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Abstract An approximate analytical technique is
developed for determining the non-stationary response
amplitude probability density function (PDF) of non-
linear/hysteretic oscillators endowed with fractional
derivative elements and subjected to evolutionary
stochastic excitation. Specifically, resorting to stochas-
tic averaging/linearization leads to a dimension reduc-
tion of the governing equation of motion and to a
first-order stochastic differential equation (SDE) for
the oscillator response amplitude. Associated with this
first-order SDE is a Fokker–Planck partial differen-
tial equation governing the evolution in time of the
non-stationary response amplitude PDF. Next, assum-
ing an appropriately chosen time-dependent PDF form
of the Rayleigh kind for the response amplitude, and
substituting into the Fokker–Planck equation, yields a
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deterministic first-order nonlinear ordinary differential
equation for the time-dependent PDF coefficient. This
can be readily solved numerically via standard deter-
ministic integration schemes. Thus, the non-stationary
response amplitude PDF is approximately determined
in closed-form in a computationally efficient man-
ner. The technique can account for arbitrary excita-
tion evolutionary power spectrum forms, even of the
non-separable kind. A hardeningDuffing and a bilinear
hysteretic nonlinear oscillators with fractional deriva-
tive elements are considered in the numerical examples
section. To assess the accuracy of the developed tech-
nique, the analytical results are compared with perti-
nent Monte Carlo simulation data.

Keywords Fractional derivative · Nonlinear system ·
Stochastic dynamics · Non-stationary stochastic
process · Evolutionary power spectrum

1 Introduction

In the field of stochastic engineering dynamics, clas-
sical continuum (or discretized) mechanics theories
have been traditionally used for modeling the gov-
erning equations of motion of the dynamic system
under consideration. Nevertheless, the need for more
accurate media behavior modeling has led recently to
advanced mathematical tools such as fractional calcu-
lus (e.g., [1–3]). Besides the fact that fractional cal-
culus can be construed as a generalization of classical
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calculus (and thus, provides with enhanced modeling
flexibility), it has been successfully employed in theo-
retical and applied mechanics for developing non-local
continuum mechanics theories (e.g., [4,5]), as well as
for viscoelastic material modeling. Indeed, experimen-
tal viscoelastic response data obtained via creep and
relaxation tests agree extremely well with such kind of
modeling (e.g., [6]). Further, indicative applications in
structural engineering where theoretical developments
are in agreement with experimental data include mod-
eling of viscoelastic dampers used for vibration control,
or for seismic isolation purposes [7–11].

From a mathematics perspective, the equation of
motion typically takes the form of a fractional differ-
ential equation to be solved for the oscillator response.
Note that due to the convolution integral associated
with the definition of the fractional operator, a brute
force naive numerical solution can be a highly demand-
ing task computationally. In fact, in many cases the
above modeling is also coupled with complex nonlin-
earities and hysteresis; thus, rendering even the deter-
ministic solution of such equations an open issue and
an active research topic. Clearly, solving the stochas-
tic counterparts of these equations becomes signifi-
cantly more challenging. Therefore, there is a need
for developing efficient solution schemes for determin-
ing the stochastic response and assessing the reliability
of dynamic systems endowed with fractional deriva-
tive terms. Indicative solution techniques for linear and
nonlinear (continuous or discretized) oscillators with
fractional derivative terms can be found in Refs [12–
25]. Nevertheless, to the best of the authors’ knowl-
edge, very limited results exist referring to the response
determination of nonlinear oscillators with fractional
derivative elements subject to non-stationary stochas-
tic excitation described by evolutionary (potentially
non-separable) power spectra; see for instance [26,27]
for some relevant recent developments on stochastic
joint time-frequency response analysis of such systems
based on the harmonic wavelet transform.

In this regard, a novel approximate technique for
determining the non-stationary response amplitude
probability density function (PDF) of nonlinear/hyste-
retic oscillators endowed with fractional derivative ele-
ments and subjected to evolutionary stochastic exci-
tation is developed herein. Specifically, resorting to
a stochastic linearization/averaging treatment of the
problemyields afirst-order stochastic differential equa-
tion governing the oscillator response amplitude. Next,

assuming a time-dependent PDF of the Rayleigh kind
for the response amplitude, the associated Fokker–
Planck partial differential equation is solved for deter-
mining the oscillator non-stationary response ampli-
tude PDF in closed-form and at a minimal computa-
tional cost. An additional advantage of the technique is
that it can handle arbitrary forms of the excitation evo-
lutionary power spectrum, even of the non-separable
kind. The numerical examples include a hardening
Duffing and a bilinear hysteretic nonlinear oscillators
with fractional derivative terms, while the accuracy of
the analytical results is assessed by comparisons with
pertinentMonte Carlo simulation (MCS) data. Overall,
the technique developed in this paper can be construed
as a generalization of the concepts and results obtained
in [28] to account for fractional derivative terms in the
oscillator’s equation of motion.

2 Mathematical formulation

2.1 Equivalent linear oscillator determination

In this section, based on statistical linearization of the
original nonlinear equation of motion, an equivalent
linear time-variant oscillator is introduced. This treat-
ment facilitates in the ensuing analysis the determina-
tion of a novel closed-form approximate expression for
the oscillator non- stationary response amplitude PDF.

2.1.1 Equivalent linear amplitude-dependent stiffness
and damping elements

A nonlinear oscillator with fractional derivative terms
is considered in the ensuing analysis, whose governing
equation of motion is given by

ẍ(t) + βDα
0,t x(t) + z(t, x, ẋ) = w(t) (1)

where z(t, x, ẋ) represents an arbitrary nonlinear func-
tion that can also account for hysteretic behaviors; and
w(t) denotes a Gaussian, zero-mean, non-stationary
stochastic process with an evolutionary broad-band
power spectrum S(ω, t). Further, β is a coefficient and
Dα

0,t x(t) denotes a Caputo fractional derivative defined
as

Dα
0,t x(t) = 1

Γ (1 − α)

∫ t

0

ẋ(τ )

(t − τ)α
dτ (2)
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for 0 < α < 1. Next, resorting to the assumption
of light damping for the oscillator of Eq. (1), it can
be argued that it exhibits a pseudo-harmonic behavior
described by the equations [28,29]

x(t) = A(t) cos(ω(A)t + ψ(t)) (3)

and

ẋ(t) = −ω(A)A(t) sin(ω(A)t + ψ(t)) (4)

where the equivalent natural frequency ω(A), to be
determined in the following, is approximated as a func-
tion of the response amplitude A = A(t). Taking into
account Eqs. (3) and (4), the oscillator response ampli-
tude A(t) and phase ψ(t) are given by

A2(t) = x2(t) +
(

ẋ(t)

ω(A)

)2

(5)

and

ψ(t) = −ω(A)t − arctan

(
ẋ(t)

x(t)ω(A)

)
(6)

respectively. They are considered to be slowly vary-
ing functions with respect to time, and approximately
constant over one cycle of oscillation; see also [29,30].

Next, Eq. (1) is recast, equivalently, in the form [31,
32]

ẍ(t) + β0 ẋ(t) + h(t, x,Dα
0,t x, ẋ) = w(t) (7)

where

h(t, x,Dα
0,t x, ẋ) = βDα

0,t x(t) + z(t, x, ẋ) − β0 ẋ (8)

and β0 = 2ζ0ω0 is a damping coefficient, with ω0

denoting the natural frequency of the corresponding
linear oscillator and ζ0 representing the ratio of crit-
ical damping. Following Ref. [31] (see also [29]), an
equivalent linear oscillator is defined as

ẍ(t) + [β0 + β(A)]ẋ(t) + ω2(A)x(t) = w(t) (9)

Applying an error minimization procedure in the mean
square sense betweenEqs. (7) and (9) yields the equiva-
lent linear amplitude-dependent damping and stiffness
coefficients in the form [30,31]

β(A) = − 1

π Aω(A)

{∫ 2π

0
z(A cosφ,

− Aω sin φ) sin φdφ

+ β

∫ 2π

0
Dα
0,t (A cosφ) sin φdφ + πβ0Aω(A)

}

(10)

and

ω2(A) = 1

π A

{∫ 2π

0
z(A cosφ,−Aω sin φ) cosφdφ

+ β

∫ 2π

0
Dα

0,t (A cosφ) cosφdφ

}
(11)

where φ(t) = ω(A)t + ψ(t).
Note that the expressions in Eqs. (10) and (11) can

be further simplified by appropriately approximating
the involved fractional derivatives according to Refs
[32,33]. In this regard, Eq. (10) becomes

β(A) = 1

Aω(A)
S(A) + β

ω1−α(A)
sin

(απ

2

)
− β0

(12)

and Eq. (11) takes the form

ω2(A) = 1

A
F(A) + βωα(A) cos

(απ

2

)
(13)

where

S(A)=− 1

π

∫ 2π

0
z (A cosφ,−Aω(A) sin φ) sin φdφ

(14)

and

F(A) = 1

π

∫ 2π

0
z (A cosφ,−Aω(A) sin φ) cosφdφ

(15)

For completeness, additional details on the derivation
of Eqs. (12) and (13) are provided in the Appendix
of Sect. 5. For the ensuing analysis, it is important
to note that a stochastic averaging technique [29] can
be applied to the linearized Eq. (9) with the aim of
reducing its order, and potentially its complexity from a
solution perspective. This yields a first-order stochastic
differential equation for the response amplitude A(t),
while the corresponding Fokker–Planck partial differ-
ential equation governing the evolution in time of the
response amplitude PDF is given in the form[24,31]
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∂p(A, t)

∂t

= −
{[

1

2
β0 + β(A)

]
A − β0ω

2
0

2Aω2(A)

}
∂p(A, t)

∂A

+
[

β0ω
2
0

2ω2(A)

]
∂2 p(A, t)

∂A2 (16)

Note that although an analytical solution of Eq. (16)
for the general case is, perhaps, impossible, a solu-
tion for the special case of a linear oscillator (i.e.,
z(t, x, ẋ) = ω2

0x) with
∂p(A,t)

∂t = 0 and S(ω, t) = S0
is readily attainable. Indeed, as shown in Ref. [24], the
stationary response amplitude PDF of a linear oscil-
lator with fractional derivative elements subjected to
Gaussian white noise excitation is given by

p(A) = sin
(

απ
2

)
A

ω1−α
0 σ 2

exp

(
− sin(απ

2 )

ω1−α
0 σ 2

A2

2

)
(17)

where σ 2 = π S0
βω2

0
represents the stationary response

variance of a linear oscillator under white noise excita-
tion.Motivated by the form of Eq. (17), a novel approx-
imate analytical solution is developed in the following
section for the non-stationary response amplitude PDF
p(A, t) of the general nonlinear oscillator of Eq. (1)
(or, equivalently Eq. (7)).

2.1.2 Non-stationary response amplitude PDF and
equivalent linear time-dependent stiffness and
damping elements

It can be readily seen that one of the main difficul-
ties in solving the general Fokker–Planck Eq. (16)
and determining the non-stationary response amplitude
PDF p(A, t) relates to the fact that the equivalent linear
elements ω2(A) and β(A) are amplitude-dependent.
This increases the complexity of the Fokker–PlanckEq.
(16), and renders its analytical solution a rather daunt-
ing task. In fact, it is no wonder that once the corre-
sponding linear oscillator is considered in Eq. (1), i.e.,
z(t, x, ẋ) = ω2

0x , the solution of the time- indepen-

dent ( ∂p(A,t)
∂t = 0) Fokker–Planck Eq. (16) is possible,

yielding the stationary response PDF of Eq. (17).
In this regard, to facilitate the solution of the general

Fokker–Planck equation and determine, in an analyti-
cal form, the non-stationary response amplitude PDF
p(A, t) corresponding to the nonlinear oscillator of

Eq. (1), time-dependent equivalent linear elements
ωeq(t) andβeq(t) are introduced in the following. These
correspond to an alternative to Eq. (9) equivalent linear
oscillator of the form

ẍ(t) + (β0 + βeq(t))ẋ(t) + ω2
eq(t)x(t) = w(t) (18)

where, by employing Eqs. (12) and (13), βeq(t) and
ω2
eq(t) are defined as

βeq(t) = −β0 +
∫ ∞

0

S(A)

Aω(A)
p(A, t)dA

+β sin
(απ

2

) ∫ ∞

0

1

ω1−α(A)
p(A, t)dA

(19)

and

ω2
eq(t) =

∫ ∞

0

F(A)

A
p(A, t)dA

+β cos
(απ

2

) ∫ ∞

0
ωα(A)p(A, t)dA (20)

respectively. Clearly, the equivalent linear time-depen-
dent elements of Eqs. (19) and (20) are the non-
stationarymean values of the amplitude-dependent ele-
ments of Eqs. (12) and (13). To evaluate them, however,
knowledge of the non-stationary response amplitude
PDF p(A, t) is required. To this aim, motivated by the
form of the stationary PDF of Eq. (17), a generalized
closed-form solution for the non-stationary response
amplitude PDF of nonlinear oscillators with fractional
derivative terms is developed herein. This takes the
form

p(A, t) = sin
(

απ
2

)
A

ω1−α
0 c(t)

exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
(21)

where c(t) is a time-dependent coefficient to be deter-
mined. Equation (21) constitutes a generalization of
the developments and the PDF proposed in Ref. [28]
to account for fractional derivative terms in the oscil-
lator’s governing equation. Note that due to the form
of p(A, t) in Eq. (21), the equivalent elements of Eqs.
(19) and (20) become essentially functions of the time-
dependent coefficient c(t). Further, for the equivalent
linear oscillator of Eq. (18), Eq. (3) becomes

x(t) = A(t) cos(ωeq(c(t))t + ψ(t)) (22)

Next, for an oscillator with zero initial conditions it
can be assumed that the amplitude A(t) and phase
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ψ(t) are statistically independent (see Ref. [34] for
more details). Considering also that the PDF of ψ(t)
is uniform in the interval [−π, π) and the ampli-
tude PDF is given by Eq. (21), their joint PDF takes
the form p(A(t), φ(t), t) = p(φ(t))p(A(t), t) =
1
2π

sin( απ
2 )A

ω1−α
0 c(t)

exp

(
− sin( απ

2 )

ω1−α
0

A2

2c(t)

)
. Taking this into

account and evaluating the second moment (coincid-
ing herein with the variance) of x(t) of Eq. (22) yields

E(x2) = ω1−α
0

sin
(

απ
2

)c(t) (23)

BasedonEq. (23), the scaledby
ω1−α
0

sin( απ
2 )

time-dependent

coefficient c(t), involved in the p(A, t)definitionofEq.
(21), can be construed as the oscillator non-stationary
response variance.

As shown in the following section, the introduction
of the alternative time-variant equivalent linear oscilla-
tor of Eq. (18) is instrumental in determining the non-
stationary response amplitude PDF in the analytical
form of Eq. (21) via the evaluation of c(t). As an addi-
tional advantage of the technique, the determination of
the equivalent linear time-dependent elements ω2

eq(t)
and βeq(t), as a by-product of the methodology, is of
considerable importance to applications in dynamics
related to evaluating the effects of temporal nonstation-
arity in the frequency content of the excitation on the
system response (e.g., [35–38]). The time-dependent
stiffness and damping elements can also be employed
for tracking and quantifying “moving resonance phe-
nomena”, which may result in significant response
amplifications in nonlinear systems (e.g., [39,40]).

2.2 Stochastic averaging solution treatment

In this section, based on a stochastic averaging treat-
ment of the equivalent linear time-variant oscillator
of Eq. (18), the non-stationary response amplitude
PDF of Eq. (21) is determined via evaluating the
time-dependent coefficient c(t) in a computationally
efficient manner. Specifically, considering the time-
dependent equivalent linear damping and stiffness ele-
ments in Eqs. (19) and (20), respectively, to be slowly
varying with respect to time and approximately con-
stant over one period of oscillation, and taking into
account Eq. (22) and its time-derivative, yields

A2(t) = x2(t) + ẋ2(t)

ω2
eq(c(t))

(24)

Next, differentiating Eq. (24) with respect to time,
employing Eq. (18), and manipulating, leads to (see
also [28])

Ȧ(t) = −β0A(t) sin2 φ − βeq(c(t))A(t) sin2 φ

−w(t) sin φ

ωeq(c(t))
(25)

Following a standard averaging approach (e.g., [29]),
the term sin2 φ in Eq. (25) is approximated by its aver-
age over one cycle of oscillation, i.e., sin2 φ = 1

2 ; thus,
Eq. (25) becomes

Ȧ(t) = −1

2
(β0 + βeq(t))A(t) − w(t) sin φ

ωeq(t)
(26)

Next, exploiting the wide-band nature of the excita-
tion process w(t) in the frequency domain, and taking
ensemble average over w(t) and the phase ψ(t) for
t ± dt , the last term on the right hand side of Eq. (26)
is approximated by

w(t) sin φ

ωeq(t)
≈ −π S(ωeq(t), t)

2Aω2
eq(t)

− (π S(ωeq(t), t))
1
2

ωeq(t)
η(t)

(27)

where η(t) denotes a zero-mean, delta correlated pro-
cess of intensity one. A detailed presentation on the
derivation of Eqs. (26) and (27) can be found in Refs
[28,29,41].

Combining Eq. (26) with Eq. (27) yields

Ȧ(t) = K1(A, t) + K2(A, t)η(t) (28)

where the terms K1(A, t) and K2(A, t) are given by

K1(A, t) = −1

2

(
β0 + βeq(t)

)
A + π S(ωeq(t), t)

2Aω2
eq(t)

(29)

and

K2(A, t) =
(
π S(ωeq(t), t)

)1/2
ωeq(t)

(30)

respectively. The corresponding to Eq. (28) Fokker–
Planck equation is given by (e.g., [28,42,43])
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∂p(A, t)

∂t

= − ∂

∂A

{(
−1

2
(β0 + βeq(t))A + π S(ωeq(t), t)

2ω2
eq(t)A

)

× p(A, t)} + 1

4

∂

∂A

{
π S(ωeq(t), t)

ω2
eq(t)

∂p(A, t)

∂A

+ ∂

∂A

[
π S(ωeq, t)

ω2
eq(t)

p(A, t)

]}
(31)

Next, a solution to the Fokker–Planck Eq. (31) is
sought in the analytical form of Eq. (21). Differentiat-
ing Eq. (21) yields

∂p

∂t
= ċ(t)

c(t)

(
sin

(
απ
2

)
ω1−α
0

A2

2c(t)
− 1

)
p (32)

∂(Ap)

∂A
= −2

(
sin

(
απ
2

)
ω1−α
0

A2

2c(t)
− 1

)
p (33)

and

∂2 p

∂A2 = ∂
( p
A

)
∂A

− 1

c(t)

sin
(

απ
2

)
ω1−α
0

∂(Ap)

∂A
(34)

Substituting Eqs. (32)–(34) into Eq. (31), and manipu-
lating, results to the equation

∂p(A, t)

∂t
=

[
1

2
(β0 + βeq(c(t)))

− π S(ωeq(c(t)), t)

2ω2
eq(c(t))

sin
(

απ
2

)
ω1−α
0 c(t)

]
∂(Ap)

∂A

(35)

Further, utilizing Eq. (32) and manipulating, Eq. (35)
leads to

[
ċ(t)

c(t)
+ β0 + βeq(c(t)) − π S(ωeq(c(t)), t) sin

(
απ
2

)
c(t)ω2

eq(c(t))ω
1−α
0

]

×
(
A2 sin

(
απ
2

)
2ω1−α

0 c(t)
− 1

)
p = 0 (36)

Thus, Eq. (36) dictates that the time-dependent coef-
ficient c(t) is given as the solution of a determinis-
tic first-order nonlinear ordinary differential equation,
which takes the form

ċ(t) = − (
β0 + βeq(c(t))

)
c(t)

+
(
sin

(
απ
2

)
ω1−α
0

)
π S(ωeq(c(t)), t)

ω2
eq(c(t))

(37)

Equation (37) can be readily solved at a low com-
putational cost by employing any standard numeri-
cal integration scheme, such as the Runge–Kutta. As
a result, the non-stationary response amplitude PDF
is determined by simply substituting c(t) into Eq.
(21). Note that setting the fractional derivative order
equal to α = 1, the equations and formulae devel-
oped in this section degenerate to the ones derived in
Ref. [28]. In this regard, the herein developed tech-
nique can be construed as a generalization and exten-
sion of the results in Ref. [28] to account for oscilla-
tors endowed with fractional derivative terms. In the
following section, the accuracy of the herein devel-

oped approximate analytical expressions
ω1−α
0

sin( απ
2 )

c(t)

and p(A, t) = sin( απ
2 )A

ω1−α
0 c(t)

exp

(
− sin( απ

2 )

ω1−α
0

A2

2c(t)

)
in cap-

turing the non-stationary response variance and PDF,
respectively, is assessed by considering various numer-
ical examples and comparisons with pertinent MCS
data.

3 Numerical examples

In this section, the hardening Duffing and the bilinear
hysteretic nonlinear oscillators with fractional deriva-
tive elements are considered for assessing the reliability
of the developed technique. The oscillators, which are
initially at rest, are subjected to non-stationary stochas-
tic excitation described by the non-separable evolution-
ary power spectrum

Sw(ω, t) = S0
( ω

5π

)2
exp(−c0t)t

2 exp

(
−

( ω

5π

)2
t

)

(38)

It can be argued that the power spectrum of Eq. (38),
originally proposed in Ref. [44], comprises some of
the main characteristics of seismic shaking, such as
decreasing of the dominant frequency with time (e.g.,
[36,39]). Further, for comparisons of the analytical
results with MCS data, realizations compatible with
Eq. (38) are produced according to the spectral repre-
sentationmethodology (e.g., [45]), while the numerical
integration of the governing Eq. (1) is done by resorting
to an L1-algorithm [1,7].
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3.1 Duffing oscillator with fractional derivative terms

For the case of a Duffing oscillator with fractional
derivative elements, the nonlinear function z(t, x, ẋ)
in Eq. (1) takes the form

z(t, x, ẋ) = ω2
0x(1 + εx2) (39)

where the parameter ε > 0 accounts for the nonlinear-
ity magnitude. Substituting Eq. (39) into Eqs. (19) and
(20), and considering the amplitude PDF of Eq. (21),
yields

βeq(c(t)) = −β0 + β sin2
(

απ
2

)
ω1−α
0 c(t)

×
∫ ∞

0

A

ω1−α(A)
exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
dA

(40)

and

ω2
eq(c(t)) = ω2

0 + β sin
(

απ
2

)
cos

(
απ
2

)
ω1−α
0 c(t)

×
∫ ∞

0
Aωα(A) exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
dA

+3εω1+α
0 sin

(
απ
2

)
4c(t)

×
∫ ∞

0
A3 exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
dA (41)

Next, the time-dependent coefficient c(t) is determined
by solving numerically the deterministic differential
Eq. (37), where βeq(c(t)) and ω2

eq(c(t)) are given by
Eqs. (40) and (41).

For the numerical implementation, the following
values are used for the excitation and the systemparam-
eters: S0 = 0.16, c0 = 0.15, ω0 = 3.62. In Fig. 1a and
b, the non-stationary response variances of a nonlin-
ear Duffing oscillator with ε = 2 determined via Eq.
(23) are plotted for fractional derivative orders α = 1
and α = 0.5, respectively. Thus, the influence of the
fractional order derivative on the system response vari-
ance can be assessed. The corresponding linear oscil-
lator (ε = 0) response variances are plotted as well to
show the considerable nonlinearity effect on the system
response. In all cases, comparisons with MCS-based
response variances show a satisfactory degree of accu-
racy.

Fig. 1 a Non-stationary response variance of a Duffing nonlin-
ear oscillator (ε = 2) with fractional derivative order α = 1; b
Non-stationary response variance of a Duffing nonlinear oscilla-
tor (ε = 2) with fractional derivative order α = 0.5. MCS data
are included for comparison

Based on the reasonable agreement observed in Fig.
1 between the analytical and the MCS results, the per-
formance of the closed-form expression of Eq. (21) in
capturing the oscillator non-stationary response ampli-
tude PDF is assessed next. In this regard, in Fig. 2a,
b, the analytical response amplitude PDF of a Duff-
ing oscillator (ε = 2) with a fractional derivative
order α = 0.5, and the corresponding MCS-based
PDF estimate are plotted, respectively. In Fig. 3, the
analytical PDF is plotted for various time instants
and compared with corresponding MCS data. It can
be readily seen that although the accuracy exhibited
is not excellent, the herein developed closed-form
expression of Eq. (21) appears capable of capturing
both the time-evolution in an average sense and the
salient features of the non-stationary response ampli-
tude PDF.
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Fig. 2 Non-stationary response amplitude PDF of a Duffing
oscillator (ε = 2) with fractional derivative order α = 0.5: a
analytical PDF; b MCS-based estimate (10,000 realizations)

3.2 Bilinear hysteretic oscillator with fractional
derivative terms

In this example, a bilinear hysteretic oscillator (e.g.,
[46]) with fractional derivative terms is considered.
Denoting by x� the critical value of the displacement at
which the yield occurs, the non-dimensional displace-
ment y = x/x� is introduced. Further, denoting by ω0

the oscillator natural frequency corresponding to the
primary elastic slope, the non-dimensional time quan-
tity τ = ω0t is also employed. In this regard, the restor-
ing force of the oscillator defined in Eq. (1) is given by
[30,36]

z(t, y, ẏ) = γ y + (1 − γ )z0 (42)

Fig. 3 Analytical (Eq. (21)) vis-a-vis MCS-based (10,000 real-
izations) response amplitudePDFs of aDuffingoscillator (ε = 2)
with fractional derivative order α = 0.5, plotted for various time
instants

where γ denotes the post- to pre-yield stiffness ratio,
and z0 is the hysteretic force corresponding to the
elasto-plastic characteristic, describedby thefirst-order
differential equation [30,36]

ż0 = ẏ [1 − H(ẏ)H(z0 − 1) − H(−ẏ)H(−z0 − 1)]

(43)

Taking into account Eq. (42), Eq. (14) becomes

S(A) = (1 − γ )S0(A) (44)

where

S0(A) = − 1

π

∫ 2π

0
z0(A, t) sin φdφ (45)

Further, Eq. (15) takes the form

F(A) = γ A + (1 − γ )F0(A) (46)

where

F0(A) = 1

π

∫ 2π

0
z0(A, t) cosφdφ (47)

Following Refs [30,46] for calculating the integrals of
Eqs. (45) and (47), S0(A) and F0(A) are given by the
expressions

S0(A) =
{ 4

π

(
1 − 1

A

)
, A > 1

0, A ≤ 1
(48)

and
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F0(A) =
{ A

π

(
� − 1

2 sin(2�)
)
, A > 1

A, A ≤ 1
(49)

respectively, where � = arccos(1 − 2
A ).

Taking into account Eqs. (44)–(49), the time-depen-
dent equivalent linear elements of Eqs. (19) and (20)
become

βeq(c(t)) = −β0 + β sin2
(

απ
2

)
ω1−α
0 c(t)

×
∫ ∞

0

A

ω1−α(A)
exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
dA

+ 4(1 − γ ) sin
(

απ
2

)
πω1−α

0 c(t)

×
∫ ∞

1

1 − 1
A

ω(A)
exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
dA

(50)

and

ω2
eq(c(t)) = 1 − (1 − γ )

{
exp

(
− sin

(
απ
2

)
2c(t)ω1−α

0

)

− sin
(

απ
2

)
πω1−α

0 c(t)

×
∫ ∞

1

(
� − 1

2
sin(2�)

)
A

× exp

(
− sin( απ

2 )

ω1−α
0

A2

2c(t)

)
dA

}

+ β sin
(

απ
2

)
cos

(
απ
2

)
ω1−α
0 c(t)

×
∫ ∞

0
ωα(A)A exp

(
− sin

(
απ
2

)
ω1−α
0

A2

2c(t)

)
dA

(51)

respectively. As in the example of Sect. 3.1, the time-
dependent coefficient c(t) is determined by solving
numerically Eq. (37), in conjunctionwithβeq(c(t)) and
ω2
eq(c(t)) given by Eqs. (50) and (51).
The excitation and system parameter values used in

this numerical example are: S0 = 0.08, c0 = 0.12,
ω0 = 2.34, β = 0.1, γ = 0.06. Next, the bilinear
hysteretic oscillator non-stationary response variances
for fractional derivative orders equal to α = 1 and
α = 0.5 are depicted in Fig. 4a and b, respectively,
while results referring to the corresponding linear oscil-
lator (γ = 1) are included aswell for assessing the non-
linearity degree. It is seen that the analytical solution

Fig. 4 a Non-stationary response variance of a bilinear hys-
teretic oscillator (γ = 0.06) with fractional derivative order
α = 1; b Non-stationary response variance of a bilinear hys-
teretic oscillator (γ = 0.06) with fractional derivative order
α = 0.5. MCS data are included for comparison

for the non-stationary system response variances is in
satisfactory agreement with the MCS-based estimates.

Next, the closed-form expression given by Eq. (21)
is used for determining the non-stationary response
amplitude PDF. In this regard, the analytical solution
for the response amplitude PDF of the bilinear hys-
teretic oscillator (γ = 0.06) with a fractional deriva-
tive order α = 0.5 is depicted in Fig. 5a, whereas
Fig. 5b shows the corresponding MCS-based esti-
mate. In Fig. 6, the analytical PDF is plotted for vari-
ous time instants and compared with MCS-based esti-
mates. Similarly as in example 3.1, the accuracy of
the technique appears satisfactory in capturing approx-
imately the main features of the response amplitude
PDF, as well as its evolution in time in an average
sense.
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Fig. 5 Non-stationary response amplitude PDF of a bilinear
hysteretic oscillator (γ = 0.06) with fractional derivative order
α = 0.5: a analytical PDF; bMCS-based estimate (10,000 real-
izations)

4 Concluding remarks

In this paper, an approximate analytical technique
has been developed for determining the non-stationary
response amplitude PDF of nonlinear/hysteretic oscil-
lators endowed with fractional derivative elements and
subjected to evolutionary stochastic excitation. Specifi-
cally, a stochastic averaging/linearization treatment has
led to a dimension reduction of the governing equation
of motion and to a first-order stochastic differential
equation for the oscillator response amplitude. Next,
assuming an appropriately chosen time-dependent PDF
form of the Rayleigh kind for the response amplitude,
and substituting into the associated Fokker–Planck
partial differential equation, has yielded a determin-

Fig. 6 Analytical (Eq. (21)) vis-a-vis MCS-based (10,000 real-
izations) response amplitude PDFs of a bilinear hysteretic oscil-
lator (γ = 0.06) with fractional derivative order α = 0.5, plotted
for various time instants

istic first-order ordinary differential equation for the
time-dependent PDF coefficient. This can be readily
solved numerically via standard deterministic integra-
tion schemes, such as Runge–Kutta. Thus, the non-
stationary response amplitude PDF has been approxi-
mately determined in closed-form in a computationally
efficient manner. The technique can account for arbi-
trary excitation evolutionary power spectrum forms,
even of the non-separable kind. An additional advan-
tage of the technique relates to the determination, as a
by-product, of equivalent linear time-dependent stiff-
ness and damping elements. This can be of consid-
erable importance, potentially, to tracking and quan-
tifying “moving resonance phenomena”, which may
result to significant response amplifications in non-
linear systems. A hardening Duffing and a bilinear
hysteretic nonlinear oscillators with fractional deriva-
tive elements have been considered in the numerical
examples section for assessing the accuracy of the
technique. Based on comparisons with pertinent MCS
data, although the accuracy is not excellent as antic-
ipated given the approximations of the technique, it
has been shown that the herein developed closed-form
PDF expression of Eq. (21) appears capable of captur-
ing both the time-evolution in an average sense and the
salient features of the non-stationary response ampli-
tude PDF.

Regarding the limitations of the technique, it is noted
that the formulation relies on a response representa-
tion (see Eq. (3) or Eq. (22)) that involves an effec-
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tive natural frequency, or in other words, the oscilla-
tor response is assumed to exhibit a pseudo-harmonic
behavior. Although this may be a reasonable approxi-
mation for certain kinds of nonlinearities (as also shown
in the herein considered numerical examples), itmay be
inadequate, for instance, for oscillators with multiple
static equilibrium positions. Indicatively, for a Duffing
oscillatorwith two static equilibriumpositions (see sec-
tion 5.3.8 in Ref. [30]), the response behavior depends
on the magnitude of the excitation. In particular, for
low excitation levels the response is “trapped” for a
relatively long time duration in one of the two wells of
the potential function. Thus, an indicative realization
would oscillate about a mean value centered around
the lowest point of the well. As the excitation magni-
tude increases, the interchange between the two wells
becomes more frequent, while the response distribu-
tion converges to the one of the standard hardening
Duffing oscillator with a single equilibrium position.
Therefore, it is readily seen that a modification of the
herein developed technique is required to account for
the rather complex and strongly non-Gaussian response
behavior of such systems with multiple static equilib-
rium positions. A potential future research route relates
to considering various different excitation magnitude-
dependent effective natural frequency representations
corresponding to the distinct response patterns; see for
instance Ref. [47] for some relevant work.

Further, the generalization of the technique to
MDOF systems entails several challenges to be
addressed, and is identified as a topic of future research.
An indicative research route relates to applying directly
the amplitude-phase response representation on the
modal component of the i-th nonlinear mode of vibra-
tion of the MDOF system (e.g., [48]). An alternative
potential research route relates to employing standard
dimension reduction methodologies, such as complex
modal analysis (e.g., [30]), in conjunction with sta-
tistical linearization and stochastic averaging. Note,
however, that applying complex modal analysis to
MDOF systems with fractional derivative elements is
not straightforward. In fact, this has been possible only
relatively recently, and under the limitation/assumption
that the fractional derivatives are of rational order [49].

Compliance with ethical standards
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5 Appendix

In this appendix, more details on the derivation of Eqs.
(12) and (13) are included for completeness, while the
interested reader is also directed to Refs [32,33]. In this
regard, Eqs. (10) and (11) are rewritten, equivalently,
in the form

β(A) = S(A)

Aω(A)
− β

Sα(A)

π Aω(A)
− β0 (52)

and

ω2(A) = F(A)

A
+ β

Fα(A)

π A
(53)

where S(A) and F(A) are given by Eqs. (14) and (15),
respectively. Further,

Sα(A) =
∫ 2π

0
Dα

0,t (A cosφ) sin φdφ (54)

and

Fα(A) =
∫ 2π

0
Dα

0,t (A cosφ) cosφdφ (55)

In general, the fractional derivative of order α for
the cosine function is given by

Dα
0,tcos(bx) = bαcos

(απ

2
+ bx

)
(56)

where 0 < α < 1. Determining analytically the inte-
grals defined in Eqs. (54) and (55) by employing Eq.
(56) is not straightforward, as it involves the evalu-
ation of rather complex integral forms. Nevertheless,
appropriately approximating Eqs. (54) and (55) facili-
tates significantly the related computations. In partic-
ular, assuming that the time parameter τ takes small
values, Eq. (4) becomes [32,33]

ẋ(t−τ) ≈ ẋ(t) cos(ω(A)τ )+x(t)ω(A) sin(ω(A)τ )

(57)

Next, combining Eq. (57) with Eq. (2), the Caputo
derivative defined in Eq. (2) takes the form

Dα
0,t x(t) = 1

Γ (1 − α)

{
ẋ(t)

∫ t

0

cos(ω(A)τ )

τα
dτ

+ x(t)ω(A)

∫ t

0

sin(ω(A)τ )

τα
dτ

}
(58)

Further, utilizing the integrals [33]
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∫ t

0

cos(ω(A)t)dτ

τα
= ωα−1(A)

[
Γ (1 − α) sin

(απ

2

)

+ sin(ω(A)t)

(ω(A)t)α
+ O(ω(A)t)−α

]

(59)

and

∫ t

0

sin(ω(A)t)dτ

τα
= ωα−1(A)

[
Γ (1 − α) cos

(απ

2

)

− cos(ω(A)t)

(ω(A)t)α
+ O (ω(A)t)−α

]

(60)

Equation (58) becomes

Dα
0,t x(t) = ωα−1(A)

[
ẋ(t) sin

(απ

2

)

+ x(t)ω(A) cos
(απ

2

)]
+ ωα−1(A)

Γ (1 − α)

× ẋ(t) sin(ω(A)t) − x(t)ω(A) cos(ω(A)t)

(ω(A)t)α

+ O (ω(A)t)−α−1 (61)

Equation (61) constitutes an approximate expression
that facilitates the determination of fractional deriva-
tives of order 0 < α < 1, and thus, it is utilized in
simplifying the integrands of Eqs. (54) and (55), which
become

Sα(A) = −π Aωα(A) sin
(απ

2

)
(62)

and

Fα(A) = π Aωα(A) cos
(απ

2

)
(63)

respectively. Finally, Eqs. (12) and (13) are derived by
considering Eqs. (62) and (63).
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