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Abstract Water waves are one of the most com-
mon phenomena in nature, the study of which helps
in designing the related industries. In this paper, a
generalized (3 + 1)-dimensional B-type Kadomtsev–
Petviashvili equation for the water waves is inves-
tigated. Gramian solutions are constructed via the
Kadomtsev–Petviashvili hierarchy reduction. Based on
the Gramian solutions, we construct the breathers. We
graphically analyze the breather solutions and find that
the breathers can be reduced to the homoclinic orbits.
For the higher-order breather solutions, we obtain the
mixed solutions consisting of the breathers and homo-
clinic orbits. According to the long-wave limit method,
rational solutions are constructed.We look at two types
of the rational solutions, i.e., the lump and line rogue
wave solutions, and give the condition for the lumps
being reduced to the line rogue waves. Taking another
set of the parameters for the Gramian solutions, we
also derive the kinky breather solutions which can be
reduced to the kink solitons. For the higher-order kinky
breather solutions, we obtain the mixed solutions con-
sisting of the breathers and kink solitons. Combining
the breather and rational solutions, we construct two
kinds of the hybrid solutions composedof the breathers,
lumps, line roguewaves and kink solitons. Characteris-
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tics of those hybrid solutions are graphically analyzed
and the conditions for the generation of those hybrid
solutions are given.
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1 Introduction

Water waves have been thought to be one of the
most common phenomena in nature, the study of
which helps in designing the related industries [1–
7]. The Kadomtsev–Petviashvili (KP)-type equations
have been seen in fluid mechanics, nonlinear optics
and plasma physics [8–15]. People have also obtained
the B-type KP hierarchy by imposing an extra condi-
tion between the Lax operator and its adjoint of the
KP hierarchy [16–20]. To study the B-type KP hierar-
chy, researchers have presented a generalized (3 + 1)-
dimensional B-type KP equation for the water waves
[21–23],

uty − uxxxy − 3(uxuy)x + 3uxz = 0, (1)

where u = u(x, y, z, t) is a real function of the scaled
spatial coordinates x, y, z and temporal coordinate t ,
the subscripts denote the partial derivatives. Thehigher-
order, multiple rogue waves and lumps for Eq. (1) have
been obtained based on the solutions in terms of the
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Gramian [21]. Multiple wave solutions for Eq. (1) have
been constructed bymeans of themultiple exp-function
algorithm [22]. N -soliton solutions formed by the lin-
ear combinations of the exponential traveling waves
have been constructed [23].

Breathers, lumps and rogue waves have attracted
researchers’ attention because of their applications in
fluid mechanics, nonlinear optics, plasma physics and
other fields [24–40]. It has been considered that there
are three types of the breathers, namely the Akhme-
diev breathers, Kuznetsov–Ma breathers and Peregrine
solitons [36,41–46]. As a kind of the rational solutions,
lumps have been considered as the waves localized in
all directions in the space [33–35]. Rogue waves have
been seen as the large-amplitude waves unexpectedly
appearing in the oceans [36–38,47,48]. A potential
mechanism for the formation of the rogue waves has
been associatedwith themodulation instability [45,49–
52]. Peregrine solitons have been considered as the pro-
totype of the rogue waves in the oceans [36]. It has
been reported that three types of the breathers aremutu-
ally related, especially the Peregrine solitons have been
considered as the limiting form of the Akhmediev or
Kuznetsov–Ma breathers [53,54].

To our knowledge, the breather solutions and hybrid
solutions which are composed of the breathers, lumps,
line rogue waves and kink solitons for Eq. (1) have
not been studied via the KP hierarchy reduction. In
Sect. 2, we will construct the solutions in terms of the
Gramian which are different from those in Ref. [21]
for Eq. (1). In Sect. 3, we will derive one kind of the
breather solutions for Eq. (1), which can be reduced to
the homoclinic orbits under certain conditions.Accord-
ing to the long-wave limit method [33,55], we will also
construct the rational solutions including the lumps and
line rogue waves for Eq. (1). In Sect. 4, one kind of the
hybrid solutions composed of the breathers, lumps and
line rogue waves for Eq. (1) will be obtained. In Sect. 5,
another kind of the breather solutions and hybrid solu-
tions which are composed of the breathers, lumps and
kink solitons for Eq. (1) will be constructed. In Sect. 6,
we will give our conclusions.

2 Gramian solutions for Eq. (1)

By virtue of the dependent variable transformation [21]

u = 2(ln f )x , (2)

where f = f (x, y, z, t) is a real function, Eq. (1) can
be converted into the following bilinear form [14]:

(DyDt − D3
x Dy + 3Dx Dz) f · f = 0, (3)

where D is the Hirota’s bilinear differential operator
defined as [56]

Dl1
x D

l2
y D

l3
z D

l4
t f · g =

( ∂

∂x
− ∂

∂x ′
)l1( ∂

∂y
− ∂

∂y′
)l2

( ∂

∂z
− ∂

∂z′
)l3( ∂

∂t
− ∂

∂t ′
)l4

f (x, y, z, t)

g(x ′, y′, z′, t ′)|x=x ′,y=y′,z=z′,t=t ′ ,

with g as a function of the formal variables x ′, y′, z′
and t ′, l1, l2, l3 and l4 being the non-negative integers.

Referring to Refs. [57–60], the bilinear equation in
the KP hierarchy,

(D3
x1Dx2 + 2Dx3Dx2 − 3Dx1Dx4)τn · τn = 0, (4)

admits the Gramian solutions,

τn = |m(n)
i j |1≤i, j≤N , (5)

where the matrix element m(n)
i j satisfies the following

differential and difference relations:

∂x1m
(n)
i j = ϕ

(n)
i ψ

(n)
j ,

∂x2m
(n)
i j = (∂x1ϕ

(n)
i )ψ

(n)
j − ϕ

(n)
i (∂x1ψ

(n)
j ),

∂x3m
(n)
i j = (∂2x1ϕ

(n)
i )ψ

(n)
j + ϕ

(n)
i (∂2x1ψ

(n)
j )

− (∂x1ϕ
(n)
i )(∂x1ψ

(n)
j ),

∂x4m
(n)
i j = (∂3x1ϕ

(n)
i )ψ

(n)
j − (∂2x1ϕ

(n)
i )(∂x1ψ

(n)
j )

+ (∂x1ϕ
(n)
i )(∂2x1ψ

(n)
j ) − ϕ

(n)
i (∂3x1ψ

(n)
j ),

m(n+1)
i j = m(n)

i j + ϕ
(n)
i ψ

(n+1)
j , ∂xkϕ

(n)
i = ϕ

(n+k)
i ,

∂xkψ
(n)
j = −ψ

(n−k)
j , (k = 1, 2, 3, 4).

(6)

m(n)
i j , ϕ

(n)
i and ψ

(n)
j are the functions of the variables

x1, x2, x3 and x4, “∂” means the partial derivative, n
is an integer and N is a positive integer. Proof process
about τn being the solutions of Bilinear Form (4) can
be found in Ref. [21].
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In order to construct the breather solutions for
Eq. (1), satisfying (6), we choose

m(n)
i j = δi j + 1

pi + q j
ϕ

(n)
i ψ

(n)
j ,

ϕ
(n)
i = pni (pi + qi )e

ri ,

ψ
(n)
j = (− q j )

−nes j ,

with

ri = pi x1 + p2i x2 + p3i x3 + p4i x4 + r0i ,

s j = q j x1 − q2j x2 + q3j x3 − q4j x4 + s0j ,

where pi ,q j , r0i and s
0
j are the complex constants, δi j =

1 (i = j) and δi j = 0 (i �= j).
We set f = τ0 and take the independent variable

transformations:

x1 = − x, x2 = I y, x3 = 2t, x4 = I z,

where I = √− 1, and then Bilinear Form (4) can be
reduced to Bilinear Form (3). With certain parameters
pi and q j given in [61], we can prove that f = τ0 is a
real function.Therefore,Gramian solutions forBilinear
Form (3) can be written as

f =
∣∣∣δi j + pi + qi

pi + q j
eri+s j

∣∣∣
N×N

, (7)

where

ri = − pi x + I p2i y + 2p3i t + I p4i z + r0i ,

s j = − q j x − I q2j y + 2q3j t − I q4j z + s0j ,

and then, by virtue of the transformation u = 2(ln f )x ,
we canobtain theGramian solutionswhich are different
from those in [21] for Eq. (1).

3 The first kind of the breather and rational
solutions for Eq. (1)

3.1 The first kind of the breather solutions for Eq. (1)

In Appendix A, we construct the first kind of the
breather solutions for Eq. (1). Setting M = 1 in

Eq. (24), we can obtain the first-order breather solu-
tions for Eq. (1) as

u = 2(ln f )x , (8a)

f = 1 + eζ1 + eζ ∗
1 + A12e

ζ1+ζ ∗
1 , (8b)

where

ζ1 = − Iλ1x + 2IΛ1λ1y − Iλ1(Λ1λ
2
1 + 4Λ3

1)z

− Iλ1
2

(λ21 + 12Λ2
1)t + ζ 0

1 ,

A12 = 1 − λ21

(Λ1 − Λ∗
1)

2 .

Take Λ1 = Λ1R + IΛ1I with I = √−1, Λ1R and
Λ1I as the real constants, and we rewrite ζ1 = ζ1R +
I ζ1I , where

ζ1R = − 2λ1Λ1I y + λ1Λ1I (λ
2
1 − 4Λ2

1I

+ 12Λ2
1R)z + 12λ1Λ1RΛ1I t + ζ 0

1 ,

ζ1I = − λ1x + 2λ1Λ1R y

− λ1Λ1R(λ21 − 12Λ2
1I + 4Λ2

1R)z

− λ1

2
(λ21 − 12Λ2

1I + 12Λ2
1R)t.

(9)

It can be found that the behavior of the first-order
breather is affected by Λ1R, Λ1I and λ1, and the
asymptotic behavior of the first-order breather isu → 0
as ζ1R → ±∞. Moreover, the first-order breather is
localized along the direction of the line ζ1R = 0 and
periodic along the direction of the line ζ1I = 0. Calcu-
lation shows thatΛ1I and λ1 cannot be zero; otherwise,
the first-order breather solutions will be equal to zero.
Because ζ1R only contains the expressions of y and t but
not the expression of x , the first-order breather is paral-
lel to the x axis on the (x, y) and (x, z)planes.However,
on the (y, z) plane, the first-order breather has an angle
with the y and z axis. Particularly, when the coefficient
of z in ζ1R is equal to zero, i.e.,λ21−4Λ2

1I +12Λ2
1R = 0,

the first-order breather will be parallel to the z axis on
the (y, z) plane.

We note that when ∂ζ1R
∂z = 0 or ∂ζ1R

∂t = 0, which
means that the coefficient of z or t in ζ1R is equal to
zero, and the localized behavior of the breather only
appears in the t axis. Those breathers will be reduced
to the periodic line waves on the (x, z) or (x, t) plane,
where the periodic line waves begin from the constant

123



2026 C.-C. Ding et al.

plane, then form the periodic waves, and finally return
to the plane. That kind of the solution is also called the
homoclinic orbit [62,63]. Because Λ1I and λ1 cannot
be zero, there is no such solution on the (x, y) plane.

The higher-order breather solutions for Eq. (1) can
be obtained similarly. For instance, when M = 2, the
second-order breather solutions for Eq. (1) are

u = 2(ln f )x , (10)

f = Δ2

∣∣∣∣∣∣∣∣∣∣∣∣

1
Iλ1eζ1

+ 1
Iλ1

− 1
I(Λ1−Λ∗

1)
1

I(Λ1−Λ∗
1)

− 1

Iλ1e
ζ∗
1

+ − 1
Iλ1

1

I
(
Λ1−Λ2+ λ1+λ2

2

) − 1

I
(
Λ2−Λ∗

1+ λ1−λ2
2

)

1

I
(
Λ1−Λ∗

2+ λ1−λ2
2

) − 1

I
(
Λ∗

2−Λ∗
1+ λ1+λ2

2

)

1

I
(
Λ2−Λ1+ λ1+λ2

2

) 1

I
(
Λ∗

2−Λ1+ λ1−λ2
2

)

− 1

I
(
Λ∗

1−Λ2+ λ1−λ2
2

) − 1

I
(
Λ∗

1−Λ∗
2+ λ1+λ2

2

)

1
Iλ2eζ2

+ 1
Iλ2

− 1
I(Λ2−Λ∗

2)
1

I(Λ2−Λ∗
2)

− 1

Iλ2e
ζ∗
2

+ − 1
Iλ2

∣∣∣∣∣∣∣∣∣∣∣∣

, (11)

where

ζk = − Iλk x + 2IΛkλk y − Iλk(Λkλ
2
k + 4Λ3

k)z

(12a)

− Iλk
2

(λ2k + 12Λ2
k)t + ζ 0

k , (k = 1, 2)

Δ2 = λ21λ
2
2e

ζ1+ζ ∗
1 +ζ2+ζ ∗

2 . (12b)

From the above analysis on the first-order breather
solutions, we know that there are three forms of the
second-order breathers, which contain two first-order
breathers, two homoclinic orbits and the mixed form
consisting of one first-order breather and one homo-
clinic orbit, as shown in Fig. 1. Since ζ1R in Eqs. (12)
only contains the expressions of y and t but not the
expression of x , whichmeans that the x direction shows
only the periodicity, so that the second-order breathers
are still parallel to the x axis on the (x, y) and (x, z)
planes. However, on the (y, z) plane, we can construct
the breathers which are parallel to the z axis or have an
angle to the y and z axes.Because Im(Λ1) (where Im(•)

is the imaginary part of •) and λ1 in Solutions (10) can-
not be zero, the second-order breathers on the (y, z)
plane can be parallel to the z axis but not to the y
axis. We find two interaction forms of the second-order
breathers. The twofirst-order breathers propagate along

the same direction and undergo an overtaking inter-
action when Re(Λ1) · Re(Λ2) > 0 (where Re(•) is
the real part of •) in Solutions (10). However, when
Re(Λ1) · Re(Λ2) < 0 in Solutions (10), the two first-
order breathers propagate in the opposite direction and
undergo a head-on interaction.

If we take ∂Re(ζ1)
∂z = 0 or ∂Re(ζ2)

∂z = 0 in Solu-
tions (10), we can obtain the mixed form of the second-
order breather solutions consisting of one first-order
breather and one homoclinic orbit, as shown in Fig. 1.
It can be seen that the mixed solutions only contain
one first-order breather when |t | ≥ 0, and the first-
order breather is parallel to the x axis. When |t | → 0,
periodic line waves arise from the constant background
and interact with the first-order breather. Moreover, let
both ∂Re(ζ1)

∂z = 0 and ∂Re(ζ2)
∂z = 0 in Solutions (10),

and we can obtain the second-order breather solutions
consisting of two homoclinic orbits.

3.2 Rational solutions for Eq. (1)

According to the long-wave limit method [23,39], we
construct the rational solutions for Eq. (1) in Appendix
B. We note that the rational solutions have also been
obtained via another method in [21]. When M = 1, the
rational solutions for Eq. (1) can be written as

u = 2(ln f )x ,

f = |θ1|2 − 1

(Λ1 − Λ∗
1)

2 , (13)

with

θ1 = I (x − 2Λ1y + 4Λ3
1z + 6Λ2

1t).

Let Λ1 = a + I b with a and b as the real constants,
and the rational solutions can be rewritten as

u = 16b2(x + hy + mz + nt)

1 + 4b2[(x + hy + mz + nt)2 + (ry + pz + qt)2] ,
(14)

where

m = 4a(a2 − 3b2), n = 6(a2 − b2), p = 4b(b2 − 3a2),

q = − 12ab, h = − 2a, r = 2b.

Next, we give two types of the rational solutions:
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Breather and hybrid solutions 2027

Fig. 1 The second-order breathers via Solutions (10) with Λ1 = 0.4 + I, λ1 = 2, Λ2 = − 1
3 + 2

3 I, λ2 = 2
3 and ζ 0

1 = ζ 0
2 = 0. a

z = 0; b x = 0; c y = 0

1. Lumps. We take the (x, z) plane as an example.
From Eq. (14), when y = 0, at any fixed t , when
(x, z) goes to the infinity, u → 0. Hence that solu-
tion indicates a lump moving on a constant back-
ground, and that lump has two extreme points at
( 1
2b , 0) and (− 1

2b , 0) with the maximum and min-
imum being 4b and − 4b, respectively.

2. Line rogue waves. When p = 0 in Solutions (14),
i.e., 4b(b2−3a2) = 0, the lumps will be reduced to

the line rogue waves on the (x, z) plane. Different
from that of the soliton, the amplitude of the line
rogue wave varies with t , and the maximum and
minimum amplitudes of the line rogue waves are
4b and − 4b, respectively. We note that because b
cannot be zero (otherwise u is equal to zero), there
is no such line rogue waves on the (x, y) plane.
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Fig. 2 The second-order rational solutions via Solutions (15) with Λ1 = 1
2 +

√
3
2 and Λ2 = − 1

2 +
√
3
2 . a z = 0; b x = 0; c y = 0

When M = 2, the second-order rational solutions
are

u = 2(ln f )x ,

f =

∣∣∣∣∣∣∣∣∣∣

θ1
1

Λ1−Λ∗
1

1
Λ1−Λ2

1
Λ1−Λ∗

2
1

Λ1−Λ∗
1

θ∗
1

− 1
Λ∗

1−Λ2

− 1
Λ∗

1−Λ∗
2

1
Λ2−Λ1

1
Λ2−Λ∗

1
θ2

1
Λ2−Λ∗

2− 1
Λ∗

2−Λ1

− 1
Λ∗

2−Λ∗
1

1
Λ2−Λ∗

2
θ∗
2

∣∣∣∣∣∣∣∣∣∣
,

(15)

where

θk = I (x − 2Λk y + 4Λ3
k z + 6Λ2

k t). (k = 1, 2).

The second-order rational solutions contain the two
lumps, two line rogue waves and the mixed form con-
sisting of one lump and one line rogue wave, as shown
in Fig. 2. Similar to the second-order breathers, there
are also two kinds of the interaction forms from the two
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Fig. 3 The second-order rational solutions via Solutions (15) with Λ1 = 0.2 + 0.6I and Λ2 = − 1
3 +

√
3
3 . a z = 0; b x = 0; c y = 0

lumps, as shown in Fig. 2. We show the evolution of
the two line rogue waves in Fig. 2c. It can be seen that
the two line rogue waves arise from a constant back-
ground, then reach their maximum amplitudes at t = 0
and finally disappear into the background again. We
also find that the amplitude at the location of the inter-
action between the two line rogue waves is zero and
the wave pattern forms two curvywavefronts which are
separated, as seen in Fig. 3c. We illustrate the mixed

solution consistingof one lumpandone line roguewave
in Fig. 3, from which we find that the lump exists all
the time and moves on the constant background but the
line rogue wave exists only for a period of t . When the
amplitude of the line rogue wave reaches themaximum
value, the line rogue wave crosses over the lump and
the lump is divided into two parts.

123



2030 C.-C. Ding et al.

4 Hybrid solutions for Eq. (1)

We give the hybrid solutions for Eq. (1) in Appendix C.
When Ñ = N̂ = 1 in Eq. (26), rational- and exponent-
type solutions can be written as

u = 2(lnΔ0F)x ,

F =
∣∣∣∣∣∣∣∣∣∣∣∣

θ1
1

Λ1−Λ∗
1

2
2(Λ1−Λ2)−λ2

2
2(Λ1−Λ∗

2)+λ2

1
Λ1−Λ∗

1
θ∗
1

− 2
2(Λ∗

1−Λ2)−λ2

− 2
2(Λ∗

1−Λ∗
2)+λ2

− 2I
2(Λ1−Λ2)+λ2

2I
− 2(Λ∗

1−Λ2)−λ2

−I
λ2eζ2

+ −I
λ2

I
Λ2−Λ∗

2

− 2I
2(Λ1−Λ∗

2)−λ2

2I
− 2(Λ∗

1−Λ∗
2)+λ2

−I
Λ2−Λ∗

2

I

λ2e
ζ∗
2

+ I
λ2

∣∣∣∣∣∣∣∣∣∣∣∣

,

(16)

where Δ0 = λ22e
ζ2+ζ ∗

2 and

θ1 = I (x − 2Λ1y + 4Λ3
1z + 6Λ2

1t),

ζ2 = − Iλ2x + 2IΛ2λ2y − Iλ2(Λ2λ
2
2 + 4Λ3

2)z

− Iλ2
2

(λ22 + 12Λ2
2)t + ζ 0

2 .

Based on the above analysis on the breather and
rational solutions, we know that the hybrid solutions
are composed of the lumps, breathers, line rogue
waves and homoclinic orbits. We show the rational and
exponent solutions in Fig. 4. It can be seen that the
breather is parallel to the x axis on the (x, y) plane
but has an angle with the y and z axes on the (y, z)
plane.

Wefind that the breather and lumpmove in the oppo-
site directions and form the head-on interaction when
Re(Λ1) · Re(Λ2) < 0 in Eq. (16). However, when
Re(Λ1) · Re(Λ2) > 0 in Eq. (16), the breather and
lump move in the same direction and form the over-
taking interaction. If we set [Im(Λ1)]2 = 3[Re(Λ1)]2
in Eq. (16), we can obtain the hybrid solutions con-
sisting of one breather and one line rogue wave, as
shown in Fig. 4c. It can be seen that the breather
moves on the (x, z) plane and the line rogue wave
only exists for a limited period of t in Fig. 4c. If
we set λ22 − 4[Im(Λ2)]2 + 12[Re(Λ2)]2 = 0 in
Eq. (16), we can obtain the hybrid solutions con-
sisting of one homoclinic orbit and one line rogue
wave.

5 The second kind of the breather and hybrid
solutions for Eq. (1)

5.1 The second kind of the breather solutions for
Eq. (1)

In Appendix D, we construct the second kind of the
breather solutions for Eq. (1). Different from the first
kind of the breather solutions for Eq. (1), the second
kind of the breather solutions emerges from some dif-
ferent characteristics. For example, when M = 1 in
Eq. (29), the first-order breather solutions for Eq. (1)
can be written as

u = 2(ln f )x , (17a)

f = 1 + eζ1 + eζ ∗
1 + A12e

ζ1+ζ ∗
1 , (17b)

where

ζ1 = λ1x − 2IΛ1λ1y − IΛ1λ1(λ
2
1 + 4Λ2

1)z

− λ1

2
(λ21 + 12Λ2

1)t + ζ 0
1 ,

A12 = (Λ1 + Λ∗
1)

2

(Λ1 + Λ∗
1)

2 − λ21
.

TakeΛ1 = Λ1R + IΛ1I , and we rewrite ζ1 = ζ1R +
I ζ1I , where

ζ1R = λ1x + 2λ1Λ1I y

λ1Λ1I (λ
2
1 − 4Λ2

1I + 12Λ2
1R)z

− λ1

2
(λ21 − 12Λ2

1I + 12Λ2
1R)t + ζ 0

1 ,

ζ1I = − 2λ1Λ1R y − λ1Λ1R(λ21 − 12Λ2
1I + 4Λ2

1R)z

− 12λ1Λ1IΛ1Rt. (18)

The first-order kinky breather in Fig. 5 shows both
the features of the breather and kink. Kinky breather is
also localized along the direction of the line ζ1R = 0
and periodic along the direction of the line ζ1I = 0.We
find that the kinky breather in Fig. 5 does not need to
be parallel to the x axis on the (x, y) and (x, z) planes
because ζ1R in Eq. (18) contains four variables x, y, z
and t . Moreover, the imaginary part in Eq. (17b) will
disappear when ζ1I = 0, and then the kinky breather
will be reduced to the kink soliton.
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Fig. 4 Hybrid solutions via Solutions (16) with Λ1 = − 2
5 + 2

√
3

5 I, Λ2 = 0.3 + I and λ2 = 1. a z = 0; b x = 0; c y = 0

When M = 2 in Eq. (29), the second-order kinky
breather solutions for Eq. (1) can be written as

u = 2(ln f )x (19)

f = Δ2

∣∣∣∣∣∣∣∣∣∣∣

− 1
λ1eζ1

+ − 1
λ1

1
Λ1+Λ∗

1−λ1− 1
Λ1+Λ∗

1+λ1

− 1

λ1e
ζ∗
1

+ − 1
λ1

1
Λ2−Λ1− λ1+λ2

2

1
Λ2+Λ∗

1− λ1+λ2
2− 1

Λ1+Λ∗
2+ λ1+λ2

2

− 1
Λ∗

2−Λ∗
1+ λ1+λ2

2

1
Λ1−Λ2− λ1+λ2

2

1
Λ∗

2+Λ1− λ1+λ2
2− 1

Λ∗
1+Λ2+ λ1+λ2

2

− 1
Λ∗

1−Λ∗
2+ λ1+λ2

2− 1
λ2eζ2

+ − 1
λ2

1
Λ2+Λ∗

2−λ2− 1
Λ2+Λ∗

2+λ2

− 1

λ2e
ζ∗
2

+ − 1
λ2

∣∣∣∣∣∣∣∣∣∣∣

, (20)

where

ζk = λk x − 2IΛkλk y − IΛkλk(λ
2
k + 4Λ2

k)z
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Fig. 5 The first-order kinky breather via Solutions (17) with Λ1 = 0.6 − 2
3 I and λ1 = 1

2 . a z = 0; b x = 0; c y = 0

− λk

2
(λ2k + 12Λ2

k)t + ζ 0
k , (k = 1, 2)

Δ2 = λ21λ
2
2e

ζ1+ζ ∗
1 +ζ2+ζ ∗

2 .

We find that the second-order kinky breather solu-
tions contain two first-order kinky breathers, two kink
solitons and the mixed solutions consisting of one first-
order kinky breather and one kink soliton. If we set

Re(Λk) = 0 in Eq. (19), the kinky breather will be
reduced to the kink soliton.We can construct the mixed
solutions consisting of one kinky breather and one kink
soliton when Re(Λ1) = 0 and of two kink solitons
when Re(Λ1) = Re(Λ2) = 0 in Eq. (19). We find that
the kinky breather and kink soliton move in the oppo-
site directions when Im(Λ1) · Im(Λ2) < 0 or move
in the same direction when Im(Λ1) · Im(Λ2) > 0 in
Eq. (19).
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Fig. 6 The second-order kinky breathers via Solutions (19) with Λ1 = 3
4 I, λ1 = 1, Λ2 = 3

5 − 2
3 I and λ2 = 1

2 . a z = 0; b x = 0;
c y = 0

5.2 Hybrid solutions for Eq. (1)

Based on the second kind of the breather solutions, we
construct the hybrid solutions for Eq. (1) in Appendix
E. According to Eq. (26), when Ñ = N̂ = 1, the hybrid
solutions can be written as

u = 2(lnΔ0F)x ,

F =
∣∣∣∣∣∣∣∣∣∣

θ1
1

Λ1+Λ∗
1

2
2(Λ1−Λ2)−λ2

2
2(Λ1+Λ∗

2)−λ2− 1
Λ1+Λ∗

1
θ∗
1

− 2
2(Λ∗

1+Λ2)+λ2

− 2
2(Λ∗

1−Λ∗
2)+λ2− 2

2(Λ1−Λ2)+λ2

− 2
− 2(Λ∗

1+Λ2)+λ2

− 1
λ2eζ2

+ − 1
λ2

1
Λ2+Λ∗

2−λ2− 2
2(Λ1+Λ∗

2)+λ2

− 2
− 2(Λ∗

1−Λ∗
2)+λ2

− 1
Λ2+Λ∗

2+λ−2
− 1

λ2e
ζ∗
2

+ − 1
λ2

∣∣∣∣∣∣∣∣∣∣
,

(21)
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Fig. 7 Hybrid solutions via Solutions (21) with Λ1 =
√
3
3 − 1

3 I, Λ2 = 2
3 + I, λ2 = 1

2 and y = 0. a z = 0; b x = 0; c y = 0

where Δ0 = λ22e
ζ2+ζ ∗

2 and

θ1 = − x + 2IΛ1y + 4IΛ3
1z + 6Λ2

1t,

ζ2 = λ2x − 2IΛ2λ2y − IΛ2λ2(λ
2
2 + 4Λ2

2)z

− λ2

2
(λ22 + 12Λ2

2)t + ζ 0
2 .

(22)

That kind of the hybrid solutions, composed of the
kinky breathers, lumps and kink solitons, is shown

in Figs. 7 and 8. Hybrid solutions composed of one
kinky breather and one lump is shown in Fig. 7. Sim-
ilarly to that in Fig. 6, if we set Im(ζ2) = 0 in
Eq. (22), the kinky breather will be reduced to the kink
soliton and we can obtain the hybrid solutions com-
posed of one kink soliton and one lump. When we set
[Re(Λ1)]2 = 3[Im(Λ1)]2 in Eq. (22), we can derive
the hybrid solutions composed of one kinky breather
and one line rogue wave, as shown in Fig. 7. Moreover,
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Fig. 8 Hybrid solutions via Solutions (21) with Λ1 =
√
3
4 − 1

4 I, Λ2 = 3
2 I, λ2 = 3

2 and y = 0. a z = 0; b x = 0; c y = 0

if we set [Re(Λ1)]2 = 3[Im(Λ1)]2 and Im(ζ2) = 0
in Eq. (22), which means that the kinky breather is
reduced to the kink soliton and the lump is reduced to
the line rogue wave, we can obtain the hybrid solutions
composed of one kink soliton and one line rogue wave,
as shown in Fig. 8.

6 Conclusions

Water waves have been thought to be one of the most
commonphenomena in nature, the study ofwhich helps
in designing the related industries. In this paper, a gen-
eralized (3 + 1)-dimensional B-type KP equation for
the water waves, i.e., Eq. (1), has been studied. Dif-
ferent from those in Ref. [21], Gramian Solutions (7)
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for Eq. (1) have been constructed via the KP hierarchy
reduction. Based on Solutions (7), we have derived the
first- and second-order breather solutions, i.e., Solu-
tions (8) and Solutions (10). We have found that the
first-order breather is parallel to the x axis on the (x, y)
and (x, z) planes and can be reduced to the homo-
clinic orbits. For the higher-order breather solutions,
we have constructed the mixed solutions consisting
of the breathers and homoclinic orbits, as shown in
Fig. 1. According to the long-wave limit method, ratio-
nal Solutions (25) for Eq. (1) have been derived. Two
types of the rational solutions, i.e., lump and line rogue
wave solutions, have been analyzed, as shown in Figs. 2
and 3 . We have found that the lumps can be reduced
to the line rogue waves. We have also constructed the
hybrid solutions composed of the breathers, lumps and
line rogue waves, i.e., Solutions (26), for Eq. (1). Char-
acteristics of those hybrid solutions have been graphi-
cally analyzed, as shown in Fig. 4.

Taking the parameters given in Eq. (28) for Gramian
Solutions (7), we have also derived the kinky breather
solutions for Eq. (1), i.e., Solutions (29). The first-
and second-order kinky breathers are shown in Figs. 5
and 6 . We have found that it is not necessary for the
kinky breathers to be parallel to the x axis, i.e., the
kinky breathers can have an angle to the x axis, and
the kinky breathers can be reduced to the kink soli-
tons. For the higher-order kinky breather solutions,
we have constructed the mixed solutions consisting of
the kinky breathers and kink solitons. Meanwhile, we
have derived another kind of the hybrid solutions, i.e.,
Solutions (30), for Eq. (1), which are composed of the
breathers, lumps, line rogue waves and kink solitons.
Characteristics of those hybrid solutions have also been
graphically analyzed, as shown in Figs. 7 and 8.
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Appendix A

According to the procedure in [61], we take

p2k−1 = − IΛk + I
λk

2
, p2k = − IΛ∗

k − I
λk

2
,

q2k−1 = IΛk + I
λk

2
, q2k = IΛ∗

k − I
λk

2
,

r02k−1 = r02k = r0k , s02k−1 = s02k = s0k ,

(23)

where the asterisk “∗” indicates the complex conjugate,
Λk’s, r0k ’s and s

0
k ’s are the complex constants, λk’s are

the real constants for k = 1, 2, . . . , M and M = N/2.
Combining the above assumptions and Eq. (7), we can
obtain the M th-order breather solutions for Eq. (1) as

u = 2(ln f )x , (24)

where f = Δ|Fk,l |1≤k,l≤M and Δ = e
∑M

i=1(ζi + ζ ∗
i )

∏M
k=1 λ2k , and the matrix elements are defined as

Fk,k =
( − I

λkeζk
+ − I

λk

I
Λk−Λ∗

k− I
Λk−Λ∗

k

I

λke
ζ∗
k

+ I
λk

)
,

Fk,l =
⎛
⎝

I

Λk−Λl− λk+λl
2

I

Λk−Λ∗
l − λk−λl

2
I

Λ∗
k−Λl+ λk−λl

2

I

Λ∗
k−Λ∗

l + λk+λl
2

⎞
⎠ ,

ζk = − Iλk x + 2IΛkλk y − Iλk(Λkλ
2
k + 4Λ3

k)z

− Iλk
2

(λ2k + 12Λ2
k)t + ζ 0

k ,

where ζ 0
k = r0k + s0k .

Appendix B

Based on the long-wave limit method [33,55], we will
derive the rational solutions for Eq. (1). Setting eζ 0k =
− 1, and taking the long-wave limit λk → 0, we can
construct the rational solutions for Eq. (1) as

u = 2(ln f )x , (25)
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where f = |Fk,l |, and the matrix elements are defined
as

Fk,k =
(

θk
1

Λk−Λ∗
k

1
Λk−Λ∗

k
θ∗
k

)
, Fk,l =

( 1
Λk−Λl

1
Λk−Λ∗

l− 1
Λ∗

k−Λl

− 1
Λ∗

k−Λ∗
l

)
,

with

θk = I (x − 2Λk y + 4Λ3
k z + 6Λ2

k t).

Appendix C

We have derived the rational- and exponent- type solu-
tions for Eq. (1) inAppendices A andB. Combining the
above two kinds of solutions, we can obtain the hybrid
solutions for Eq. (1) as

u = 2(ln f )x , (26)

where f = Δ|Fk,l |, Δ = e
∑Ñ+N̂

k=Ñ+1
(ζk+ζ ∗

k ) ∏Ñ+N̂
k=Ñ+1

λ2k , Ñ and N̂ are the positive integers, the relevant deter-
minant is defined as

|Fk,l | =
∣∣∣∣
A B
C D

∣∣∣∣ , (27)

A is a 2Ñ×2Ñ matrix with its matrix elements defined
as

Ak,k =
(

θk
1

Λk−Λ∗
k

1
Λk−Λ∗

k
θ∗
k

)
,

Ak,l =
( 1

Λk−Λl

1
Λk−Λ∗

l− 1
Λ∗

k−Λl

− 1
Λ∗

k−Λ∗
l

)
,

B and C are the 2Ñ × 2N̂ and 2N̂ × 2Ñ matrices,
respectively, with their matrix elements defined as

Bk,l =
( 2

2(Λk−Λl )−λl

2
2(Λk−Λ∗

l )+λl− 2
2(Λ∗

k−Λl )−λl

− 2
2(Λ∗

k−Λ∗
l )+λl

)
,

Ck,l =
( − 2I

− 2(Λk−Λl )+λk

2I
2(Λk−Λ∗

l )−λk− 2I
− 2(Λ∗

k−Λl )−λk

2I
2(Λ∗

k−Λ∗
l )+λk

)
,

D is a 2N̂×2N̂ matrix with its matrix elements defined
as

Dk,k =
( − I

λkeζk
+ − I

λk

I
Λk−Λ∗

k− I
Λk−Λ∗

k

I

λke
ζ∗
k

+ I
λk

)
,

Dk,l =
( − 2I

− 2(Λk−Λl )+λk+λl

− 2I
− 2(Λk−Λ∗

l )+λk−λl
2I

2(Λ∗
k−Λl )+λk−λl

2I
2(Λ∗

k−Λ∗
l )+λk+λl

)
,

and

θk = I (x − 2Λk y + 4Λ3
k z + 6Λ2

k t),

ζk = − Iλk x + 2IΛkλk y − Iλk(Λkλ
2
k + 4Λ3

k)z

− Iλk
2

(λ2k + 12Λ2
k)t + ζ 0

k .

Appendix D

We assume that

p2k−1 = Λk − λk

2
, p2k = −Λ∗

k − λk

2
,

q2k−1 = −Λk − λk

2
, q2k = Λ∗

k − λk

2
,

r02k−1 = r02k = r0k , s02k−1 = s02k = s0k .

(28)

Combining the above assumptions and Eq. (7), we
can obtain the M th-order kinky breather solutions for
Eq. (1) as

u = 2(ln f )x , (29)

where f = Δ|Fk,l | andΔ = e
∑M

i=1(ζi + ζ ∗
i )∏M

k=1 λ2k ,
and the matrix elements are defined as

Fk,k =
( − 1

λkeζk
+ − 1

λk

1
Λk+Λ∗

k−λk− 1
Λk+Λ∗

k+λk

− 1

λke
ζ∗
k

+ − 1
λk

)
,

Fk,l =
⎛
⎝

− 1
−Λk+Λl+ λk+λl

2

− 1
−Λk−Λ∗

l + λk+λl
2− 1

Λ∗
k+Λl+ λk+λl

2

− 1
Λ∗

k−Λ∗
l + λk+λl

2

⎞
⎠ ,

ζk = λk x − 2IΛkλk y − IΛkλk(λ
2
k + 4Λ2

k)z

− λk

2
(λ2k + 12Λ2

k)t + ζ 0
k ,

where ζ 0
k = r0k + s0k .
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Appendix E

Similar to those in Appendix C, we can construct the
hybrid solutions for Eq. (1) as

u = 2(ln f )x , (30)

where f = Δ|Fk,l |, Δ = e
∑Ñ+N̂

k=Ñ+1
(ζk+ζ ∗

k ) ∏Ñ+N̂
k=Ñ+1

λ2k , the relevant determinant is defined as

|Fk,l | =
∣∣∣∣
A B
C D

∣∣∣∣ , (31)

A is a 2Ñ×2Ñ matrix with its matrix elements defined
as

Ak,k =
(

θk
1

Λk+Λ∗
k− 1

Λk+Λ∗
k

θ∗
k

)
, Ak,l =

( 1
Λk−Λl

1
Λk+Λ∗

l− 1
Λ∗

k+Λl

− 1
Λ∗

k−Λ∗
l

)
,

B and C are the 2Ñ × 2N̂ and 2N̂ × 2Ñ matrices,
respectively, with their matrix elements defined as

Bk,l =
( 2

2(Λk−Λl )−λl

2
2(Λk+Λ∗

l )−λl− 2
2(Λ∗

k+Λl )+λl

− 2
2(Λ∗

k−Λ∗
l )+λl

)
,

Ck,l =
( 2

2(Λk−Λl )−λk

2
2(Λk+Λ∗

l )−λk− 2
2(Λ∗

k+Λl )+λk

− 2
2(Λ∗

k−Λ∗
l )+λk

)
,

D is a 2N̂×2N̂ matrix with its matrix elements defined
as

Dk,k =
( − 1

λkeζk
+ − 1

λk

1
Λk+Λ∗

k−λk− 1
Λk+Λ∗

k+λk

− 1

λke
ζ∗
k

+ − 1
λk

)
,

Dk,l =
( 2

2(Λk−Λl )−λk−λl

2
2(Λk+Λ∗

l )−λk−λl− 2
2(Λ∗

k+Λl )+λk+λl

− 2
2(Λ∗

k−Λ∗
l )+λk+λl

)
,

and

θk = − x + 2IΛk y + 4IΛ3
k z + 6Λ2

k t,

ζk = λk x − 2IΛkλk y − IΛkλk(λ
2
k + 4Λ2

k)z

− λk

2
(λ2k + 12Λ2

k)t + ζ 0
k .
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