting, without repetitions,
all the links that occur at the nominal frequency of
acquisition of the experimental observation. Table 2
summarizes the seven datasets considered in this work.
For ease of illustration, in this main document, we
focus on the Primary school and the Museum datasets;
“Appendix” contains the analysis of all datasets. Sim-
ilar to the study of synthetic data, simulations are ter-
minated after 24h of computational time.

In Fig. 4, we summarize our comparison. In pan-
els (a) and (d), we show a sample of the time series
of the total number of temporal links, Ω ts(t), and the
interval partition identified by the BBmethod. For both
datasets, Ω ts(t) is not stationary, reflecting the com-
plexity of the time evolution where each student or
teacher in the Primary school dataset ormuseum visitor
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Table 2 Data summary of the seven real datasets under consideration

Data # Nodes # Temporal links # Aggregated links Time span Resolution (r1, r2, r3, r4)

Primary school 242 125,773 8317 2days (20 s, 1min, 5min, 15min)

High school 126 28,561 1708 4days (20 s, 1min, 5min, 15min)

Enron 182 125,235 2097 1313days (15min, 1h, 1day, 1week)

Email 986 329,910 16,025 526days (15min, 1h, 1day, 1week)

Message 1899 59,835 13,838 194days (15min, 1h, 1day, 1week)

Stack overflow 24,759 506,550 187,986 2,351days (15min, 1h, 1day, 1week)

Museum 10,852 411,490 44,120 81days (1min, 5min, 15min, 30min)

The “# temporal links” column indicates the total number of temporal links in the dataset. The “Resolution” column lists four different
time resolutions for conducting the inference. For brevity, in the manuscript we use symbols from r1, . . . , r4 to refer to the different
resolutions, ordered from the smallest to the largest. For the Primary school, High school, and Museum datasets, we remove the time
intervals when no links are recorded

in the Museum dataset will come irregularly into con-
tact with others. In panels (b) and (e), we compare the
number of significant links detected by thefivemethods
considered in this work. In agreement with evidence
from Figs. 2 and 3 and Table 1 on synthetic data, the
EADM+BB identifies a smaller number of links than
other methods, whose predictions are equivalent.

We also observe that improving on the resolution
of the data, by lowering the time step, increases the
number of significant links detected by all themethods.
This is related to the decrease in the number of temporal
linksW

ts
due to the deletion of repeated temporal links.

(Nomultiedges are allowed in a single time step.) Such
a deletion affectsmostly the nodeswith highest activity,
which generate many links over time. In this way, the
heterogeneity of the system is reduced, reflecting in a
lower number of detected significant links. Although
all the methods are affected by the time resolution of
the dataset, the EADM+BB is the one that shows the
strongest tendency, as it requires the identification of
switches in the activity patterns,which could bemasked
by node-specific links in poorly resolved datasets.

In Fig. 5, we compare the detected backbone net-
works using the Jaccard index and the overlap coeffi-
cient. The Jaccard index suggests a strong similarity in
the case of the Primary school dataset and a weak sim-
ilarity in the case of the Museum dataset. On the other
hand, the overlap coefficient suggests that in both cases
our method identifies a subset of links within those
detected by other methods.

Individual activities have different temporal features
in the two datasets. In the Primary school dataset,
most students and teachers are recorded for the entire

observation window and can recurrently interact with
each other. As a result, the impact of explicitly con-
sidering time-varying activities is limited, and a time-
averaged representation of the phenomenon constitutes
an acceptable approximation. On the other hand, in the
Museum dataset, visitors spend only a few hours in the
museum,which comprises a small fraction of the obser-
vation window of 81days. In this case, approximating
individual activities with constant quantities along the
whole observation window is an oversimplification of
the problem that could lead to several false positives in
the backbone detection.

In Fig. 6, we assess the accuracy of the meth-
ods in estimating the overall network connectivity,
measured in terms of the total number of links in
the observation window. We compare the expected
number of temporal links, E

[
W

]
, with observations

in the time series, W
ts
. We specifically compute the

relative error, |E [
W

] − W
ts|/W ts

, where we use

E
[
W

] = ∑N
i, j=1;i< j

∑T
t=1 pi j (t) for the EADM+BB;

EI=1
[
W

] = ∑N
i, j=1;i< j T pi j for the EADMI=1;

Eq. (25) in Appendix for the TFM; and Eq. (29) in
Appendix for the TFMrhythm. The SVN is excluded

from this analysis as it takes W
ts
as an input param-

eter. For all the considered datasets and all backbone
detection methods, relative error is at most 5%, thereby
indicating that all themethods are accurate in capturing
the evolution of the network connectivity. In agreement
with our expectation, the relative error for the TFM and
the TFMrhythm (when available) is lower than that for
the EADMI=1 and the EADM+BB. In fact, as previ-
ously discussed, the TFM and TFMrhythm refine the

123



Detecting network backbones against time variations 867

Primary school

(a)

·103

0 20 40 60
0.0

0.5

1.0

1.5

t [5min.]

Ω
ts

(t
)

Primary school

(b)

·103

r1 r2 r3 r4
0

1

2

3

4

Resolution
#

Si
gn

ifi
ca

nt
lin

ks

SVN

TFM

TFMrhythm
EADMI=1
EADM+BB

Primary school

(c)

r1 r2 r3 r4
103

104

105

106

Resolution

W
ts

Museum

(d)

0 20 40 60
100

101

102

103

t [30min.]

Ω
ts

(t
)

Museum

(e)

r1 r2 r3 r4
0

0.5

1

1.5

2
·104

Resolution

#
Si

gn
ifi

ca
nt

lin
ks

SVN

EADMI=1
EADM+BB

Museum

(f)

r1 r2 r3 r4
103

104

105

106

Resolution

W
ts

Fig. 4 Influence of temporal patterns on backbone detection. In
a,dwe show the total number of temporal links created over time,
Ω ts(t), for one chosen resolution (indicated in square brackets)
of the Primary school and Museum datasets, respectively. For
visualization purposes, we select the first 60 time steps. Partition
into intervals is performed by applying the Bayesian blocks (BB)
method to the time series. Horizontal red segments represent the

average number of temporal links in a specific interval. In b, ewe
compare the number of significant links found by the methods
under scrutiny for the same two datasets. Inferences not reported
correspond to simulations that exceed our time limit of 24h. In

c, f we display the number of temporal links, W
ts
, as a function

of the resolution for the same two datasets. The exact values of
the resolution are found in Table 2

estimation of individual activities through a maximum
likelihood approach.

While all the methods work with approximately the
same number of links throughout the temporal evolu-
tion, as shown in Fig. 6, they yield different predic-
tions for the underlying backbone network as shown in
Figs. 4 and 5. The most remarkable difference depends
on whether one is accounting or not for time-varying
activities.

Based on the study of the synthetic datasets in Figs. 2
and 3, we propose that the discovery process of the
backbone network should be formulated by assuming,
in general, that activity patterns are time-varying.

4 Discussion

In this paper, we have introduced the evolving activity-
driven model, a novel approach to detect the back-
bone network against time variations of node-specific
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Fig. 5 Differences and similarities in the backbone networks
detected by the EADM+BB and the other methods (indicated in
the legends). In a, c we show the Jaccard index for the Primary
school and Museum datasets, respectively. In b, d we display
the overlap coefficient for the same two datasets. Inferences not
reported correspond to simulations that exceed our time limit of
24h

properties, encapsulated by the activity. The activity
of a node represents its propensity to generate links
over time, which, in real systems, is seldom constant
[51]. Should one look at temporal networks formed by
humans, the individual activity might be low during
sleeping hours and breaks, while it should be high dur-
ing working hours. Whether differences in individual
behavior modify the backbone network is the topic of
our study.

To this end, we analytically identify conditions in
which temporal patterns of the activity will have a sec-
ondary role on the detection of the backbone. These
conditions correspond to the system being stationary
and the activation patterns of the nodes not corre-
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Fig. 6 Relative error between the total number of temporal links

found in the time series, W
ts
, and the number of total temporal

links estimated from the backbone detection algorithms under
consideration. The SVN is discarded from this analysis since it

uses W
ts
as an input for filtering reducible links. Inferences not

reported correspond to simulations that exceed our time limit of
24h

lated. Based on these claims, we speculate that strain-
ing either of these conditions will lead to a salient role
of temporal variations of the activity patterns on the
backbone detection. Afterward, we compare the back-
bone networks detected by ourmethodologywith infer-
ences supported by four other approaches, all of which
assume that individual activities are constant in time.
Specifically, we focus on a modification of the evolv-
ing activity-driven model with constant activities, the
statistically validated network [10], and two versions
of the temporal fitness model [7]. In the first version
of the temporal fitness model, activities are kept con-
stant in time and their estimates are refined through
a maximum likelihood approach, while in the second
one, a time-varying parameter is utilized to encapsulate
circadian and weekly patterns.

For both synthetic and real datasets, our approach
identifies a subset of the links determined by the other
methods. By utilizing a ground-truth backbone net-
work from the synthetic data, we conclude that our
methodology reduces the number of links that are incor-
rectly classified as part of the backbone network (false
positives) and improves the precision of the detec-
tion process. These results suggest that accounting for
temporal variations in the activity plays an important
role in backbone detection, potentially leading to the
discovery of a different backbone network. The most
remarkable differences are noted when nodes display
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activity patterns that intensively vary in time, with-
out a recurrent behavior. For instance, in the Museum
dataset, visitors spend only a few hours in the museum,
which is a small fraction of the total observation win-
dow of 81days. In contrast with other methods that
all yield equivalent predictions, our approach discovers
a smaller backbone network, representative of people
visiting museums in small groups. We expect a similar
behavior when analyzing airports, restaurants, hotels,
websites, and chat rooms, where people access alone
or in small groups and only for a limited time.

The size of the backbone network discovered by our
approach is influenced by the time resolution of the
dataset. Working with poorly resolved data will chal-
lenge the feasibility of network inference, which is evi-
dent when dealing with visitors in a museum, and calls
for the careful selection of a time resolution, which
could be a confounding factor in detecting the back-
bone network of a system. This claim is in line with
[52], which focuses on random walks over temporal
networks.

The main advantages of the proposed evolving
activity-driven methodology are three: (i) its limited
computational time, whereby it allows for fast network
discovery even when dealing with long time series and
large networks (simulations presented in this paper are
only a few minutes long); (ii) its ability to cogently
model temporal activity patterns, which cannot be
addressed by the current state-of-the-art approaches;
and (iii) its consistency with the literature, whereby it
yields equivalent predictions to existing methods when
dealing with time-invariant activity patterns.

Our approach can find applications across several
domains of science and engineering, beyond the exem-
plary social networks examined herein. For example,
it could be implemented in the study of functional
networks in the brain, which primarily relies on sim-
ple thresholding [26], or in the analysis of the World
Wide Web, power grids, chemical reaction networks,
where topology identification methods [53–55] can
benefit from a statistically principled approach to dis-
card reducible links.

However, our approach is not free of limitations.We
detect switches in the individual activities over succes-
sive disjoint intervals by considering the overall system
evolution, rather than the individual time series. In prin-
ciple, we cannot exclude the possibility that individual
activities could vary in time in such a way that the over-
all system evolution remains stationary. In this case,

our approach would not be able to detect time vari-
ations in individual activities. In principle, we could
attempt at working with individual time series, but this
would challenge the use of the Bayesian block repre-
sentation [37] that relies on nodes to activate multiple
times—a condition that is not satisfied by the sparse
datasets considered in our study. In addition, the over-
all computational cost would depend also on the size of
the system, thereby hindering implementation for large
networks. At the same time, we acknowledge that our
methodology is not applicable to small networks, com-
posed of only a few tens of nodes, as we conduct the
estimates of the individual activities using a weighted
configuration model that requires large networks [31].

Future researchwill involve the formulation of algo-
rithms for the optimal selection of the temporal res-
olution, which are needed for enhancing the perfor-
mance of our methodology and the one proposed in [7].
The evolving activity-driven model might be further
extended through the detection of individual interval
partitions, one for each node in the network, overcom-
ing the assumptions that the interval partition is unique
and that all of the activities switch synchronously.
More long-term, fruitful lines of research should aim
at unraveling the intricate interplay between individ-
ual features and the formation of temporal interaction
patterns.
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5 Appendix

5.1 Backbone detection methods

Here, we succinctly summarize the temporal fitness
model (TFM) [7], the temporal fitness model with
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rhythm (TFMrhythm) [7], and the statistically validated
network (SVN) [10].

5.1.1 Temporal fitness model

The TFM considers a temporal network formed by N
nodes evolving over T discrete time steps. All multiple
links occurring within the same time step are removed,
so that the total number of temporal links between node
i and j is bounded by T. First, individual activities are
computed according to

ai = stsi√
2W

ts
T

. (22)

Then, their values are refined through a maximum like-
lihood approach,which requires the solutionof N equa-
tions

N∑

j=1; j �=i

wts
i j − Ta∗

i a
∗
j

1 − a∗
i a

∗
j

= 0, i = 1, . . . , N , (23)

where a∗ = (
a∗
1 , . . . , a

∗
N

)
contains the optimal values

for the individual activities. Finally, the p-value αi j for
the link generated between node i and j is computed
from the cumulative function of the Binomial distribu-
tion as

αi j ≡ 1 −
wts
i j−1
∑

x=0

B
(
x; T, a∗

i a
∗
j

)
. (24)

All p-values, one for each link in the network, are com-
pared with a threshold value β, properly corrected by
using amultiple hypotheses correction [42,43], and any
value lower than β adds a link to the backbone network.

For our purposes,we also compute the expected total
number of temporal links in the overall temporal evo-
lution

E
[
W

] = T
N∑

i, j=1;i< j

a∗
i a

∗
j . (25)

5.1.2 Temporal fitness model with rhythm

The TFMrhythm adds to the TFM T time-varying coef-
ficients, one for each time step, ξ = (ξ(1), . . . , ξ(T )).
First, every element in the time-varying vector is man-
ually set to 0.999, with the exception of ξ(1) that is
set equal to one. Individual activities are estimated
according to Eq. (22). To determine the optimal values

(a∗, ξ∗) in themaximum likelihood sense, we solve the
system of N + T − 1 equations

T∑

t=1

N∑

j=1; j �=i

Ats
i j (t) − a∗

i a
∗
j ξ

∗(t)
1 − a∗

i a
∗
j ξ

∗(t)
=0, i=1, . . . , N ,

N∑

i, j=1; j �=i

Ats
i j (t) − a∗

i a
∗
j ξ

∗(t)
1 − a∗

i a
∗
j ξ

∗(t)
=0, t=2, . . . , T,

(26)

where Ats
i j (t) is the adjacencymatrix at time t estimated

from the time series. The expected number of links is
computed as

E
[
wi j

] =
T∑

t=1

a∗
i a

∗
j ξ

∗(t). (27)

Finally, the p-value αi j for the link generated between
node i and j is computed from the cumulative function
of the Poisson distribution as

αi j ≡ 1 −
wts
i j−1
∑

x=0

P
(
x;E [

wi j
])

. (28)

All the p-values, one for each link in the network, are
compared to a threshold value β, properly corrected by
using a multiple hypotheses correction [42,43]. Any
value lower than β leads to a link in the backbone net-
work.

For our purposes,we also compute the expected total
number of temporal links in the overall temporal evo-
lution

E
[
W

] =
N∑

i, j=1;i< j

T∑

t=1

a∗
i a

∗
j ξ

∗(t). (29)

5.1.3 Statistically validated network

The SVN considers a temporal network of N nodes
evolving over an observation time window that can be
either discrete or continuous in time. Temporal links
are aggregated to form a weighted static network. The
p-value αi j for the link generated between node i and j
is computed from the cumulative function of the hyper-
geometric distribution as

αi j ≡ 1 −
wts
i j−1
∑

x=0

H

(

wi j

∣
∣
∣
∣2W

ts
, stsi , stsj

)

. (30)

The p-values are compared with a threshold value β,
properly corrected by using a multiple hypotheses cor-
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Fig. 7 Accuracy of the EADMI=1 and the TFM in estimating
the total number of temporal links in the overall time series. A

perfect identification should yield a ratio between E
[
W

]
andW

ts

of one (black solid line). In these simulations,we use our artificial
network where no backbone is present (δ = λ = 0) and activities
are constant in time (T = 5000, I = 1, 〈τ(Δ)〉 = T/I =
5000, amin = [√〈τ(Δ)〉]−1, and p = 0). Markers indicate the
average of 102 independent simulations; 95%confidence interval
is displayed in gray

rection [42,43], and a link is added to the backbone
network of the p-value which is less than β.

5.2 On the similarity among the EADMI=1, SVN,
and TFM

Here, we discuss why these threemethods yield similar
results for both synthetic and real datasets. First, we
show that the EADMI=1 is a valid approximation of the
TFM for large networks (hundreds of nodes or more).
Then, we analytically examine the convergence of the
SVN to the EADMI=1.

5.2.1 On the similarity between the TFM and
EADMI=1

We consider a long observation window T , for which
the Binomial distribution in Eq. (24) converges to a
Poisson distribution used in our method in Eq. (12).
While in the EADMI=1 activities are estimated from
the dataset using Eq. (8), in the TFM they are identified
in a maximum likelihood sense [7]

In Fig. 7, we assess the ability of the EADMI=1 and
the TFM to estimate the total number of temporal links.
We compute the expected values of the number of links
for the EADMI=1 as E

[
W

] = ∑N
i, j=1;i< j T pi j , while

(a)

10−1 101 103

0.0

0.2

0.4

0.6

0.8

1.0

Ie/I

P
re

ci
si

on

EADM+R

(b)

10−1 101 103

Ie/I

EADM+R

(c)

10−1 101 103

0.0

0.2

0.4

0.6

0.8

1.0

Ie/I

R
ec

al
l

EADM+R

(d)

10−1 101 103

Ie/I

EADM+R

Fig. 8 Sensitivity analysis of the EADM+R to the number of
estimated intervals, Ie, from Ie = 1 to Ie = T − 1. In a, c, we
set amin = [√〈τ(Δ)〉]−1 and λ = 0.025, to attain a dense ADNs
and an easy-to-discover backbone. On the contrary, in b, d, we
set amin = [〈τ(Δ)〉]−1 and λ = 0.002, to attain sparse ADNs
and a partially hidden backbone. Other parameter values are:
N = 100, T = 5000, I = 20, 〈τ(Δ)〉 = T/I = 250, δ = 0.01,
and p = 0.4. Markers indicate the average of 102 independent
simulations; 95% confidence interval is displayed in gray

we use Eq. (25) for the TFM. These values are com-
pared with the total number of temporal links observed
in the time series W

ts
. As expected, the TFM works

well for any network size, due to the use of the max-
imum likelihood. Nevertheless, the maximum likeli-
hood approach becomes computational demanding for
networks of around 1,000 nodes and beyond, thereby
becoming useless for very large networks. On the other
hand, the EADMI=1 shows poor performance for small
networks, while reaching the TFM for networks of
100 nodes. This improvement in performance of the
EADMI=1 is explained in [31], where it is shown that
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Fig. 9 Number of significant links as a function of the resolution for all real datasets under consideration. Inferences not reported
correspond to simulations that exceed our time limit of 24h

Eq. (14) is in excellent agreement with numerical sim-
ulations for large networks.

5.2.2 On the similarity between the SVN and
EADMI=1

When W
ts � 1, the hypergeometric distribution in

Eq. (30) converges to a Poisson distribution and its
p-value becomes equivalent to the p-value for the
EADMI=1

αi j = 1 −
wts
i j−1
∑

x=0

P

(

x; s
ts
i s

ts
j

2W
ts

)

. (31)

In all the synthetic and real data studied herein W
ts
is

very large, so that Eq. (30) converges to Eq. (31).

5.3 Generation of synthetic temporal networks

To examine the precision and recall of irreducible links,
we generate synthetic networks. The procedure of net-
work generation is given as follows:

1. We consider a temporal network evolving in an
observation window of length T , divided into I
different intervals. We randomly select without
replacement I − 1 time steps in {1, . . . , T }, which
we sort as tin(2) . . . tin(I ), and we set tin(1) = 1.
Each interval Δ has different length τ(Δ), so that,
in general, the average length of the interval is
〈τ(Δ)〉 = T/I .

2. The N nodes in the network have a time-varying,
piece-wise constant, individual activity. We extract
activity values from a power law distribution,
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Fig. 10 Jaccard index between EADM+BB and all the other methods as a function of the resolution for all datasets under consideration.
Inferences not reported correspond to simulations that exceed our time limit of 24h

F(a) ∼ a−2.1, with a ∈ [amin, 1]. The time-
varying activity ai (t) is selected according to the
following procedure:

– When Δ = 1, N activity values, one for each
node in the network, are randomly extracted
from F(a), and held constant within [tin(1), tin
(1) + τ(1) − 1].

– When 2 ≤ Δ ≤ I , activities might be cor-
related between two successive intervals, t1 ∈
[tin(Δ − 1), tin(Δ − 1) + τ(Δ − 1) − 1] and
t2 ∈ [tin(Δ), tin(Δ) + τ(Δ) − 1] according to
Eq. (19) in the main text.

3. We generate a temporal network in the obser-
vation window [1, T ]. Each pair of nodes i j
within an interval Δ is connected with probability

ai (Δ)a j (Δ). As a result, we obtain a sequence of
T undirected and unweighted networks, with adja-
cency matrices Â(1), . . ., Â(T ). These networks
are generated only as a function of the individual
activities.

4. Based on the node pairs that are connected at least
once over T time steps of the observation window,
we define the synthetic backbone. Specifically, we
randomly assign a fraction δ of these node pairs to
the backbone.

5. We construct T new networks A(1), A(2), . . .,
A(T ) from Â(1), Â(2), . . ., Â(T ) by account-
ing for the synthetic backbone above. First, we
set Ai j (t) = Âi j (t) for t = 1, . . . T for all the
pairs that do not belong to the backbone. Then, for
the generic link i j in the backbone, we initialize
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Fig. 11 Overlap coefficient between EADM+BB and all the other models as a function of the resolution for all datasets under
consideration. Inferences not reported correspond to simulations that exceed our time limit of 24h

Ai j (1) = Âi j (1) and we iterate the following steps
for t = 2, . . . , T :

– if Âi j (t) = 1, we maintain Ai j (t) = 1;
– if Âi j (t) = 0, we set Ai j (t) = 1 with probabil-
ity λ and Ai j (t) = 0 with probability 1 − λ.

The parameter λ measures the preponderance of
links associated with the backbone during the
observation window.

5.4 Insights on the interval estimation

The EADM+R requires that the number of intervals
is known a priori. Nevertheless, when dealing with
real networks, our knowledge, Ie, might differ from

the true value, I . This mismatch might diminish the
accuracy of the backbone inference, as examined below
for synthetic data. We focus on two sets of parame-
ters, which represent two possible scenarios. In the first
case, amin = [√〈τ(Δ)〉]−1 and λ = 0.025, which cor-
respond to a “dense” ADNs with an easily detectable
backbone. In the second case, amin = [〈τ(Δ)〉]−1 and
λ = 0.002, which represent a “sparse” ADNs with a
partially hidden backbone.

In Fig. 8a, c, we show that if the number of estimated
intervals, Ie, is greater or equal to the true value, I ,
precision and recall are close to one. On the contrary,
in Fig. 8b, d, we observe a more dramatic scenario,
in which increasing Ie hinders the performance of the
method, leading to filtering out most of the links that
belong to the backbone network.
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Fig. 12 Total number of temporal links estimated in the time seriesW ts as a function of the resolution for all datasets under consideration

5.5 Analysis of all available real datasets

5.5.1 Significant links

We compare the backbone networks from seven real-
world datasets inferred by the five methods under con-
sideration in terms of the number of significant links.
The EADM+BB always finds less links than any other
methods (Fig. 9).

5.5.2 Jaccard index

In Fig. 10, we assess differences in the backbone net-
works detected by the EADM+BBand fourmethods on
seven real-world datasets, in terms of the Jaccard index.
Weobserve that theEADM+BBfindsbackbones differ-

ent from the EADMI=1, SVN, TFM, and TFMrhythm,
which are equivalent.

5.5.3 Overlap coefficient

Similar toFig. 10,we examine the overlap coefficient of
backbone networks determined by our method and the
other four in Fig. 4, confirming that the EADM+BB
tends to detect a subset of the links predicted by
other methods—which are thus prone to false positives
(Fig. 11).

5.5.4 Temporal links

In Fig. 12, we display the total number of temporal
links estimated in the time series, W

ts
, for all the con-

sidered methods on all the seven real-world datasets.
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Fig. 13 Relative error between the total number of temporal

links, W
ts
, and the number of total temporal links estimated

from the backbone detection algorithms under consideration.

The SVN is discarded from this analysis because it uses W
ts

as an input. Inferences not reported correspond to simulations
that exceed our time limit of 24h

We confirm that the number of links decreases as we
increase the time resolution of the dataset.

5.5.5 Relative error

We analyze the accuracy of the methods in describing
the overall system evolution. We compare the expected
number of the total temporal links generated in, E

[
W

]
,

with W
ts
. All methods are accurate for the datasets

studied herein, with a relative error up to 5% (Fig. 13).

References

1. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep.
519(3), 97 (2012)

2. Holme, P.: Modern temporal network theory: a colloquium.
Eur. Phys. J. B 88, 1 (2015)

3. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks,
vol. 4. World Scientific, Singapore (2016)

4. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási,
A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J.,
Gutmann, M., et al.: Computational social science. Science
323(5915), 721 (2009)

5. Ivancevic, T., Jain, L., Pattison, J., Hariz, A.: Nonlinear
dynamics and chaos methods in neurodynamics and com-
plex data analysis. Nonlinear Dyn. 56(1–2), 23 (2009)

6. Battiston, S., Farmer, J.D., Flache, A., Garlaschelli, D., Hal-
dane, A.G., Heesterbeek, H., Hommes, C., Jaeger, C., May,
R., Scheffer,M.:Complexity theory andfinancial regulation.
Science 351(6275), 818–819 (2016)

7. Kobayashi, T., Takaguchi, T., Barrat, A.: The structured
backbone of temporal social ties. Nat. Commun. 10(1), 220
(2019)

123



Detecting network backbones against time variations 877

8. Wu, Z., Braunstein, L.A., Havlin, S., Stanley, H.E.: Trans-
port in weighted networks: partition into superhighways and
roads. Phys. Rev. Lett. 96(14), 148702 (2006)

9. Serrano, M.Á., Boguná, M., Vespignani, A.: Extracting the
multiscale backbone of complex weighted networks. Proc.
Natl. Acad. Sci. 106(16), 6483 (2009)

10. Tumminello, M., Micciche, S., Lillo, F., Piilo, J., Mantegna,
R.N.: Statistically validated networks in bipartite complex
systems. PLoS ONE 6(3), e17994 (2011)

11. Li, M.X., Palchykov, V., Jiang, Z.Q., Kaski, K., Kertész,
J., Micciché, S., Tumminello, M., Zhou, W.X., Mantegna,
R.N.: Statistically validated mobile communication net-
works: the evolution ofmotifs in European andChinese data.
New J. Phys. 16(8), 083038 (2014)

12. Gemmetto, V., Cardillo, A., Garlaschelli, D.: Irreducible
network backbones: unbiased graph filtering via maximum
entropy (2017). arXiv preprint arXiv:1706.00230

13. Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D.,
Gabrielli, A., Caldarelli, G.: The statistical physics of real-
world networks. Nat. Rev. Phys. 1(1), 58 (2019)

14. Marcaccioli, R., Livan, G.: A Pólya urn approach to infor-
mation filtering in complex networks. Nat. Commun. 10(1),
745 (2019)

15. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani,
A.: Activity driven modeling of time varying networks. Sci.
Rep. 2, 469 (2012)

16. Zino, L., Rizzo, A., Porfiri, M.: An analytical framework for
the study of epidemic models on activity driven networks.
J. Complex Netw. 5(6), 924 (2017)

17. Sun, K., Baronchelli, A., Perra, N.: Contrasting effects of
strong ties on SIR and SIS processes in temporal networks.
Eur. Phys. J. B 88(12), 326 (2015)

18. Zino, L., Rizzo, A., Porfiri, M.: Modeling memory effects in
activity-driven networks. SIAM J. Appl. Dyn. Syst. 17(4),
2830 (2018)

19. Nadini, M., Sun, K., Ubaldi, E., Starnini, M., Rizzo, A.,
Perra, N.: Epidemic spreading in modular time-varying net-
works. Sci. Rep. 8(1), 2352 (2018)

20. Liu,Q.H.,Xiong,X., Zhang,Q., Perra,N.: Epidemic spread-
ing on time-varyingmultiplex networks. Phys. Rev. E 98(6),
062303 (2018)

21. Lei, Y., Jiang, X., Guo, Q., Ma, Y., Li, M., Zheng, Z.: Con-
tagion processes on the static and activity-driven coupling
networks. Phys. Rev. E 93(3), 032308 (2016)

22. Rizzo,A., Frasca,M., Porfiri,M.: Effect of individual behav-
ior on epidemic spreading in activity-driven networks. Phys.
Rev. E 90(4), 042801 (2014)

23. Nadini, M., Rizzo, A., Porfiri, M.: Epidemic spreading in
temporal and adaptive networks with static backbone. In:
IEEE Transactions on Network Science and Engineering.
IEEE (2018)

24. Rizzo, A., Pedalino, B., Porfiri, M.: A network model for
Ebola spreading. J. Theor. Biol. 394, 212 (2016)

25. Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and
aging in social temporal networks. Phys. Rev. Lett. 114(10),
108701 (2015)

26. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M.,
Apkarian, A.V.: Scale-free brain functional networks. Phys.
Rev. Lett. 94(1), 018102 (2005)

27. Musciotto, F., Marotta, L., Piilo, J., Mantegna, R.N.: Long-
term ecology of investors in a financial market. Palgrave
Commun. 4(1), 92 (2018)

28. Curme, C., Tumminello, M., Mantegna, R.N., Stanley, H.E.,
Kenett, D.Y.: Emergence of statistically validated financial
intraday lead-lag relationships. Quant. Finance 15(8), 1375
(2015)

29. Challet, D., Chicheportiche, R., Lallouache, M., Kassi-
brakis, S.: Statistically validated lead-lag networks and
inventory prediction in the foreign exchange market. Adv.
Complex Syst. 21, 1850019 (2018)

30. Bongiorno, C., London, A., Miccichè, S., Mantegna, R.N.:
Core of communities in bipartite networks. Phys. Rev. E
96(2), 022321 (2017)

31. Serrano, M.Á., Boguñá, M.: Weighted configuration model.
AIP Conf. Proc. 776(1), 101 (2005)

32. Newman, M.E.J.: Networks: An Introduction. Oxford Uni-
versity Press, Oxford (2010)
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