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Abstract In this paper, an adaptive backstepping con-
troller based on interval type-2 fuzzy neural network
(IT2FNN) approximator is proposed for flexible-joint
manipulator with mismatched uncertainties. Backstep-
ping control has the ability to deal with themismatched
problem, and IT2FNN approximator can be utilized to
approximate unknown nonlinear functions. Through
the Lyapunov stability analysis, all the signals in the
closed-loop system are guaranteed to be ultimately
bounded. Simulation results show that the tracking
error of the proposed controller can be reduced to arbi-
trarily small values, and the tracking performance is
better than the adaptive backstepping controllers based
on type-1 fuzzy neural network approximator and neu-
ral network approximator.

Keywords Flexible-joint manipulator · Adaptive
backstepping controller · Neural network · Interval
type-2 fuzzy

1 Introduction

Over the past three decades, flexible-joint manipula-
tor has attracted a great deal of interests owing to its
obvious superiority of small actuators, high precision
and low energy consumption [1–7]. In contrast to the
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rigid manipulator, flexible-joint manipulator possess
flexibility, high security and low rate of damages [8–
10]. In 1989, Spong derived a reduced-order model of
the manipulator which was the fist simplified dynamic
model and they presented the first adaptive control law
for flexible-joint robots [11,12]. In the modeling and
control, the flexible-joint manipulator presents serious
problems because of the inherent highly coupling, non-
linearity and model uncertainty. Therefore, it improves
the difficulty of the controller design which has led to
a great deal of research using advanced control theory
to design more appropriate controllers [2,13–15].

At present, backstepping approach is one of the
most commonly used design methods for solving non-
linear systems. In [16], a new adaptive backstepping
controller was proposed to the adaptive tracking prob-
lem in uncertain flexible-jointmanipulator system. [17]
presented an adaptive sliding control method using a
backstepping-like design for single-link flexible-joint
robot. However, it is difficult to obtain complete or
partial machine parameters in many practical appli-
cations, and motion in robot is a complicated nonlin-
ear process that is hard to model as a linear-in-the-
parameter process. The function approximation tech-
nique has the great advantages to deal with this issue,
which does not require the system dynamics to be
exactly known [18–20]. Adaptive backstepping con-
trollers combinedwith several universal approximators
have been successfully presented to control the uncer-
tain manipulator system, such as recurrent neural net-
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works [21], self-recurrent wavelet neural network [22],
neural networks [23–25] and fuzzy system [26,27].
With the advent of the fuzzy set theory proposed by
Zadeh (1965), the fuzzy system was proven to be an
effective approach for investigating a bank of complex
nonlinear control design problems [28–30]. The type-
1 fuzzy model offers a general framework for non-
linear system analysis and controller synthesis [31].
However, due to crisp antecedents and consequents of
the rule base, type-1 fuzzy system (T1FS) cannot effi-
ciently handle the uncertainties. Interval type-2 fuzzy
system (IT2FS) was widely applied to many practi-
cal applications and can obtain better performance for
highly nonlinear systems with various uncertainties
than T1FS [32–35]. An improved social spider opti-
mization algorithm was proposed to adjust the pre-
decessor parameters of general type-2 fuzzy system
(GT2FS) in [36], but one of the important limitations is
that the computational cost of the proposed GT2FS is
increased in the high-dimensional problems. Due to the
simplicity and efficiency of the IT2FS, it is very valu-
able to use the IT2FS to handle highly nonlinearity of
manipulator system in this paper.

IT2FS can improve the system’s ability to deal
with uncertainties and approximate uncertain unknown
functions effectively. [37] solved the globally stable
adaptive backstepping control based on IT2FS for a
class of nonlinear systems. In [38], backstepping and
IT2FS were combined in a unified controller for induc-
tion machine. An adaptive backstepping robust con-
trol approach based on IT2FS was proposed for uncer-
tain multi-inputs multi-outputs chaotic system in [39].
IT2FNN has potential to improve approximation accu-
racy, but there are very few researches to design adap-
tive controller for flexible-joint manipulators using
IT2FNN approximator. In [40,41], sliding mode con-
trol methods with the IT2FS approximator for flexible-
joint manipulator were proposed. In the current rare
attempts in developing IT2FNN approximator, high
time consumption of the iterative K–M algorithm is
still a problem that cannot be ignored. In the previ-
ous papers on IT2FS approximator, the iterative K–M
algorithm is used to rearrange the rule’s consequent
weights in ascending order and find the left and right
crossover points [42]. However, high computational
complexity and high time consumption of the itera-
tive K–M algorithm in type-reduction of IT2FS make
it very hard to be used in practical applications [43].
Therefore, improving the type-reduction algorithm has

always been the focus of researchers. The adaptive con-
trol factors ql and qr were proposed in [44], instead of
finding the left and right crossover points in the iter-
ative K–M algorithms. Then, in 2017, Bibi et al. [45]
replaced K–M algorithms by the adaptive modulation
factor α between the upper output yr and the lower
output yl in the IT2FNN. The adaptive modulation fac-
tor improves the practicability of the algorithm. In this
paper, the adaptive modulation factor α is applied to
IT2FNNapproximator and effectively overcomes com-
putational complexity and high time consumption. To
the best of the authors knowledge, improved IT2FNN
approximator has not yet been investigated for flexible-
joint manipulator, thereby leaving room for continued
promotion. This study is the first attempt to apply adap-
tive modulation factor into IT2FNN approximator to
design adaptive backstepping controller for flexible-
joint manipulator with uncertain dynamics. Thus, the
tracking performance of the system can be improved
by the proposed method.

Based on the above discussion, themotivation of this
study is triggered. An adaptive backstepping control
method based on IT2FNN approximator for flexible-
joint manipulator is proposed. Using Lyapunov sta-
bility theory, all the signals in the closed-loop sys-
tem are guaranteed to be ultimately bounded. Com-
pared to the existing works, the proposed approach
does not require the unknown parameters to be linear
parameterizable and the tracking error can be reduced
to arbitrarily small values. The main contributions of
this paper are as follows: (1) This paper is the first
attempt in developing the adaptive modulation factor
α into IT2FNN approximator to control flexible-joint
manipulators with mismatched uncertainties. (2) We
devise the adaptive law of adaptive modulation factor
α and the adaptive parameters from Lyapunov stability
analysis. The adaptive modulation factor can be iter-
atively updated, and thus the ability of adaptive pon-
deration between the upper output yr and the lower
output yl can be improved. (3) The proposed controller
can guarantee not only the stability of manipulator sys-
tem but also the boundedness of all the signals in the
closed-loop system. (4)Comparedwith theT1FNNand
the NN approximator, simulation results demonstrate
that the proposed scheme has better steady-state per-
formance, less fluctuation and higher approximation
accuracy.

The rest of paper is organized as follows. The prob-
lems formulation is presented in Sect. 2. Section 3
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Fig. 1 Schematic of flexible-joint manipulator model

describes the IT2FNN approximator. In Sect. 4, we
derive the proposed controller and verify stability of
the closed loop using Lyapunov approach. Section 5
presents the feasibility and the effectiveness of pro-
posed controller for flexible-joint manipulator by com-
paring with the others control methods. Finally, con-
clusions are drawn in Sect. 6.

2 Problem formulation

This section is referenced from [17]. A schematic
model of a single-link flexible-joint manipulator is
shown in Fig. 1. We assume that its joint can only
be deformed when rotating in a vertical plane in the
direction of joint rotation. The operating mechanism
of the flexible-joint manipulator is that the motor shaft
and the rigid link are, respectively, driven by the motor
and spring to rate. Assuming that the viscous damping
is ignored and the states are measurable, its dynamic
equation is given by

{
I q̈1 + MgL sin q1 + K (q1 − q2) = 0

J q̈2 + K (q2 − q1) = u
(1)

where q1 ∈ Rn and q2 ∈ Rn are the angular displace-
ments of flexible-joint link and motor, K is the spring
stiffness of joints, u ∈ Rn is the external input, which is
the torque delivered by the motor, I and J are, respec-
tively, the moment of inertia of flexible-joint link and
the motors, M is the mass of flexible-joint link, and
L is the length between the center of gravity of the
manipulator and flexible-joints.

We define x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2
(1) can be rewritten as the following state-spaced rep-
resentation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = − 1

I (MgL sin(x1) + K (x1 − x3))

ẋ3 = x4
ẋ4 = 1

J (u + K (x1 − x3))

(2)

where xi ∈ Rn, i = 1, 2, 3, 4 are state variables and
y = x1 is the link angular displacement. Considering a
single-link flexible-joint manipulator with mismatched
uncertainties, the above model cannot be available.
Since the robot is basically a link powered by the elec-
tric motor through a twisted spring, we can represent
it as a cascade of two subsystems: link dynamics and
the motor dynamics. The control input is in the subsys-
tem describing the motor dynamics, and its output is
coupled to another subsystem with the spring and link
dynamics. Therefore, we can write (1) as a simplified
system equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = x3 + g(x)

ẋ3 = x4
ẋ4 = f (x) + mu

(3)

It is obvious that g(x) = −x3 − MgL sin(x1)/I −
K (x1 − x3)/I , f (x) = K (x1 − x3)/J , m = 1/J . We
assume that g(x), f (x) and m are unknown constants
where the lower bound ofm is known and satisfiesm ≥
m andm > 0.Anadaptive backstepping controllerwith
fuzzy approximation is designed to desired trajectory
tracking. IT2FNN is utilized to approximate unknown
nonlinear functions.

3 IT2FNN approximator

This section introduces an IT2FNN approximator,
which can obtain a very accurate and robust approxima-
tion. The architecture of IT2FNN is shown in Fig. 2.
IT2FNN has obvious advantages of handling uncer-
tainties and approximating unknown nonlinear func-
tions by using lower and upper membership functions.
IT2FNN can be thought as consisting of two parts: one
part contains some IF-THEN rules, and the second part
is the fuzzy inference engine.

Each rule in the IT2FNN approximator is presented
in the following form:
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Fig. 2 Architecture of IT2FNN

R
k : if x1 is F̂k

1 and . . . and xn is F̂k
n

then y is θk k = 1, . . . , N (4)

where x1, x2, . . . , xn are the input variables and y is the
output variable. N is the total number of fuzzy rules.
F̂k
i , i = 1, 2, . . . , n, k = 1, 2, . . . , N , are interval type-

2 fuzzy antecedent. θk = [θk, θk] represents the lower
and the upper singleton consequent type-2 fuzzy sets.
Mathematical function of each operator are described
as follows.

For an input vector x = [x1, x2, . . . , xn], using the
singleton fuzzifier and product t-norm, the lower and
upper bounds of the firing the kth rule ϕk strength can
be computed as follows:

ϕk = [ f k, f
k], k = 1, 2, . . . , N (5)

where:

⎧⎨
⎩

f k = μFk
1
(x1) ∗ · · · ∗ μFk

i
(xi )

f
k = μ

F
k
1
(x1) ∗ · · · ∗ μ

F
k
i
(xi )

(6)

in which μFk
i
(xi ) and μ

F
k
i
(xi ), respectively, are the

lower membership function and the upper membership
function. Then, the type-reduction converts the interval
type-2 fuzzy sets to an interval set. Finally, defuzzifier
maps the interval set into a crisp output.

There are many methods of designing the type-
reduction of interval type-2 fuzzy sets. The most com-
monmethod is the center-of-sets type-reduction, which
can be expressed by:

YCOS(x) =
∑N

k=1 ϕk(xi )θk∑N
k=1 ϕk(xi )

= [yl , yr ] (7)

where yl and yr are computed as follows:

yl =
∑N

k=1 f kθk∑N
k=1 f k

=
∑N

k=1
ξ kθk = ξ(x)θT (8)

and

yr =
∑N

k=1 f
k
θk∑N

k=1 f
k

=
∑N

k=1
ξ
k
θk = ξ(x)θ

T
(9)

where θ = [θ1, θ2, . . . , θ N ] and θ = [θ1, θ2, . . . , θN ]
are the adjustable parameters, ξ(x) = [ξ1, ξ2, . . . , ξ k]
and ξ(x) = [ξ1, ξ2, . . . , ξ k] are the fuzzy basis func-
tions that are computed as follows:

ξ k = f k∑N
p=1 f p

, ξ
k = f

k∑N
p=1 f

p (10)

K–M and EIASC iterative algorithms can deter-
mine some crossover points, which combine the lower
output yl and the upper output yr . But it consumes
a lot of time in iterative process, especially for real-
time applications. An adaptive factor α is proposed
to obtain an adaptive modulation between yl and yr ,
which can overcome those drawbacks of such itera-
tive algorithm, including high time-consuming and low
accuracy-calculating [45].

The defuzzified output Y (x, θ, θ) is computed as
follows:

Y (x, θ, θ) = αyr + (1 − α)yl (11)

Substituting (8) and (9) into (11), we get

Y (x, θ, θ) = αξ(x)θ
T + (1 − α)ξ(x)θT (12)

4 Controller design

In this section, an adaptive backstepping controllerwith
the IT2FNN approximator is proposed for a flexible-
joint manipulator with mismatched uncertainties.
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4.1 Backstepping controller

In the process of backstepping, at each recursive step,
virtual controllers xid , i = 2, . . . ,m, are designed to
force errors ei−1 = xi−1− x(i−1)d as small as possible.
The final virtual controller xid is the part of actual con-
troller u. An actual controller for u is used to minimize
the error between xm and xmd to be as much as possi-
ble. The design of the controller is divided into several
steps.

Step 1 Define e1 = x1 − x1d and let x1d = yd . We
get

ė1 = ẋ1 − ẋ1d = x2 − ẋ1d (13)

Define e2 = x2 − x2d and a virtual controller x2d .

x2d = ẋ1d − k1e1 (14)

where k1 is a positive constant.
Then, (13) can be rewritten as:

ė1 = e2 + x2d − ẋ1d = −k1e1 + e2 (15)

Consider the following Lyapunov function candi-
date:

V1 = 1

2
e1

2 (16)

The time derivative of V1 is

V̇1 = −k1e1
2 + e1e2 (17)

If e2 = 0, then V̇1 ≤ 0.
Step 2 Taking the time derivative of e2 = x2 − x2d ,

then

ė2 = ẋ2 − ẋ2d = x3 + g − ẋ2d (18)

Define e3 = x3 − x3d and a virtual controller x3d .

x3d = −ĝ + ẋ2d − k2e2 − e1 (19)

where k2 is a positive constant and ĝ is the estimated
value of g.

From (14), the time derivative of x2d is:

ẋ2d = ẍ1d − k1ė1 = ẍ1d − k1(x2 − ẋ1d) (20)

From (18) and (19), the derivative of e2 can be
obtained as

ė2 = e3+ x3d − ẋ2d +g = g− ĝ−k2e2+e3−e1 (21)

Consider the following Lyapunov function candi-
date:

V2 = V1 + 1

2
e2

2 (22)

The time derivative of V2 can be obtained as

V̇2 = −k1e1
2 − k2e2

2 + (g − ĝ)e2 + e2e3 (23)

If e3 = 0 and ĝ = g, then V̇2 ≤ 0.
Step 3 Taking the time derivative of e3 = x3 − x3d ,

then

ė3 = ẋ3 − ẋ3d = x4 − ẋ3d (24)

From (18), (19), (20) and (22), the time derivative
of x3d is:

ẋ3d = − ˙̂g + ẍ2d − k2ė2 − ė1

= − ˙̂g + ...
x 1d − k1(x3 + g − ẍ1d)

− k2(x3 + g − ẋ2d) − x2 + ẋ1d (25)

We divide ẋ3d into two parts. ẋ ′
3d is the known part

withoutmodel information, and ¯̇x3d is the unknownpart
with model information (25), which can be rewritten as

ẋ3d = ẋ ′
3d − ¯̇x3d (26)

where

ẋ ′
3d = ...

x 1d − k1(x3 − ẍ1d) − k2(x3 − ẋ2d) − x2+ ẋ1d

(27)
¯̇x3d = ˙̂g + k1g + k2g (28)

Define e4 = x4 − x4d , ¯̇x3d = d and a virtual con-
troller x4d . Choose a positive constant k3, we have

x4d = ẋ ′
3d − d̂ − k3e3 − e2 (29)

Substituting (26)–(29) into (24), we can get

ė3 =x4 − ẋ3d = x4 − ẋ ′
3d + ¯̇x3d

= − k3e3 − e2 + e4 + (d − d̂) (30)
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Consider the following Lyapunov function candi-
date:

V3 = V2 + 1

2
e3

2 (31)

The time derivative of V3 can be obtained as

V̇3 = − k1e1
2 − k2e2

2 − k3e3
2 + (g − ĝ)e2

+ (d − d̂)e3 + e3e4 (32)

If e4 = 0, ĝ = g and d̂ = d, then V̇3 ≤ 0.
Step 4 To realize stability of control system, we take

an actual controller into this step. The time derivative
of e4 = x4 − x4d is

ė4 = ẋ4 − ẋ4d = f + mu − ẋ4d (33)

From (24), (26), (27) and (29), the time derivative
of x4d is:

ẋ4d = − ˙̂d + ẍ ′
3d − k3ė3 − ė2

= ....
x 1d − k1(x4 − ...

x 1d) − k2(x4 − ...
x 1d

+ k1(x3 − ẍ1d)) + ẍ1d − x3 − k3(x4 − ẋ ′
3d)

− (x3 − ẋ2d) − k1k2g

− g − ˙̂d − k3 ¯̇x3d − g (34)

We divide ẋ4d into two parts. ẋ ′
4d is the known part

withoutmodel information, and ¯̇x4d is the unknownpart
with model information (34), which can be rewritten as

ẋ4d = ẋ ′
4d + ¯̇x4d (35)

where

ẋ ′
4d = ....

x 1d − k2(x4 − ...
x 1d

+ k1(x3 − ẍ1d)) + ẍ1d − x3 − k3(x4 − ẋ ′
3d)

− (x3 − ẋ2d) − k1(x4 − ...
x 1d) (36)

¯̇x4d = −k1k2g − g − ˙̂d − k3 ¯̇x3d − g (37)

Define h = f − ¯̇x4d , and (33) can be rewritten as

ė4 = h + ¯̇x4d + mu − ẋ4d

= h − ẋ ′
4d + (m − m̂)u + m̂u (38)

where m̂ is the estimated value of m.

Choosing the following control law

u = 1

m̂
(−ĥ + ẋ ′

4d − k4e4 − e3) (39)

where ĥ is the estimated value of h and k4 is a positive
constant.

Substituting (39) into (38), we can get

ė4 = (h − ĥ) − (m − m̂)u − k4e4 − e3 (40)

Consider the following Lyapunov function candi-
date:

V4 = V3 + 1

2
e4

2 (41)

The time derivative of V4 can be obtained as

V̇4 = − k1e1
2 − k2e2

2 − k3e3
2

− k4e4
2 + (m − m̂)ue4

+ (g − ĝ)e2 + (d − d̂)e3 + (h − ĥ)e4 (42)

If m̂ = m, ĝ = g, d̂ = d and ĥ = h, then V̇4 ≤ 0.

4.2 Adaptive fuzzy controller

We use the proposed approximator in this section to
approximate unknown nonlinear functions g(x), d(x)
and h(x), where the approximations are ĝ(x), ĥ(x) and
d̂(x).

Taking the proposed adaptive factor into g(x), d(x)
and h(x), we can get

g(x) =(1 − αg)ξ g
(x)θ∗

g
T + αgξ g(x)θ

∗
g
T

+ (1 − αg)εg(x) + αgεg(x) (43)

d(x) =(1 − αd)ξd
(x)θ∗

d
T + αdξd(x)θ

∗
d
T

+ (1 − αd)εd(x) + αdεd(x) (44)

h(x) =(1 − αh)ξh
(x)θ∗

h
T + αhξ h(x)θ

∗
h
T

+ (1 − αh)εh(x) + αhεh(x) (45)

where εg(x) and εg(x), εd(x) and εd(x), εh(x) and

εh(x) are the approximation errors; ξ
g
and ξ g , ξd and

ξd , ξh and ξh , are, respectively, the lower and the upper
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membership functions; θ∗
g
T and θ

∗
g
T
, θ∗

d
T and θ

∗
d
T
, θ∗

h
T

and θ
∗
h
T
are the optimal lower and upper approximation

parameters of g(x), d(x) and h(x). αg , αd , αh are the
adaptive factor.

According to the proposed approximator, the nonlin-

ear functions ĝ(x, θ̂ g, θ̂ g), d̂(x, θ̂d , θ̂d), ĥ(x, θ̂h, θ̂h)
can be expressed as

ĝ(x, θ̂ g, θ̂ g) = (1 − α̂g)ξ g
(x)θ̂

T
g + α̂gξ g(x)θ̂

T

g (46)

d̂(x, θ̂d , θ̂d) = (1 − α̂d)ξd
(x)θ̂

T
d + α̂dξd(x)θ̂

T

d (47)

ĥ(x, θ̂h, θ̂h) = (1 − α̂h)ξ h
(x)θ̂

T
h + α̂hξh(x)θ̂

T

h (48)

From (43) to (48), we have

g̃(x) = g(x) − ĝ(x, θ̂ g, θ̂ g)

= (1 − α̂g)ξ g
(x)θ̃

T
g + α̂gξ g(x)θ̃

T

g

+ (ξ g(x)θ̂
T

g − ξ
g
(x)θ̂

T
g )α̃g

+ (ξ g(x)θ̃
T

g − ξ
g
(x)θ̃

T
g )α̃g

+ (1 − αg)εg(x) + αgεg(x) (49)

d̃(x) = d(x) − d̂(x, θ̂d , θ̂d)

= (1 − α̂d)ξd
(x)θ̃

T
d + α̂dξd(x)θ̃

T

d

+
(

ξd(x)θ̂
T

d − ξ
d
(x)θ̂

T
d

)
α̃d

+
(

ξd(x)θ̃
T

d − ξ
d
(x)θ̃

T
d

)
α̃d

+ (1 − αd)εd(x) + αdεd(x) (50)

h̃(x) = h(x) − ĥ(x, θ̂h, θ̂h)

= (1 − α̂h)ξh
(x)θ̃

T
h + α̂hξ h(x)θ̃

T

h

+
(

ξh(x)θ̂
T

h − ξ
h
(x)θ̂

T
h

)
α̃h

+
(

ξh(x)θ̃
T

h − ξ
h
(x)θ̃

T
h

)
α̃h

+ (1 − αh)εh(x) + αhεh(x) (51)

where θ̃ g = θ∗
g − θ̂ g , θ̃ g = θ

∗
g − θ̂ g , θ̃d = θ∗

d − θ̂d ,

θ̃d = θ
∗
d − θ̂d , θ̃h = θ∗

h − θ̂h , θ̃h = θ
∗
h − θ̂h , α̃g =

αg − α̂g , α̃d = αd − α̂d and α̃h = αh − α̂h .

The adaptive law of m is chosen as nonlinear func-
tions, which can be expressed as

˙̂m =

⎧⎪⎨
⎪⎩

γme4u, e4u > 0

γme4u, e4u ≤ 0, m̂ > m

γm, e4u ≤ 0, m̂ ≤ m

(52)

where the initial value m̂(0) ≥ m. If the estimated value
of m̂ is too small, then the control signal u will be too
large. Thus m̂ has a wide range of changes resulting in
m̂ = 0. In order to prevent this situation, we choose the
initial value m̂(0) = 500, and then m̂ can always be a
large value.

The adaptive law of adaptive parameters are derived
from Lyapunov stability analysis and chosen as

˙̂
θg =

⎧⎨
⎩

˙̂
θ g = γ ge2α̂gξ g(x) − 2λg θ̂ g
˙̂
θ g = γ

g
e2(1 − α̂g)ξ g

(x) − 2λg θ̂ g

(53)

˙̂
θd =

⎧⎨
⎩

˙̂
θd = γ de3α̂dξd(x) − 2λd θ̂d
˙̂
θd = γ

d
e3(1 − α̂d)ξd

(x) − 2λd θ̂ d

(54)

˙̂
θh =

⎧⎨
⎩

˙̂
θh = γ he4α̂hξh(x) − 2λh θ̂h
˙̂
θh = γ

h
e4(1 − α̂d)ξ h

(x) − 2λh θ̂ h

(55)

˙̂αg = γαg e2

(
ξ g(x)θ̂

T

g − ξ
g
(x)θ̂

T
g

)
− 2λαg α̂g (56)

˙̂αd = γαd e3

(
ξd(x)θ̂

T

d − ξ
d
(x)θ̂

T
d

)
− 2λαd α̂d (57)

˙̂αh = γαh e4

(
ξ h(x)θ̂

T

h − ξ
h
(x)θ̂

T
h

)
− 2λαh α̂h (58)

whereγ = [γ
g
, γ g, γ d

, γ d , γ h
, γ h, γαg , γαd , γαh , γm]

is the positive adaptation gain.
At the present stage, we summarize our main

result in the following theorem, which shows that the
designed controller guarantees the boundedness and
stability of closed-loop system.

Theorem 1 Consider a flexible-joint manipulator sys-
tem as shown in (3), the control input u in (39) with the
IT2FNN-based adaptive laws given by (52)–(58) guar-
antees that all the signals in the resulting closed-loop
systems are bounded. Furthermore, given an attenua-
tion factor ρ, the tracking performance of system will
be satisfied
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4∑
i=1

∫ T

0
e2i (s)ds ≤ 1

a0
(V (0) + Tb0

+
4∑

i=2

∫ T

0
ρ2 J 2i dt, T ∈ [0,∞]

(59)

Proof of Theorem 1 To make the proof of stability
more simple and clear, we define m(x), g(x), d(x),
h(x) as f1(x), f2(x), f3(x), f4(x). Obviously, the
approximation of m(x), g(x), d(x), h(x) is, respec-
tively, f̂1(x), f̂2(x), f̂3(x), f̂4(x).

Consider the Lyapunov function candidate as

V =1

2

4∑
i=1

e2i + 1

2γ f1
f̃ T1 f̃1 +

4∑
i=2

1

2γ
fi

θ̃
T
fi θ̃ fi

+
4∑

i=2

1

2γ fi

θ̃
T

fi θ̃ fi +
4∑

i=2

1

2γα fi

α̃T
fi α̃ fi (60)

The time derivative of V is

V̇ = −
4∑

i=1

ki ei
2 +

4∑
i=2

( fi − f̂i )ei −
4∑

i=2

1

γ
fi

θ̃
T
fi
˙̂
θ fi

−
4∑

i=2

1

γ fi

θ̃
T

fi

˙̂
θ fi −

4∑
i=2

1

γα fi

α̃T
fi

˙̂α fi

+ ( f1 − f̂1)ue4 − 1

γ f1
f̃ T1

˙̂f1 (61)

Applying (52), we get

V̇ ≤ −
4∑

i=1

ki ei
2 +

4∑
i=2

( fi − f̂i )ei −
4∑

i=2

1

γ
fi

θ̃
T
fi
˙̂
θ fi

−
4∑

i=2

1

γ fi

θ̃
T

fi

˙̂
θ fi −

4∑
i=2

1

γα fi

α̃T
fi

˙̂α fi

(62)

Applying (49)–(51), V̇ can be rewritten as

V̇ ≤ −
4∑

i=1

ki ei
2 +

4∑
i=1

ei
[
(1 − α̂ fi )ξ fi

(x)θ̃
T
fi

+ α̂ fi ξ fi (x)θ̃
T

fi +
(

ξ fi (x)θ̂
T

fi − ξ
fi
(x)θ̂

T
fi

)
α̃ fi

]

−
4∑

i=2

1

γ
fi

θ̃
T
fi
˙̂
θ fi −

4∑
i=2

1

γ fi

θ̃
T

fi

˙̂
θ fi

−
4∑

i=2

1

γα fi

α̃T
fi

˙̂α fi +
4∑

i=2

ei
[
(1 − α fi )ε fi (x)

+α fi ε fi (x) +
(

ξ fi (x)θ̃
T

fi − ξ
fi
(x)θ̃

T
fi

)
α̃ fi

]

≤ −
4∑

i=1

ki ei
2 +

4∑
i=1

θ̃
T
fi

[
ei (1 − α̂ fi )ξ fi

(x)

− 1

γ
fi

˙̂
θ fi

]
+

4∑
i=1

θ̃
T
fi

(
ei α̂ fi ξ fi (x) − 1

γ fi

˙̂
θ fi

)

+
4∑

i=2

α̃T
fi

[
ei (ξ fi (x)θ̂

T

fi −ξ
fi
(x)θ̂

T
fi )−

1

γα fi

˙̂α fi

]

+
4∑

i=2

ei

[
(1 − α fi )ε fi (x) + α fi ε fi (x)

+ (ξ fi (x)θ̃
T

fi − ξ
fi
(x)θ̃

T
fi )α̃ fi

]
(63)

We define Ji = (1 − α fi )ε fi (x) + α fi ε fi (x) +
(ξ fi (x)θ̃

T

fi − ξ
fi
(x)θ̃

T
fi )α̃ fi , i = 2, 3, 4, and applying

(53)–(58) into the timederivative of theLyapunov func-
tion V̇ , we have

V̇ ≤ −
4∑

i=1

ki ei
2 +

4∑
i=2

2λ fi

γ
fi

θ̃
T
fi θ̂ fi +

4∑
i=2

2λ fi

γ fi

θ̃
T

fi θ̂ fi

+
4∑

i=2

2λα fi

γα fi

α̃T
fi α̂ fi +

4∑
i=2

ei Ji (64)

Setting ci = ki − 1
2ρ2 , we have

V̇ ≤ −
4∑

i=1

ci ei
2 −

4∑
i=1

1

2ρ2 ei
2 +

4∑
i=2

2λ fi

γ
fi

θ̃
T
fi θ̂ fi

+
4∑

i=2

2λ fi

γ fi

θ̃
T

fi θ̂ fi +
4∑

i=2

2λα fi

γα fi

α̃T
fi α̂ fi +

4∑
i=2

ei Ji

(65)
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Since − 1
2a2

b2 + bc ≤ 1
2a

2c2, we have

V̇ ≤ −
4∑

i=1

ci ei
2 − 1

2ρ2 e1
2 +

4∑
i=2

ρ2 J 2i

+
4∑

i=2

2λ fi

γ fi

θ̃
T

fi θ̂ fi +
4∑

i=2

2λα fi

γα fi

α̃T
fi α̂ fi

+
4∑

i=2

2λ fi

γ
fi

θ̃
T
fi θ̂ fi

≤ −
4∑

i=1

ci ei
2 − 1

2ρ2 e1
2 +

4∑
i=2

ρ2 J 2i

+
4∑

i=2

λ fi

γ
fi

(
2θ∗

fi
T
θ̂ fi − 2θ̂

T
fi θ̂ fi

)

+
4∑

i=2

λ fi

γ fi

(
2θ

∗
fi

T
θ̂ fi − 2θ̂

T

fi θ̂ fi

)

+
4∑

i=2

λα fi

γα fi

(
2α∗

fi
T
α̂ fi − 2α̂ fi

T
α̂ fi

)
(66)

Since a∗T a∗ + âT â ≥ 2a∗T â, and thus 2a∗T â −
2âT â ≤ a∗T a∗ − âT â, we can get

V̇ ≤ −
4∑

i=1

ci ei
2 − 1

2ρ2 e1
2 +

4∑
i=2

ρ2 J 2i

+
4∑

i=2

λ fi

γ
fi

(
θ∗
fi
T
θ∗
fi − θ̂

T
fi θ̂ fi

)

+
4∑

i=2

λ fi

γ fi

(θ
∗
fi

T
θ

∗
fi − θ̂

T

fi θ̂ fi )

+
4∑

i=2

λα fi

γα fi

(
α∗
fi
T
α∗
fi − α̂T

fi α̂ fi

)

≤ −
4∑

i=1

ci ei
2 − 1

2ρ2 e1
2 +

4∑
i=2

ρ2 J 2i

+
4∑

i=2

λ fi

γ
fi

(−θ∗
fi
T
θ∗
fi − θ̂

T
fi θ̂ fi )

+
4∑

i=2

λ fi

γ fi

(
−θ

∗
fi

T
θ

∗
fi − θ̂

T

fi θ̂ fi

)

+
4∑

i=2

λα fi

γα fi

(
−α∗

fi
T
α∗
fi − α̂T

fi α̂ fi

)

+
4∑

i=2

2λ fi

γ
fi

θ∗
fi
T
θ∗
fi +

4∑
i=2

2λα fi

γα fi

α∗
fi
T
α∗
fi

+
4∑

i=2

2λ fi

γ fi

θ
∗
fi

T
θ

∗
fi (67)

Since ãT ã = (a∗−â)T (a∗−â) = a∗T a∗−2a∗T â+
âT â ≤ 2a∗T a∗ + 2âT â, we have − 1

2 ã
T ã ≥ −âT â −

a∗T a∗. The time derivative of the Lyapunov function
V can be obtained as follows

V̇ ≤ −
4∑

i=1

ci ei
2 − 1

2ρ2 e1
2 +

4∑
i=2

ρ2 J 2i

−
4∑

i=2

λ fi

2γ
fi

θ̃
T
fi θ̃ fi −

4∑
i=2

λ fi

2γ fi

θ̃
T

fi θ̃ fi

−
4∑

i=2

λα fi

2γα fi

α̃T
fi α̃ fi +

4∑
i=2

2λ fi

γ
fi

θ∗
fi
T
θ∗
fi

+
4∑

i=2

2λα fi

γα fi

α∗
fi
T
α∗
fi +

4∑
i=2

2λ fi

γ fi

θ
∗
fi

T
θ

∗
fi (68)

To guarantee ki ≥ 1
2ρ2 , we define ci , i = 1, . . . , 4

is a positive constant and c0 = min{ 2ρ2c1+1
ρ2 , 2ci , λ fi ,

λ fi , λα fi
; i = 2, 3, 4}. The time derivative of the Lya-

punov function V̇ can be rewritten as

V̇ ≤ − c0

(
4∑

i=1

1

2
e2i + 1

2γ f1
f̃ T1 f̃1 +

4∑
i=2

1

2γ
fi

θ̃
T
fi θ̃ fi

+
4∑

i=2

1

2γ fi

θ̃
T

fi θ̃ fi +
4∑

i=2

1

2γα fi

α̃T
fi α̃ fi

)

+
4∑

i=2

2λ fi

γ
fi

θ∗
fi
T
θ∗
fi +

4∑
i=2

2λ fi

γ fi

θ
∗
fi

T
θ

∗
fi

+
4∑

i=2

2λα fi

γα fi

α∗
fi
T
α∗
fi + c0

2γ f1
f̃ T1 f̃1 +

4∑
i=2

ρ2 J 2i

(69)
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Define cV max = ∑4
i=2

2λ fi
γ

fi

θ∗
fi
T θ∗

fi
+ ∑4

i=2

2λ fi
γ fi

θ
∗
fi

T
θ

∗
fi +

∑4
i=2

2λα fi
γα fi

α∗
fi
Tα∗

fi
+ c0

2γ f1
f̃ T1 f̃1+∑4

i=2

ρ2 J 2i , we get

V̇ ≤ c0V + cV max (70)

Integrating (70) over [0, t], we have

V (t) ≤ V (0) exp(−c0t) + cV max

c0
(1 − exp(−c0t))

≤ V (0) + cV max

c0
, t ≥ 0 (71)

We define the tight set 
0 = {X |V (X) ≤ C0},
where C0 = V (0) + cV max

c0
. Then we can conclude that

all the signals in the closed-loop system are bounded.
Setting a0 = min{c1 + 1

2ρ2 , ci , i = 2, 3, 4} and (68)
can be rewritten as

V̇ ≤ − a0

4∑
i=1

ei
2 +

4∑
i=2

ρ2 J 2i −
4∑

i=2

λ fi

2γ
fi

θ̃
T
fi θ̃ fi

−
4∑

i=2

λ fi

2γ fi

θ̃
T

fi θ̃ fi −
4∑

i=2

λα fi

2γα fi

α̃T
fi α̃ fi + b0

≤ − a0

4∑
i=1

ei
2 + b0 +

4∑
i=2

ρ2 J 2i (72)

where b0 = ∑4
i=2

2λ fi
γ

fi

θ∗
fi
T θ∗

fi
+∑4

i=2

2λα fi
γα fi

α∗
fi
Tα∗

fi
+

∑4
i=2

2λ fi
γ fi

θ
∗
fi

T
θ

∗
fi

Integrating (72) over [0, t], we have
∫ T

0
V̇ dt ≤ −

∫ T

0
a0

4∑
i=1

∫ T

0
e2i (s)ds + Tb0

+
4∑

i=2

∫ T

0
ρ2 J 2i dt (73)

Since
∫ T
0 V̇ dt = V (T ) − V (0), we have

4∑
i=1

∫ T

0
e2i (s)ds ≤ − 1

a0
(V (0) − V (T ) + Tb0

+
4∑

i=2

∫ T

0
ρ2 J 2i dt

)
(74)

Since − 1
a0
V (T ) ≤ 0, we get

4∑
i=1

∫ T

0
e2i (s)ds ≤ 1

a0
(V (0) + Tb0

+
4∑

i=2

∫ T

0
ρ2 J 2i dt

)
(75)

That is, given an attenuation factor ρ, the accuracy
of tracking error is determined by the upper bound of
approximation error. Thus, the theorem is proved. �	

5 Experimental results

In this section, we demonstrate the effectiveness of the
proposed scheme on a single-link flexible-joint manip-
ulator. The actual values of parameters for dynamic
equations (3) are M = 0.2 kg, L = 0.02m, I =
1.35 × 10−3 kgm2, K = 7.47N m/rad, J = 2.16 ×
10−1 kgm2. Three IT2FNN are used to approximate
the nonlinear functions g(x), d(x) and h(x). x =
[x1, x2, x3, x4] is the vector input. For each input xi ,
type-2 Gaussian membership functions are chosen as

F̂ j
i =

⎧⎨
⎩

μ
F j
i
(xi ) = a exp

(
− 1

2

(
xi+c j

σ j

))
μ
F

j
i
(xi ) = exp

(
− 1

2

(
xi+c j

σ j

)) (76)

where i = 1, 2, 3, 4, j = 1, 2, 3, c = [c1, c2, c3] =
[1.25, 0,− 1.25], σ = [σ1, σ2, σ3] = [0.6, 0.6, 0.6]
and a = 0.8.

The other design parameters are chosen as: m = 1,
γ = [γ

g
, γ g, γ d

, γ d , γ h
, γ h, γαg , γαd , γαh , γm] =

[200, 500, 200, 500, 200, 500, 0.05, 0.05, 0.05, 0.006],
λ = [λg, λg, λd , λd , λh, λh, λαg , λαd , λαh ] = [10, 10,
10, 10, 11.25, 11.25, 0.001, 0.001, 0.001].

The initial conditions are set as: x(0) = [x1(0),
x2(0), x3(0), x4(0)] = [0, 0, 0, 0], θ̂g(0) = [θ̂ g(0),
θ̂ g(0)] = [1.2, 1.2], θ̂d(0) = [θ̂d(0), θ̂d(0)] =
[1.2, 1.2], θ̂h(0) = [θ̂h(0), θ̂h(0)] = [1.2, 1.2],
α̂g(0) = 0, α̂d(0) = 0, α̂h(0) = 0, m̂(0) = 500.
The desired output trajectory is designed to be yd =
0.2 sin(t). The control target is that the system out-
put can track the desired trajectory even in the case of
external disturbance d(t) = 0.05 cos(2t).
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To evaluate the performance of all controllers
with difference approximator (T1FNN, NN, IT2FNN)
clearly, we use the following performance criterions:
the integral of square error (ISE), the integral of the
absolute value of the error (IAE) and the integral of
the time multiplied by the absolute value of the error
(ITAE), which can be expressed as:

ISE =
∞∫
0

[e(t)]2dt

IAE =
∞∫
0

|e(t)| dt

ITAE =
∞∫
0

t |e(t)| dt (77)

Simulation results demonstrate the superior perfor-
mance of the proposed controller. The responses of the
system states q1, q̇1, q2, q̇2 are illustrated in Figs. 3
and 4. The trajectory of control input is shown in Fig. 5.
It is clear that the control input is bounded. Tracking
curves are depicted in Fig. 6. We can find that three
approximators have the ability to achieve precise track-
ing. However, the accuracy of each approximator is
different. Figure 7 demonstrates that the proposed con-
troller has better steady-state performance, less fluctu-
ation and higher approximation accuracy than T1FNN
and NN. It is noted that the tracking error tends to a
small neighborhood of zero even though there is exter-
nal disturbance.

Fig. 3 Responses of q1 and q̇1

Fig. 4 Responses of q2 and q̇2

Fig. 5 Trajectories of control input

Fig. 6 Position tracking performance
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Fig. 7 Position tracking error

Table 1 Performance index

T1FNN NN IT2FNN

ISE 0.0034 0.0047 0.0003

IAE 0.2555 0.2785 0.0615

ITAE 3.1988 3.2342 0.6950

Table 1 lists the ISE, IAE and ITAE for all con-
trollers. The values of the ISE, the IAE and the ITAE
for the proposed controller with the IT2FNN approx-
imator are lower than those obtained for the T1FNN
and the NN approximator. It is clear that the adaptive
backstepping controller with the IT2FNN approxima-
tor is able to achieve better tracking performance and
high accuracy.

Compared to the existing control method for
flexible-joint manipulator in recent years [46], the
adaptive backstepping controller with the IT2FNN
approximator has the obvious advantages in tran-
sient tracking performance and high accuracy. From
the results of simulation without external disturbance
in [46], it can be seen that the maximum tracking error
is about 0.25 rad and the tracking error tends to a small
neighborhood of zero at about 3.75 s. In this study,
the maximum tracking error is 0.02 rad and reduces
to less than 0.005 rad at 2.57 s even though there is
external disturbance. Starting from 3.08 s, the range
of the tracking error is stable between 0.002 rad and
2.1e−5 rad. The time it takes for the tracking error to a
small neighborhood of zero is about 0.31 times shorter
than the control method in [46]. It can demonstrate
that the proposed method significantly eliminates the

undesirable overshoot and reduces the settling time.
Therefore, the proposed adaptive backstepping con-
troller with the IT2FNN approximator can obtain better
steady-state performance and improve approximation
accuracy.

6 Conclusions

In this paper, an adaptive backstepping control scheme
based on IT2FNN approximator has been proposed for
a flexible-joint manipulator with mismatched uncer-
tainties. The IT2FNN is used to approximate the
unknown functions. The stability analysis of the pro-
posed scheme is derived. The proposed adaptive con-
troller guarantees that all the signals in the resulting
closed-loop systems are bounded. Finally, the simula-
tion results of the comparative study illustrate that the
performances of adaptive backstepping control based
on IT2FNN approximator over the others.
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