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Abstract The planar response of horizontal mas-
sive taut strings, travelled by a heavy point-mass,
either driven by an assigned force, or moving with an
assigned law, is studied. A kinematically exact model
is derived for the free boundary problem via a vari-
ational approach, accounting for the singularity in the
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slope of the deflected string. Reactive forces exchanged
between the point-mass and the string are taken into
account via Lagrange multipliers. The exact model is
consistently simplified via asymptotic analysis, which
leads to condense the horizontal displacement as a pas-
sive variable. The dynamic increment of tension, with
respect the static one, is neglected in the governing
equations, but evaluated a posteriori, as a higher-order
quantity in a perturbation perspective. The equations
are solved and rearranged in the form of an integral
equation coupled with an integro-differential equation,
thus extending a procedure already introduced in the
literature. Numerical results, showing the importance
of the horizontal reactive force on the quality ofmotion,
are discussed, generalizing those relevant to massless
strings.

Keywords Traveling mass · Taut string · Free
boundary problem · Nonlinear contact force · Integral
equation

1 Introduction

Engineering examples of structures travelled by mov-
ing load aremostly related to transport engineering, but
not limited to it. Among them are the following: cable
railways and funicular railways, railway transport vehi-
cle like as trains and trams with pantograph sliding on
an overhead electric line, space tethers, cranes (see,
e.g., [1,2]).
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Themodeling and the analysis of such structures is a
complex research topicwhich has received the attention
ofmany researches starting from the nineteenth century
[1]. The literature on the subject is wide and rich and
it differs for the structures analyzed, which are strings
[3–7], cables [8,9], beams [10–14] and plates [15,16],
and themodeling of the load,which can be schematized
as: i) moving force [17,18]; ii) movingmass [2,19]; iii)
moving oscillator [20,21].

The study of such systems leads to the observation
of complex phenomena and paradoxical behaviors. In
particular, the Stokes paradox [3,12], i.e., the disconti-
nuity in the particle trajectory close to the end support,
has aroused particular interest in the researchers [2,22–
24].

In this context, in [24] an extended model to discuss
the paradox in the case of a taut string was proposed.
In such paper, the authors formulated a kinematically
exact model of massive string travelled by a point-
mass driven by an assigned force, and therefore having
unknown motion. The model accounts for horizontal
and vertical displacements of the string, and therefore
for the dynamic strain and tension which superimpose
to the respective static parts. The boundary conditions
for the free boundary problem were derived enforc-
ing balance of force and energy at the singularity; as
an alternative, a variational formulation was also indi-
cated. Successive analysis, carried out in the contest
of an asymptotic model and applied to the massless
string, revealed the key role of the horizontal compo-
nent of the reactive force, exchanged during the motion
between the point-mass and the string. This reactive
force is responsible for a peculiar behavior of the sys-
tem, namely the point-mass either reaches the opposite
end, or never reaches it, by inverting its motion.

In this paper, the exact model formulated in [24]
is reconsidered. It is re-obtained via a modified vari-
ational approach. An asymptotic minimal nonlinear
model is then derived, based on an order of magnitude
evaluation of the involved quantities. Moreover, inves-
tigations are carried out for massive strings. A semi-
analytical solution strategy is followed, by extending
to the case of unknown motion a methodology first
proposed by Smith [3], leading to a Volterra integral
equation of the first kind, now coupled to an integro-
differential equation.

This paper introduces some important novelties
with respect to [24], namely: (a) here the equations
are obtained via a variational approach in which, in

order for the reactive forces appear, the compatibil-
ity between the point-mass and string is introduced
via Lagrangian multipliers; (b) the nonlinear horizon-
tal motion of the string is here analyzed after quasi-
static condensation; (c) the dynamic tension is post-
evaluated as a nonlinear effect, according to a pertur-
bation strategy; (d) attention is devoted to the time evo-
lution of the reactive force; (e) the influence on the
response of the mass of string, neglected in [24], is
investigated here; (f) both cases in which the motion
of the mass is unknown or it is assigned, are stud-
ied, and in the latter case the attention is focused
on the driving force needed to sustain the desired
motion.

Differently from [24], in which vertical elastic sup-
ports were considered at the ends of the string, here,
to simplify the formulation, fixed ends are taken.
Although elastic springs regularize the mathemati-
cal model, by removing singularities at the ends, the
numerical procedure adopted here has been checked
to work even for fixed ends. The topic is discussed in
“Appendix C”.

The presented here results could be useful for mod-
eling, design and control of more complex structures
such as networks of connected elastically strings loaded
by moving masses or moving forces. Among such
structures we can mention space tethers or pantograph-
catenary systems.

2 An exact model

We consider a planar horizontal taut string, fixed at
the ends, massive but weightless, travelled by a heavy
point-mass (see Fig. 1). We mainly refer to the case in
which the motion of the point-mass, sustained by an
assigned driving force, is unknown. As opposite case,
wewill consider themore popular problem inwhich the
motion of the point-mass is assigned, while the driving
force is unknown.

The string is pre-stressed by a force T0, and it has
mass per unit length m. The point-mass M is loaded
by a potential force F = D (t) ax − P (t) ay , in which
the horizontal component D is the driving force and
the vertical component P is the sum of the self-weight
and of an external vertical force, with t the time and
ax , ay unit vectors. The point-mass is in-permanent
contactwith the string, by slidingwithout friction along
it, and exchanging with it the reactive force ±R. This
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Fig. 1 Horizontal taut string travelled by a heavy point-mass

reaction induces a singularity in the response of the
string, whose position depends on time.

If the driving force is assigned, i.e., if D = D̄ (t), the
horizontal motion x (t) of the point-mass is unknown.
In this case, goal of the analysis is to find: (a) the hor-
izontal and vertical motion of the string, (b) the hor-
izontal and vertical motion of the point-mass; (c) the
increment of stress in the string; (d) the reactive force.
If the horizontal motion of the point-mass is instead
assigned, i.e., if x = x̄ (t), the driving force D (t) is
unknown.

Kinematics

Let us take the pre-stressed straight equilibrium config-
uration of the unloaded string as reference configura-
tion, and denote by s ∈ [0, �] a material abscissa, with
� the (stretched) reference length. The current config-
uration of the string is described by the position vector
r (s, t), constrained by the geometric boundary condi-
tions:

r (0, t) = 0, r (�, t) = � ax . (1)

The unit extension ε is taken as strain measure,
namely:

ε = ∣
∣r′∣∣ − 1, (2)

where a prime denotes partial differentiation with
respect to s.

Let us denote by x (t) the current position of the
point-mass, and by ξ (t) the material abscissa of the
string instantaneously occupied by the point-mass.
Compatibility between point-mass and string requires
that:

x (t) = r (ξ (t) , t) . (3)

It should be noticed that ξ (t) is always unknown, even
in the case of assigned horizontal motion of the point-
mass, since the string is free to stretch itself. Therefore,
the problem is a free boundary problem.

As we said, the point-mass induces a singularity in
the deflected shape of the string, which moves in the
interval [0, �]. Accordingly, r (s, t) is continuous with
its first derivatives in the interval [0, ξ)∪ (ξ, �]; more-
over, it is continuous at the singularity, i.e., r− = r+,

but its first space- and time-derivatives are discon-
tinuous, i.e., r′− �= r′+ and ṙ− �= ṙ+, with r± :=
lim
ε→0

r (ξ ± ε, t) and ε > 0. The jumps in the space

and time-derivatives; however, are not independent, but
related by the continuity condition of the total deriva-
tive of r̂ (t) := r (ξ (t) , t), which describes the motion
of the singularity. Indeed:

dr̂
dt

= ṙ− + ξ̇ r′− = ṙ+ + ξ̇ r′+, (4)

in which the dot denotes partial time-differentiation,
from which (Hadamard’s condition):

�ṙ� + ξ̇�r′� = 0, (5)

where the double square bracket � f � := f+ − f−
denotes the jump of the argument at the singularity.

If displacements u = u (s, t) ax + v (s, t) ay are
introduced for the string, then:

r = (s + u (s, t)) ax + v (s, t) ay,

ε =
√

(1 + u′ (s, t))2 + v′2 (s, t) − 1.
(6)

Elastic law

Let us assume that the string is hyperelastic, and its
potential per unit length is quadratic:

φ (ε) := T0 ε + 1

2
E A ε2. (7)
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From the Green law, the tension T = ∂φ
∂ε

follows:

T = T0 + E A ε, (8)

in which T0 is the prestress, and E A is the axial stiff-
ness.

Hamilton principle

The equations of motion of the string-point-mass sys-
tem can be derived by the variational Hamilton princi-
ple. Differently from [24], in which the compatibility
condition (3) was directly substituted in the functional,
here it is accounted for by the way of a Lagrange multi-
plierR, in order to derive equations also for the reactive
force exchanged between the string and the point-mass.
The modified Hamilton functional reads:

H̃ [r, x, ξ,R] :=
t2∫

t1

[Km + Ks − Us + W

−R · (x − r (ξ (t) , t))] dt,

(9)

where:

Km := 1

2
M ẋ · ẋ, Ks := 1

2

�∫

0

m ṙ · ṙ ds,

Us :=
�∫

0

φ (ε) ds, W := F · x,
(10)

are, in the order, the kinetic energy of the point-mass,
the kinetic energy of the string, the elastic potential
energy of the string and the potential of the force F
applied to the mass M . The principle requires δH̃ = 0
for any admissible arguments and arbitrary times t1, t2.
Admissibility at the external boundaries, following Eq.
(1), requires:

δr (0, t) = δr (�, t) = 0, ∀ t. (11)

Admissibility at singularity (internal boundary)
requires that:

δr̂ = lim
ε→0

1

ε

{

[r + ε δr]ξ(t)+ε δξ(t),t − r (ξ (t) , t)
}

,

(12)

Fig. 2 Geometrical interpretation of δr̂: vertical component δv̂

is continuous, i.e.,

δr̂ = δr− + r′− δξ = δr+ + r′+ δξ. (13)

A geometrical interpretation of δr̂ is given in Fig. 2.

Equations of motion

By variational calculus, in which the moving singu-
larity is accounted for, the following Euler–Lagrange
equations for the variational problem are drawn (see
“Appendix A” for a detailed derivation):

(
T

1 + ε
r′

)′
− m r̈ = 0, (14)

F − R − M ẍ = 0, (15)

�
T

1 + ε
r′

�

+ m ξ̇ �ṙ� + R = 0, (16)

−
�

T

1 + ε
r′ · r′

�

+ �φ� + 1

2
m ξ̇2 �r′ · r′� = 0, (17)

x − r (ξ (t) , t) = 0, (18)
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in which, from Eqs. (8) and (2):

T = T0 + E A
(∣
∣r′∣∣ − 1

)

. (19)

The previous equations are a set of mixed partial/ordi-
nary differential equations and internal boundary con-
ditions, for the unknown r, x, ξ,R; they must be sided
by the external boundary conditions (1), the continuity
condition �r� = 0, and the initial conditions:

r (s, 0) = r0 (s) , ṙ (s, 0) = ṙ0 (s) ,

x (0) = 0, ẋ (0) = ξ̇0 r′
0 (0) ,

ξ (0) = 0, ξ̇ (0) = ξ̇0,

(20)

where r0 (s) , ṙ0 (s) are smooth functions satisfying
compatibility at the ends, i.e., r0 (0) = 0, r0 (�) = � ax ,
ṙ0 (0) = ṙ0 (�) = 0. The initial conditions, moreover,
satisfy the point-mass-string compatibility at s = 0,
namely ẋ (0) = ṙ0 (0) + ξ̇0 r′

0 (0).
Equations (14)–(18) are firstly derived in [24], by

following a balance approach. It is worth noticing that
they are kinematically exact. Equation (14) is the field
equation, expressing balance of internal and inertia
forces, acting on a generic element of string in the
current configuration. This equation does not hold at
the singularity. Equation (15) is the linear momentum
equation for the point-mass, solicited by the external
active force F and the internal reaction −R.

Equation (16) is the internal boundary condition,
expressing the balance of forces acting on an infinitesi-
mal element of string which contains the singularity. In
it, in addition to the reaction R and the jump between
the internal forces at the ends of the element, a pecu-
liar term proportional to ξ̇ appears (which is absent in
the usual engineering problems of immovable bound-
aries); it expresses the variation of the linear momen-
tum of an infinitesimal segment of string of length ξ̇ dt ,
which instantaneously passes from the right to left of
the point-mass, undergoing a jump in velocity. By using
the Hadamard condition (5), this equation can also be
written as:
�(

T

1 + ε
− m ξ̇2

)

r′
�

+ R = 0. (21)

Equation (17) expresses the balance of energy (no
dissipation) of a segment of string which contains the
singularity (see [24] for more details). It can be trans-
formed as follows, by using the definitions of strain,

Eq. (2), the elastic law (8) and the expression of the
elastic potential (7):

− �(T0 + E A ε) (1 + ε)� +
�

T0 ε + 1

2
E A ε2

�

+ 1

2
m ξ̇2

�
(1 + ε)2

�
= 0,

(22)

or, by collecting terms with the same powers of ε and
accounting for the continuity of their coefficients:

(

m ξ̇2 − E A
) �

ε + 1

2
ε2

�

= 0. (23)

By assuming subsonic motions, it is ξ̇2 < E A
m =: c2l ,

with cl the celerity of longitudinal waves; therefore, the
energy balance condition entails:

�

ε + 1

2
ε2

�

= 0. (24)

Note that the condition is independent of prestress,
and the magnitude in brackets is the Cauchy-Green
one-dimensional strain. This equation is kinematically
exact, subjected to the unique assumption that the elas-
tic potential is quadratic.

Equations in terms of displacements

The set of Eqs. (14), (15), (21), (24), (18) can be recast
in terms of displacements, via Eq. (6). The resulting
equations turn out to be:

[
T

1 + ε

(

ax + u′)
]′

= m ü, (25)

F − R = M ẍ, (26)

�(
T

1 + ε
− m ξ̇2

)
(

ax + u′)
�

+ R = 0, (27)

�

ε + 1

2
ε2

�

= 0, (28)

x = ξ ax + u (ξ, t) , (29)
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together with the continuity condition �u� = 0 and the
initial conditions:

u (s, 0) = u0 (s) , u̇ (s, 0) = u̇0 (s) ,

x (0) = 0, ẋ (0) = ξ̇ (0)
(

ax + u′
0 (0)

)

,

ξ (0) = 0, ξ̇ (0) = ξ̇0.

(30)

The reaction R, of course, could be easily eliminated
between Eqs. (26) and (27), as well x and ẍ by Eq. (29),
but this operation is avoided here, in viewof the strategy
of solution that will be followed ahead.

When the previous equations are projected onto the
orthonormal basis, by introducing x = x (t) ax +
y (t) ay , they read:
[

T

1 + ε

(

1 + u′)
]′

= m ü,

[
T

1 + ε
v′

]′
= m v̈, (31)

D − Rx = M ẍ,

−P − Ry = M ÿ, (32)
�(

T

1 + ε
− m ξ̇2

)
(

1 + u′)
�

+ Rx = 0,
�(

T

1 + ε
− m ξ̇2

)

v′
�

+ Ry = 0, (33)
�

ε + 1

2
ε2

�

= 0, (34)

x = ξ + u (ξ, t) ,

y = v (ξ, t) , (35)

with the continuity conditions �u� = 0, �v� = 0 and the
initial conditions. This is a set of scalar equations for
the displacements of the string, u, v, the reactive forces
Rx , Ry , the coordinate of the point-mass x, y and the
material abscissa of the current position of the point-
mass, ξ . In the particular case in which the horizontal
motion of the point-mass is assigned, i.e., x = x̄ (t), the
right-hand member of Eq. (32a) must be substituted by
the known term ¨̄x (t), and the driving force D treated
as an unknown.

3 A minimal nonlinear model

The equations of motion (31)–(35) are strongly nonlin-
ear in the large displacement range, when the current

tension T cannot be linearized around the pretension
T0. Here, however, a small displacement regime is pos-
tulated, in which the dynamic tension is considered as
a small perturbation of the pretension. Consistently, a
weakly nonlinear minimal model is formulated, able to
capture the behavior of the point-mass-string system
when its response is small but finite.

The following assumptions are introduced: (i) the
dynamic strain is small (ε � 1 and therefore, also
u′ � 1); (ii) the horizontal displacements u are
much smaller than the vertical displacements v, in the
motions of interest; (iii) the pre-strain ε0 := T0

E A is
also small. This last assumption has important conse-
quences (commonly accepted in the literature in deal-
ing with strings and cables, see, e.g., [25]). It entails

that the celerity of the transverse waves ct :=
√

T0
m

is much lower than the celerity of the longitudinal

waves cl :=
√

E A
m , so that the two motions develop

on different time scales. In prevalent transverse non-
linear motions, the longitudinal response, due to the
weak dynamic coupling, is of quasi-static type, i.e., it
is driven by the transverse motion. Therefore, the hor-
izontal inertia force −m ü is negligible with respect to
the elastic force appearing in the same equation.

The horizontal motion of the string and the dynamic
tension

Under the previous hypotheses, the first of Eq. (31)
provides T = T (t), i.e., T = T0 + E A ε1 (t) in [0, ξ)

and T = T0 + E A ε2 (t) in (ξ, �], with ε1, ε2 two arbi-
trary functions of the time, only. However, the same
assumption of small strain leads to simplify Eq. (34)
into �ε� = 0, i.e., ε1 = ε2. Therefore, the current ten-
sion T at a fixed time t , is not only stepwise constant
in the domain, but, in the framework of the minimal
model, it remains strictly constant in the whole domain.

By assuming for the strain the series expansion of
the exact definition (2), i.e.,

ε = u′ + 1

2
v′2, (36)

we get that u = O
(

v2
)

, or v = O (ε) , u =
O

(

ε2
)

, ε = O
(

ε2
)

, with ε a small parameter. By
integrating the previous equation with ε = const, and
using the boundary conditions u (0) = u (�) = 0 and
�ε� = 0, the displacement u is found as a passive vari-
able (slave of v):
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u = −1

2

s∫

0

v′2 (

š, t
)

dš + s

2 �

�∫

0

v′2 (s, t) ds. (37)

Consequently, the dynamic tension reads:

T̃ = E A

2 �

�∫

0

v′2 (s, t) ds. (38)

It should by noticed that, since E A is large, T̃ can
be of the same order of T0. As an example, if E A

T0
=

O
(

103
)

(tightened steel string) and v′ = O
(

10−2
)

, it

is T̃
T0

= O
(

10−1
)

. For less tightened string, this ratio
can easily increase to 1. However, in the framework of
the minimal model, it will be assumed here, that T̃ �
T0, this assumption to be checked a posteriori from Eq.
(38), once the vertical response has been evaluated.

The vertical motion

With previous hypotheses and results, and by retain-
ing the leading terms in each equations, the second of
Eqs. (31), (32), (33) and (35) become:

T0 v′′ = m v̈, (39)

− P − Ry = M ÿ, (40)
(

T0 − m ξ̇2
)

�v′� + Ry = 0, (41)

y = v (ξ, t) . (42)

The field equation (39) and the mechanical boundary
condition (41) can be incorporated, as customary, in a
unique equation, in which the Dirac delta appears:

T0 v′′ + Ry δ (s − ξ) = m v̈. (43)

Note that Ry is a first-order quantity. If it is eliminated
between Eqs. (43) and (40), a classical equation, well-
known in the literature, is obtained (see, e.g., [22] in the
context of assigned motion of the point-mass), namely:

T0 v′′ = [

P + M
(

ξ̈ v′ + ξ̇2 v′′± + 2 ξ̇ v̇′± + v̈±
)]

δ (s − ξ)

+ m v̈,

(44)

in which ÿ has been evaluated via Eq. (42).

Fig. 3 Reaction R at the singularity

The horizontal motion of the mass

In the same framework of approximation, the first of
Eqs. (32), (33) and (35) become:

D − Rx = M ẍ, (45)
(

T0 − mξ̇2
)

�u′� + Rx = 0, (46)

x = ξ + u (ξ, t) . (47)

Equation (46) supplies an important result, namely, that
Rx/T0 = O

(

ε2
)

is a second-order quantity, that there-
fore cannot be described in a purely linear context.
Since �ε� = 0, from Eq. (36) it follows:

�u′� = −1

2
�v′2� ≡ −�v′�

〈

v′〉 , (48)

where
〈

v′〉 := 1
2

(

v′+ + v′−
)

is the average value of
the two (linearized) slopes at the singularity; therefore,
from Eqs. (46) and (41), it is found that [24]:

Rx = −Ry
〈

v′〉 . (49)

This result has an important geometrical meaning,
namely, at the leading order of approximation, the reac-
tionR is directed along the bisector of the angle formed
by the two tangents at the singularity (see Fig. 3).
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With Eqs. (49) and (47), by neglecting inertial terms
concerning u (as done for the inertial term−m ü in Eqs.
(31a)) and (45) reads:

D + Ry
〈

v′〉 = M ξ̈ . (50)

This nonlinear equation governs the horizontal motion
of the mass. It is worth discussing the order of magni-
tude of the various terms here involved. By assuming
Ry/T0 = O (ε) , it follows that:

– If the driving force is small, of the same order of
magnitude of the horizontal reactive force Rx , i.e.,

if D
T0

= O
(
Ry〈v′〉
T0

)

= O
(

ε2
)

, then Rx strongly

affects the motion of the point-mass, by rendering
it nonlinear;

– If, in contrast, the driving force is sufficiently large,
i.e., D

T0
≥ O (ε), the reaction Rx can be neglected

in Eq. (50), so that the horizontal motion of the
point-mass uncouples from the vertical one, and
the problem becomes linear.

From the previous consideration, it follows that the
more interesting case occurs when the driving force
is small. As an example, if D = const and small, it
is not guaranteed that the point-mass reaches the right
end of the string.

In the case of assigned horizontal motion of the
mass, and in the framework of the minimal model for
which x  ξ, it turns out that ξ = ξ̄ (t) is a known
function. Hence, the free boundary problem changes
into a simplermoving-boundary problem.Accordingly,
the vertical motion of the string, governed by Eq. (44),
uncouples from the horizontal motion, and furnishes
the same results of the linear theory. However, differ-
ently from this latter, the minimal nonlinear model per-
mits to post-evaluate the driving force via Eq. (50), and
the dynamic increment of tension via Eq. (38).

Final nondimensional governing equations

By summarizing previous results, theminimal model is
constituted by Eqs. (43), (40), (50), (42). When recast
in nondimensional form, they read:

v′′ + Ry δ (s − ξ) = v̈, (51)

− P − Ry = μ ÿ, (52)

D + Ry
〈

v′〉 = μ ξ̈, (53)

y = v (ξ, t) , (54)

with relevant boundary and initial conditions:

v (0, t) = v (1, t) = 0, (55)

v (s, 0) = 0, v̇ (s, 0) = 0, (56)

y (0) = 0, ẏ (0) = 0, (57)

ξ (0) = 0, ξ̇ (0) = ξ̇0, (58)

inwhich the string has been taken at the rest at the initial
time. In the previous equations, the following positions
hold:

ŝ := s

�
, t̂ := 1

�

√

T0
m
t, v̂ := v

�
, ξ̂ := ξ

�
,

ŷ := y

�
, μ := M

m �
, D̂ := D

T0
, P̂ := P

T0
,

R̂y := Ry

T0
, α := E A

2 T0
,

(59)

hat has been omitted, and prime and dot denote differ-
entiation with respect to the nondimensional indepen-
dent variables. Note that P̂ is independent of μ even
in case in which the vertical force is the weight of the
point-mass only, P = Mg.

Finally, the nondimensional horizontal displace-
ment, horizontal reaction and dynamic tension, respec-
tively, read:

u = −1

2

s∫

0

v′2 (

š, t
)

dš + s

2

1∫

0

v′2 (s, t) ds, (60)

Rx = −Ry
〈

v′〉 , (61)

T̃ = α

�∫

0

v′2 (s, t) ds. (62)

It appears that the vertical motion v (s, t) is coupled
to the horizontal motion of the mass. Coupling is due
to the vertical reaction Ry , which, for a given vertical
deflection v (s, t), and according to the bisector rule in
(49), produces a horizontal reaction Rx (t), which, in
turn, influences the horizontal motion of themass ξ (t);
this latter, as a feedback, affects the verticalmotion.The
nonlinearity is related to the mechanism triggering Rx .

Once the problem (51)–(54) has been solved: the
horizontal reaction Rx is evaluated by Eq. (61); the
horizontal motion of the string, u (s, t), by Eq. (60); the
motion of the point-mass as x = ξ (t) + u (ξ (t) , t),
y = v (ξ (t) , t); the dynamic tension T̃ by Eq. (62).
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4 Solution

Here, a semi-analytical strategy of solution, similar
to that firstly proposed by Smith [3], but extended to
account for the unknown motion, is followed. It con-
sists of: (i) solving Eqs. (51) and (52) by the way of
the convolution integral, in order to express v (s, t) and
y (t) in terms of two unknowns Ry (t) , ξ (t); (ii) using
the remaining Eqs. (53) and (54) to obtain a coupled
integral-differential system in these latter quantities;
(iii) numerically integrating the resulting equations.

The solution to Eq. (51) is sought in the form of a
truncated series:

v (s, t) =
Ne∑

k=1

φk (s) qk (t) , (63)

where φk (s) := √
2 sin (ωk s), ωk := k π , k =

1, 2, 3, · · · , are the eigenfunctions of the linear taut
string, suitably normalized. By substituting Eq. (63) in
Eq. (51) and by projecting on the eigenfunction basis,
the following equations are obtained for the modal
amplitudes:

q̈k + ω2
k qk = Ryφk (ξ) , k = 1, 2, . . . Ne, (64)

which admit the solution:

qk (t) =
√
2

ωk

∫ t

0
Ry (τ ) sin (ωk ξ (τ )) sin (ωk (t − τ)) dτ.

(65)

Then, the solution (63) becomes:

v (s, t) =
∫ t

0
Ry (τ ) K (s, t, τ ) dτ, (66)

where the following kernel appears:

K (s, t, τ ) :=
Ne∑

k=1

2

ωk
sin (ωk s) sin (ωk ξ (τ ))

· sin (ωk (t − τ)) .

(67)

On the other hand, the solution to Eq. (52) is:

y (t) = − P t2

2μ
− 1

μ

∫ t

0
Ry (τ ) (t − τ) dτ. (68)

To write Eqs. (53) and (54), it needs to evaluate
〈

v′〉.
Since the assumed vertical response of the string (66)

is smooth, no jumps in v′ (s, t) can be described. How-
ever, as it is well-known in the Fourier theory, the series
converges for large Ne to the average value of the dis-
continuity, namely v′ (ξ, t) → 〈

v′〉. With this approxi-
mation:

〈

v′〉 =2
Ne∑

k=1

cos (ωkξ (t))
∫ t

0
Ry (τ ) sin (ωk ξ (τ ))

× sin (ωk (t − τ)) dτ.

(69)

By substituting Eqs. (66), (68),(69) in Eqs. (53), (54),
it follows:

− P t2

2μ
=

∫ t

0
Ry (τ )

[

K (ξ (t) , t, τ ) + t − τ

μ

]

dτ,

μ ξ̈ = D + 2Ry (t)
Ne∑

k=1

cos (ωkξ (t))
∫ t

0
Ry (τ )

× sin (ωkξ (τ )) sin (ωk (t − τ)) dτ.

(70)

Equation (70) is an integro-differential system for the
unknowns Ry and ξ ; they must be accompanied with
initial conditions ξ (0) = 0, ξ̇ (0) = ξ̇0. Here, they
are numerically solved by the algorithm described in
“Appendix B”.

5 Numerical results

Some numerical results are shown, to comment typi-
cal behaviors of the system, relevant to: (a) assigned,
and, (b) unknown, horizontal motions of the point-
mass. In the latter case, the role of the mass of the
string is studied, and peculiar oscillatory motions of
the point-mass are investigated. All the case studies
concern a (steel) string of nondimensional mechanical
parameter α = 500. The number of the eigenfunctions
appearing in the series (63) has been fixed to Ne = 30,
and the number of steps of numerical integrations to
Ns = 1200; these two numbers have been chosen with
a suitable numerical convergence analysis.

Assigned horizontal motion

First, the case in which the point-mass experiences an
assigned uniformmotion, ξ = U t , is considered.Here,
U is the nondimensional velocity, which, according to
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(a)

(b)

Fig. 4 Trajectory of the point-mass for the case of assigned
horizontal uniform motion, when P = 0.01 and U variable: a
μ = 0.1; b μ = 1

the definitions (59), is the ratio between the dimen-
sional velocity and the celerity of the transverse waves.
As already said, the minimal model furnishes for this
problem the same vertical response of the classical lin-
ear theory, but supplies additional information for the
other quantities.

Figure 4 shows the motion of the mass for differ-
ent values of the velocity U and for two values of the
mass ratio, a small value μ = 0.1 (Fig. 4a), and a large
value μ = 1 (Fig. 4b). In both cases, the vertical force
has been fixed to a small value P = 0.01, in order to
investigate prevalent inertial effects. Figures report the
trajectory y(x) of the point-mass, obtained by the para-
metric equations x = x (t) , y = y (t) by eliminating
the parameter t . It emerges from the plots, the occur-
rence of the famous Stokes paradox [3,12,22], i.e.,
y (1) �= 0, which is exalted by large velocities U and
large mass-ratios μ. It is worth noticing that the lower
is U , the larger is the number of reflected/transmitted
waves which meet the point-mass; consequently, the

lower isU and the curlier is the trajectory of the point-
mass.

One of these cases, namely P = 0.01, μ =
0.1, U = 0.9, has been more widely detailed in
Fig. 5. Here, several quantities have been plotted vs the
abscissa x instantaneously occupied by the point-mass,
namely: (a) the vertical position of the point-mass;
(b) the vertical displacement of the string at midspan;
(c) the driving force necessary to sustain the uniform
motion; (d) the vertical reaction exchanged between the
point-mass and the string; (e) the dynamic tension in
the string; (f) the horizontal displacement of the string
at midspan. It is seen that vertical displacements of the
string and point-mass are small, of order 10−3, and the
horizontal displacement of the string is even smaller,
according to the hypotheses introduced. This is due to
the fact that the point-mass and the vertical force are
small too. The driving force and the vertical reactive
force exhibit an oscillatory behavior around an aver-
age value, the former of order 10−4, the latter of order
10−2, thus confirming to be a second- and a first-order
quantity, respectively. A peculiar phenomenon, how-
ever, is displayed: most of these quantities suddenly
increase when the point-mass approaches the right end.
In particular, the driving force and the dynamic tension
become about twice the prestress of the string, while
the vertical reaction becomes the quadruple. A similar
behavior is displayed by the horizontal displacement at
midspan, as a consequence of the large stretch of the
string, while the vertical displacement at midspan is
not affected by this behavior, since measured far from
the right end. From these results, it clearly emerges that
the minimal nonlinear model is unable to capture the
mechanical behavior of the system when the mass is
close to the right end.

Unknown horizontal motion

The case in which the motion of the point-mass is
sustained by a driving force, is now examined, see
Fig. 6. Attention is first focused on the role of the dis-
tributed string mass. By fixing the (small) driving force
at D = 2 × 10−4, the initial velocity at ξ̇0 = 0.03,
the (small) vertical force at P = 0.025 and the mass
parameter at μ = 1, the response of a massive string is
comparedwith that of themassless stringmodel, whose
equations of motions are derived in “Appendix C”,
namely Eqs. (98) and (99) (note that μ enters the defi-

123



Nonlinear planar modeling of massive taut strings 2211

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Detailed results for the case of assigned horizontal uniform motion, when P = 0.01, μ = 0.1 and U = 0.9 : a trajectory of the
point-mass; b v̄ = v

( 1
2 , t

)

; c driving force; d vertical reactive force; e dynamic tension; f ū = u
( 1
2 , t

)

nition (59) of the nondimensional time, so that μ = 1
for the massless string should be meant as a mere time
scaling factor). Figures show that the response of the
massive string is a small perturbation of the response
of the massless string. This result can be justified by
the fact that an unknown horizontal motion calls for
small driving forces, of the same order of Ry

〈

v′〉; more-
over, also the initial velocity ξ̇0 must be small. As a

consequence, the dynamics of the system is slow, of
quasi-static type, entailing very small accelerations, so
that the mass of string gives small contributions. If one
requires ξ̇0 = 0 (results not reported), the two solu-
tions further approach each other. It is worth noticing
that in this case the point-mass reaches the end support
without oscillations, due to the smallness of the vertical
force.

123



2212 M. Ferretti et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Comparison between massive (black lines) and massless
(gray lines) taut string model, for the case of unknown horizontal
motion,whenμ = 1, P = 0.025, D = 2×10−4 and ξ̇0 = 0.03:a

trajectory of the point-mass; b v̄ = v
( 1
2 , t

)

; c horizontal reactive
force; d vertical reactive force; e dynamic tension; f ū = u

( 1
2 , t

)

Figure 7 shows a case in which the point-mass oscil-
lates between the two ends of the string, occurring for
μ = 0.1, a small driving force D = 2 × 10−4, but
a quite large vertical force P = 0.275. The oscilla-
tory character of motion is displayed: in Fig. 7a, which
shows that the point-mass remains internal to the inter-
val of the string, i.e., 0 < ξ < 1, ∀t > 0; in Fig. 7b,
which describes the oscillatory vertical motion of the

point-mass; in Fig. 7c, which reports an analogous
behavior for the dynamic stress. It is worth noticing that
such a kind ofmotion does not occur for a small vertical
force P; this has, in contrast, to overcome a threshold
value. This occurrence is due to the fact that, in order to
invert the motion of the point-mass, a sufficiently high
horizontal reaction Rx is needed, antagonist to the driv-
ing force. Since this reaction follows the bisector rule,
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(a)

(b)

(c)

Fig. 7 Oscillatory motion of the mass between the two sup-
ports, when D = 2 × 10−4 , P = 0.275 and μ = 0.1: a
material abscissa of the string instantaneously occupied by the
point-mass;b vertical displacement of the point-mass; c dynamic
tension

a sufficiently large vertical force also is needed. On the
other hand, such a large vertical force triggers large
vertical displacements (up-to the order 10−1) which, in
turn, produce very high dynamic increment of stress,
up-to 25 times the pretension, for which the minimal

model is inadequate. Therefore, a more refined model,
at least including the dynamic stress in the equations of
motion, is needed. Finally, it is worth mentioning that
when oscillatory motions of the point-mass are inves-
tigated, significative differences between the massive
and massless models are found. In particular, by keep-
ing fixed the parameters μ, D and ξ̇0, the value of P
that triggers an oscillatory motion of the point-mass is
larger for the massless string model.

6 Conclusions

The planar response of a horizontal taut string, trav-
elled by a point-mass, either driven by an assigned
horizontal force, or experiencing an assigned hori-
zontal motion, has been analyzed. An exact nonlin-
ear model, formulated by the authors in a previous
paper, has been re-derived here in a variational way,
in a slight different form, in order to make explicit the
reactive forces exchanged between the point-mass and
the string. Then, a minimal nonlinear model has been
drawn from the exact model, by quasi-statically con-
densing the horizontal displacement of the string, and
assuming that the incremental dynamic stress is small
with respect to its static part. In the framework of a
perturbation approach, the dynamic stress has however
been post-evaluated as an higher-order quantity, on the
ground of the lower-order solution. The nonlinear min-
imalmodel, although approximated, improves the clas-
sical linear model, namely:

1. When the horizontal motion of the point-mass
is unknown (free boundary problem), the model
describes the nonlinear interaction between the
vertical response of the string and the horizontal
response of the mass;

2. When the horizontal motion of the point-mass is
known (moving boundary problem), the vertical
response of the string coincides with that of the
linear theory, but additional quantities can be post-
evaluated, i.e., the horizontal displacement of the
string, the driving force and the dynamic increment
of tension.

The analysis of the equations of the minimal nonlinear
model has revealed the role of the reactive force. It
is directed along the bisector of the angle formed by
the two tangents to the deflected profile of the string,
at the singular point instantaneously occupied by the
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point-mass. The vertical component of the reaction is a
first-order quantity, the horizontal component a second-
order quantity. Two limit cases occur:

1. If the driving force is large, the horizontal reaction
is negligible, and the systembehaves as a linear sys-
tem, in which the vertical response of the string is
uncoupled from the horizontal motion of the point-
mass;

2. If the driving force is small, the horizontal motion
is truly unknown, and it exerts a feedback on the
vertical motion via the vertical reaction.

From numerical simulations carried out, the following
conclusion can be drawn:

1. When a uniform horizontal motion is assigned
to the point-mass (this case was not considered
in [24]), subjected to a small vertical load, the
response strongly depends on the traveling velocity.
Even for high values of this latter, the driving force,
the dynamic stress and the horizontal response of
the string are small, except in a boundary layer close
to the right end, where they assume very large val-
ues, which make the minimal model (as well the
linear one) inadequate.

2. When a small driving force and a small verti-
cal force are applied to the point-mass, possess-
ing a small initial velocity, the point-mass reaches
the end support without oscillations. This result
is in agreement with results of [24], where it was
obtained for amassless string hanged on two elastic
springs with non-zero compliance. The response is
quasi-static, entailing that the influence of the dis-
tributed mass on the response is small.

3. When a massive string is considered, with small
driving force but with large vertical load, oscil-
latory motions are observed, in which the point-
mass approaches the right end and comes back.
This result also is in agreement with results of [24].
However, it has been checked, that a large dynamic
tension is triggered, so that these results should be
confirmed by a more refined analysis. In this case
significative differences between the massless and
the massive model are observed.

Further studiesmust beperformed,mainly to include
the dynamic tension in the equations ofmotion, in order
to allow it to increase up-to, and possibly overcome, the
static tension.
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AppendixA:Variational derivation of the equations
of motion

The Equations of motion (14)–(18) are derived by the
stationary condition of themodifiedHamilton principle
(9), δH̃ [r, x, ξ,R] = 0, i.e.,

t2∫

t1

[

δKm + δKs − δUs + δW − R · (

δx − δr̂
)]

dt

−
t2∫

t1

δR · (x − r (ξ (t) , t)) dt = 0 ∀ (δr, δx, δξ, δR) ,

(71)

where the definitions (10) hold forKm,Ks,Us,W and
(13) for δr̂.

The variations of non-integral in space terms are
straightforward, namely:

t2∫

t1

δKmdt =
t2∫

t1

M ẋ · δẋ dt = −
t2∫

t1

M ẍ · δx dt, (72)

δW = F · δx, (73)

where terms evaluated at t1, t2 after integration by parts
have been canceled. The variation of the terms which
involve integrals on space, instead, is more compli-
cated, since it calls for properly accounting for the
presence of a singularity at s = ξ . By breaking the
integration interval as:

�∫

0

f (s) ds =
ξ∫

0

f ds +
�∫

ξ

f ds, (74)

it follows that:

δ

�∫

0

f (s) ds =
�∫

0

δ f ds +
⎛

⎝

ξ+δξ∫

0

f ds −
ξ∫

0

f ds

⎞

⎠
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+
⎛

⎜
⎝

�∫

ξ+δξ

f ds −
�∫

ξ

f ds

⎞

⎟
⎠

=
�∫

0

δ f ds + [

f (ξ−) − f (ξ+)
]

δξ

=
�∫

0

δ f ds − � f �δξ, (75)

Accordingly:

δKs =
�∫

0

m ṙ · δṙ ds − 1

2
m �ṙ · ṙ�δξ, (76)

δUs :=
�∫

0

T

1 + ε
r′ · δr′ ds − �φ�δξ, (77)

in which δφ = ∂φ
∂ε

δε = T δε has been exploited,

together with δε = r′·δr′
1+ε

, following Eq. (2).
Next step calls for integrating by parts the last two

expressions. By noticing that:

�∫

0

f (s, t) ġ (s, t) ds

= −
�∫

0

ḟ g ds +
�∫

0

( f g)• ds

= −
�∫

0

ḟ g ds + d

dt

⎛

⎝

�∫

0

f g ds

⎞

⎠ + ξ̇� f g�,

�∫

0

f (s) g′ (s) ds

= −
�∫

0

f ′g ds + [

f−g−
]ξ

0 + [

f+g+
]�

ξ

= −
�∫

0

f ′g ds + [ f g]�0 − � f g�,

(78)

it follows:

t2∫

t1

δKs dt = −
t2∫

t1

�∫

0

m r̈ · δr ds dt +
t2∫

t1

m ξ̇�ṙ · δr� dt

(79)

−
t2∫

t1

1

2
m�ṙ · ṙ�δξ dt, (80)

δUs := −
�∫

0

(
T

1 + ε
r′

)′
· δr ds

−
�

T

1 + ε
r′ · δr

�

− �φ�δξ, (81)

where the arbitrariness of t1, t2 and the external bound-
ary conditions were accounted.

The last step concerns the treatment of the disconti-
nuities at s = ξ . By remembering Eq. (13b), it follows:

�f (s) · δr� = f+ · δr+ − f− · δr−
= f+ · (

δr̂ − r′+δξ
) − f− · (

δr̂ − δξ r′−
)

= �f� · δr̂ − �f · r′�δξ,

(82)

fromwhich the terms in Eqs. (79) and (81) are rewritten
as:

�ṙ · δr� = �ṙ� · δr̂ − �ṙ · r′�δξ, (83)

�
T

1 + ε
r′ · δr

�

=
�

T

1 + ε
r′

�

· δr̂ −
�

T

1 + ε
r′ · r′

�

δξ.

(84)

The term �ṙ · r′� can be further transformed by using
the relationship:

�ṙ · ṙ� + 2 ξ̇�ṙ · r′� + ξ̇2�r′ · r′� = 0, (85)

which is obtained by manipulating as follows Eq. (4):

ẋ · ẋ = (

ṙ± + ξ̇ r′±
) · (

ṙ± + ξ̇ r′±
)

= ṙ± · ṙ± + 2 ξ̇ ṙ± · r′± + ξ̇2 r′± · r′±.
(86)
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By collecting all previous results, the variational
principle (71) reads:

t2∫

t1

�∫

0

[(
T

1 + ε
r′

)′
− m r̈

]

· δr ds dt

+
t2∫

t1

{F − R − M ẍ} · δx dt

+
t2∫

t1

[(�
T

1 + ε
r′

�

+ mξ̇�ṙ� + R
)

· δr̂
]

dt

+
t2∫

t1

[(

−
�

T

1 + ε
r′ · r′

�

+ �φ�

+1

2
m ξ̇2�r′ · r′�

)

δξ

]

dt

+
t2∫

t1

[(x − r (ξ (t) , t)) · δR] dt = 0

∀ (δr, δx, δξ, δR) , (87)

from which Eqs. (14)–(18) are finally derived.

Appendix B: Numerical solution of the integro-
differential system

To solve the final Eq. (70), a numerical procedure is
adopted, in which the trapezoidal rule for the inte-
gral and the forward finite differences for the time-
derivatives are adopted. The following positions are
first introduced for brevity:

f (t) := − P t2

2μ
,

A (t, τ ) := K (ξ (t) , t, τ ) + t − τ

μ
,

B (t, τ ) := 2
Ne∑

k=1

cos (ωkξ (t)) sin (ωkξ (τ ))

sin (ωk (t − τ)) .

(88)

The time interval
[

0, t f
]

is divided in Ns > 2 equi-
spaced time sub-intervals of amplitude t = t f /Ns .
The following notation is used:

ti = i t, τ j = j t, i, j = 0, 1, 2, · · · , Ns ,

Ryi = Ry (ti ) , ξi = ξ (ti ) ,

Ai j = A (

ti , τ j
)

, Bi j = B (

ti , τ j
)

,

fi = f (ti ) , Di = Di (ti )

(89)

The integral Eq. (70a) is approximated as:
(
1

2
A10Ry0 + 1

2
A11Ry1

)

t = f1,

⎛

⎝
1

2
Ai0Ry0 +

i−1
∑

j=1

Ai j Ry j + 1

2
Ai i Ryi

⎞

⎠ t = fi ,

i = 2, · · · , Ns, (90)

and the integro-differential Eq. (70b), by accounting
for the initial conditions, as:

ξ0 = 0,

ξ1 = ξ̇0 t,

μ
ξ2 − 2 ξ1 + ξ0

t2
= D0,

μ
ξ3 − 2 ξ2 + ξ1

t2

= D1 + Ry1

(
1

2
B10Ry0 + 1

2
B11Ry1

)

t,

μ
ξi+2 − 2 ξi+1 + ξi

t2
= Di

+ Ryi

⎛

⎝
1

2
Bi0Ry0 +

i−1
∑

j=1

Bi j Ry j + 1

2
Bi i Ryi

⎞

⎠t,

i = 2, · · · , Ns .

(91)

Equations (90) and (91) can be solved in cascade by
following the sequence:

ξ0 = 0,

ξ1 = ξ̇0 t,

Ry0 = 2 f1
A10 t

,

ξ2 = D0t2

μ
+ 2 ξ1 − ξ0,

Ry1 = f2
A21 t

− A20

2A21
Ry0,

ξ3 = D1t2

μ
+ 2 ξ2 − ξ1 + 1

2μ
B10Ry0Ry1t3,
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Ry(i−1) = fi
Ai(i−1) t

− 1

Ai(i−1)

⎛

⎝
1

2
Ai0Ry0 +

i−2
∑

j=1

Ai j Ry j

⎞

⎠ ,

i = 3, · · · , Ns,

ξi+1 = D(i−1)t2

μ
+ 2 ξi − ξi−1

+ Ry(i−1)

μ

⎛

⎝
1

2
B(i−1)0Ry0 +

i−2
∑

j=1

B(i−1) j Ry j

⎞

⎠ t3,

i = 3, · · · , Ns, (92)

in which Ai i = Bi i = 0 has been accounted for (i.e.,
A (t, t) = B (t, t) = 0). In the case of assigned ξ -
motion, the step relevant to the determination of ξi is
skipped and subsequently utilized for the determination
of Di .

Appendix C: Massless string

The equation of motion of the massless string is
obtained by neglecting the inertia term in Eq. (51):

v′′ + Ry δ (s − ξ) = 0. (93)

Equation (93) admits the solution:

v (s, t) =
{

Ry (1 − ξ) s 0 ≤ s ≤ ξ

Ry (1 − s) ξ ξ ≤ s ≤ 1
. (94)

Substitution of Eq. (94) in Eq (54) yields:

y = v (ξ, t) = Ry (1 − ξ) ξ, (95)

from which:

Ry = y

(1 − ξ) ξ
. (96)

From Eq. (94), it follows that:

〈

v′〉 = 1

2
(1 − 2 ξ) Ry . (97)

By usingEqs. (96) and (97), Eqs. (52) and (53) become:

μ ÿ + y

(1 − ξ) ξ
= −P, (98)

μ ξ̈ + (2 ξ − 1) y2

2 (1 − ξ)2 ξ2
= D. (99)

Equations (98) and (99) govern the problem of the
massless string. Once such equations are solved for y
and ξ , the vertical reaction and the displacement field of
the string are evaluated via Eqs. (96) and (94), then the
nondimensional horizontal displacement, the horizon-
tal reaction and the dynamic tension computed through
Eqs. (60), (61) and (62), respectively.

It is worth noting that some coefficients of Eqs. (98)
and (99) exhibit singularities at ξ = 0 or ξ = 1. This
situation does not occur if the string is hanging on
two vertical elastic supports, as proven in [24]. There-
fore, the springs regularize the mathematical model. To
investigate the role of singularities, a numerical analy-
sis (not shown here) was carried out, comparing results
of Eqs. (98), (99) and those derived in [24], when a
very small compliance of the springs is taken. The two
models were found to be in excellent agreement, except
for a very narrow layer close to the ends. Therefore, the
simpler model was adopted.
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