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Abstract The paper proposes an adaptive coordi-
nated control scheme on free-floating space manipula-
tors at the dynamic level, with kinematic and dynamic
uncertainties. The free-floating space manipulator can
be controlled to realize the end-effector trajectory
tracking task and the spacecraft attitude regulation
task simultaneously, based on the carefully designed
prescribed performance error transformations and the
reaction null space. In face of nonlinearly parametric
feature of the uncertain free-floating space manipula-
tors, a novel attractive manifold control method is pro-
posed by introducing the nonlinear filters on dynamics
of the free-floating space manipulators. The parameter
estimation error terms can converge to zero, indepen-
dent of persistent excitation conditions. The proposed
adaptive coordinated control scheme can guarantee that
both the end-effector tracking error and the spacecraft
attitude regulation error possess the prescribed con-
trol performances, in the presence of the nonlinearly
parametric feature and the nonzero linear and angular
momenta of the free-floating space manipulators. The
simulation results show the effectiveness of the pro-
posed control scheme.
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List of symbols

En (n × n)-dimensional identity matrix
L∞ Space on the essentially bounded func-

tions
Lp Space on the p-order-integrable func-

tions
θb Parameters in the angular momentum

conservation equation
θd Parameters in the dynamic equation of

the free-floating space manipulator
θz Parameters in the kinematic equation of

the free-floating space manipulator
A0 Nonzero angular momentum of the free-

floating space manipulator
Cbb Centrifugal and Coriolis matrix of the

base spacecraft
Cbm Centrifugal and Coriolis matrix of the

base spacecraft and the manipulator
Cmb Centrifugal and Coriolis matrix of the

manipulator and the base spacecraft
Cmm Centrifugal and Coriolis matrix of the

manipulator
Ii Inertia of the i th link
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Jpb Jacobian matrix between the spacecraft
angular velocity and the end-effector lin-
ear velocity

Jpm Jacobian matrix between the manipula-
tor joint angular velocity and the end-
effector linear velocity

Jqb Jacobian matrix between the spacecraft
angular velocity and the end-effector
angular velocity

Jqm Jacobian matrix between the manipula-
tor joint angular velocity and the end-
effector angular velocity

lc,i Distance between the i th link centroid
and the (i + 1)th joint

li Length of the i th link
Mbb Spacecraft inertia matrix
Mbm Coupled inertia matrix between the base

spacecraft and the mounted manipulator
mi Mass of the i th link
Mmm Inertia matrix of the mounted manipula-

tor
pe End-effector position in the inertia frame
qb Base spacecraft attitude in the inertia

frame
qe End-effector attitude in the inertia frame
qm Joint angle
um Joint torque of the manipulator
v0 Nonzero linear velocity of the free-

floating space manipulator in the inertia
frame

wb Base spacecraft angular velocity in the
inertia frame

wm Joint angular velocity
ze Base spacecraft pose in the inertia frame

1 Introduction

Space manipulators are essential tools to realize
unmanned on-orbit serving missions, such as on-orbit
assembly, capture of a tumbling spacecraft and orbital
debris removal. The space manipulator consists of base
spacecraft and the mounted manipulator. There are
three common control modes for the space manip-
ulators: free-floating mode, attitude-controlled mode
and free-flying mode [1]. For the free-floating mode,
both position and attitude of the base spacecraft are
not controlled by the actuators (e.g., thrusters, momen-
tum wheels). The space manipulators are usually in

the free-floating mode when they are close to the space
targets. The reason is that if the actuators of the base
spacecraft are suddenly firing, there may be a undesir-
able collision between the space manipulator and the
space target [2]. Even through the momentum wheels
are utilized in the base spacecraft such that the on-
off mode of operation is avoided, the influence of the
inaccurate and transient behavior of the attitude control
system (ACS) to the on-orbit serving missions should
not be overlooked, which means that it is preferable to
turn off the ACS of the base spacecraft during the on-
orbit serving missions [3]. Moreover, compared with
the other control modes, the free-floating mode of the
space manipulator can save the non-renewable fuel in
the base spacecraft and hence can prolong the lifespan
of the space manipulator, once the base spacecraft is
actuated by thrusters [4].

It should be pointed out that the free-floating space
manipulator (FFSM) possesses two salient features,
and hence is distinct from the fixed-base roboticmanip-
ulators. First, the FFSM will encounter kinematic and
dynamic uncertainties [5–10], when it is controlled
to perform the on-orbit serving missions. However,
the FFSM dynamics suffers from nonlinearly paramet-
ric issue, leading to infeasibility of the adaptive con-
trol schemes that rely on linear parameterization of
the robotic dynamics [11]. Moreover, in several on-
orbit serving missions, the spacecraft attitude of the
FFSM should be maintained to the desired orientation
to achieve the information communication between the
Earth and the space manipulator, implying that the
base spacecraft and the mounted manipulator should
be coordinated controlled [12–14]. However, since the
base spacecraft is not fixed and the space manipulator
is in the free-floating mode, there exist coupling effects
between the base spacecraft and themountedmanipula-
tor [15–17].Owing to the coupling effects of the FFSM,
the manipulator motion will generate reaction torque
toward the base spacecraft, resulting in the undesirable
rotation of the base spacecraft, and the spacecraft atti-
tude rotation in turn changes the end-effector pose of
the FFSM. Therefore, it is highly desirable to investi-
gate the coordinated control of the FFSMs to realize
the end-effector pose tracking task and the spacecraft
attitude regulation task simultaneously, subject to kine-
matic and dynamic uncertainties [18].

First, a great deal of theoretical progress has been
made on the robust and adaptive control of the uncer-
tain FFSM [19–26]. In face of the parameter uncer-
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tainties of the FFSM, an adaptive control scheme on
the uncertain free-flying space manipulator is designed
in [19] to achieve the end-effector trajectory track-
ing task. As for the FFSM, a novel control scheme
named the normal-form-augmentation-based approach
is proposed in [20], where the spacecraft motion is
represented by an extended robotic manipulator, and
correspondingly, the obtained kinematics and dynam-
ics of the whole system can be linear toward phys-
ical parameters of the FFSM, which facilitates the
adaptive controller design of the FFSM. However, for
the above normal-form-augmentation-based approach,
the spacecraft acceleration is required to obtain the
extended roboticmanipulator, and the kinematic uncer-
tainties are also not considered [21]. In [22], a novel
passivity-based adaptive control method is designed to
realize trajectory tracking control of the FFSM with
kinematic and dynamic uncertainties, without the need
of spacecraft acceleration information. The carefully
designed inverted chain controllers are also proposed
in [23,24] for the trajectory tracking of the uncertain
FFSM. Notice that although the neural network can
be also utilized to approximate the uncertain FFSM
dynamics and to obtain the corresponding adaptive con-
troller [25,26], only the uniform ultimate boundedness
of the end-effector tracking error is ensured, compared
with the results in [19–26] ensuring zero-error trajec-
tory tracking. The size of the neural network and the
according computational burden will be also increased
if the tracking accuracy is needed to be improved.

Besides, notice that the methods in [20–26] depend
on the assumption on the zero linear and angular
momenta of the FFSM. In face of this problem, an
optimal control scheme on the free-flying spacemanip-
ulator is proposed in [27], where the nonzero and
time-varying linear and angular momenta of the space
manipulator are considered.As for theFFSM, the usage
of the spacecraft thruster is reduced to prolong the lifes-
pan of the FFSM, and the FFSM end-effector is free
from the contact force and torquewhen the FFSM is not
in contact with the space targets. Besides, the external
disturbances imposed on the FFSM (such as the gravity
gradient torque) are small since the FFSM is maneu-
vered in the micro-gravity space environment [28,29].
This means that the linear and angular momenta of the
FFSM can be viewed as constants within a time inter-
val, as long as the FFSM is not in contact with the
space targets. In [30], a feedback-linearization-based
impedance control scheme is constructed on the free-

floating spacemanipulatorwith the known and nonzero
linear/angular momenta. A torque feedback control
scheme on the FFSM is then designed in [31], and the
effects of the nonzero linear/angular momenta of the
FFSM can be compensated by the according adaptive
laws. However, the control schemes in [30,31] rely on
the deterministic model of the FFSM.

Unfortunately, several control schemes (such as the
results in [19–26,30,31]) only take the end-effector
trajectory tracking into account, and the base space-
craft regulation is not considered. Inspired by reaction
null-space control method [32–34], an adaptive reac-
tion null-space control method is proposed in [35] to
realize the coordinated control of the uncertain FFSM.
Compared with the previous reaction null-space con-
trol method, the adaptive reaction null-space control
method does not require additional high sensor mea-
surements to obtain the exact parameter values of the
FFSM [35]. However, the proposed control schemes
in [35] can only lower the effects of the reaction force
caused by robotic motion to the base spacecraft, and
the spacecraft attitude regulation is not considered.This
implies that the spacecraft attitudewould possibly devi-
ate from the desired orientation if the control schemes
in [35] are utilized. Xu et al. [36] go further to propose
a novel adaptive reaction null-space control scheme on
the uncertain FFSM, such that the end-effector trajec-
tory tracking task and the spacecraft attitude regula-
tion task can be realized simultaneously. However the
adaptive reaction null-space control schemes in [35,36]
are derived only at the kinematic level. Besides, the
end-effector attitude tracking is not considered in [36],
which is essential to accomplish several on-orbit serv-
ing missions such as the orbital capture of the space
targets.

Moreover, to realize the on-orbit serving missions,
the FFSM needs to possess good transient and steady
control performance, such as fast convergence speed,
small overshoot and small steady error [37–39]. In
recent years, prescribed performance control (PPC) has
been presented in [40–43], which renders the track-
ing or regulation error converge with arbitrary large
convergence speed and arbitrary small overshoot, to
a sufficient small residual set. This method has been
successfully applied into the marine surface vessels
[44], the servo mechanisms [45–47] and the vehicle
suspensions [48]. A funnel controller with the smooth
dead-zone inverse is proposed in [49] to realize the
joint-space tracking control of the robotic manipula-
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tor with the asymmetric dead zone. A neural-network-
based controller is constructed in [50] to render the
joints of the robotic manipulator track the desired joint-
space trajectory, without the need of the inverse of
the estimate of the inertia matrix. Karayiannidis and
Doulgeri [51] propose a joint regulation/tracking con-
trol scheme on robotic manipulators with prescribed
control performance, without exact parameter infor-
mation of robotic manipulators. A more general con-
trol framework is derived in [52] to realize prescribed
performance trajectory tracking of the fully actuated
Euler–Lagrange system, where the Nussbaum function
is utilized to guarantee the convergence of the tracking
error. In [53], a dynamic learning scheme with neu-
ral network approximator is designed for the uncer-
tain robotic manipulators, where the trajectory track-
ing error in the joint space can possess prescribed con-
trol performance and the convergence of the neural
network weight estimates can be ensured based upon
specific partial persistent excitation condition. A joint-
space prescribed performance PID control scheme is
proposed for uncertain robotic manipulators with actu-
ator faults [54]. Yang et al. [55] propose a novel neural-
network-based control scheme on the bimanual robots,
such that the grasped object can follow the reference
trajectory in the task space with the guaranteed con-
trol performance. The prescribed performance control
method can be also applied into force/position control
of the robotic manipulators [56], such that the robotic
manipulator can remain contact with the planar sur-
face and track the desired end-effector pose trajectory
simultaneously.

However, the literature [49–56] focuses on pre-
scribed performance control of the fixed-base robotic
manipulators. Due to the kinematic and dynamic cou-
plings of the FFSM, the spacecraft attitude regulation
and the end-effector pose tracking are two interacted
tasks. Therefore, it is infeasible to employ the con-
trol scheme on the fixed-base robotic manipulator into
the FFSM [57]. Recently, Zhou et al. [58] propose a
robust prescribed performance control scheme on the
uncertain FFSM, where a linear switching surface is
utilized to cope with kinematic and dynamic uncer-
tainties. However, the control method in [58] relies
on the assumption that angular velocity and angular
acceleration of the FFSM are both bounded in priori,
and besides only the end-effector trajectory tracking
task of the FFSM is considered. Therefore, it deserves
further study on prescribed performance coordinated

control of the uncertain FFSM, such that the spacecraft
attitude regulation error and the end-effector trajectory
tracking error can meet the corresponding prescribed
control performances, in the presenceof the nonlinearly
parametric feature and the nonzero linear and angular
momenta.

This paper is devoted to the adaptive coordinated
control of the uncertain FFSM, subject to the nonlin-
early parametric feature and the nonzero linear and
angular momenta. The contributions of this paper are
summarized as follows:

(i) A coordinated control scheme on the FFSM
is designed to accomplish two coupled control tasks
simultaneously, that is, the spacecraft attitude regula-
tion and the end-effector pose tracking. This means
that the proposed control scheme differs from those in
[49–56] that focuses on the fixed-base robotic manipu-
lators. Bymeans of the adaptive reaction null space and
the prescribed performance functions, both the space-
craft attitude regulation error and the end-effector pose
tracking error can meet the respective prescribed per-
formance requirements and converge to zero, and there-
fore, the couplings effects of the FFSM are overcome.
The effects of the uncertain kinematic parameter, and
the nonzero linear and angular momenta are attenuated
by a series of carefully designed updated laws. Hence,
the proposed control scheme is distinct from the con-
trol schemes in [35] and [58] (which cannot stabilize
the spacecraft attitude).

(ii) A novel attractive manifold control method is
proposed to cope with nonlinear parameterization of
the FFSM. Notice that for the FFSM, several adap-
tive control methods based upon linear parameterized
model are inapplicable. Therefore, a nonlinear filter on
the FFSM dynamics is constructed, and the estimate
of the dynamic parameter is updated by the estima-
tion error of the joint velocity. Since the updated law
on the dynamic parameter is not designed directly on
the FFSM dynamics, the nonlinearly parametric issue
of the FFSM is overcome. Furthermore, the proposed
attractive manifold control method renders the param-
eter estimation error terms converge to zeros, inde-
pendent of the persistent excitation conditions, imply-
ing that the influences of the dynamic uncertainties
are attenuated. By means of the proposed attractive
manifold method, the control input can be constructed
at the dynamic level and ensures zero-error regula-
tion/tracking, compared with the control schemes in
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[35,36] (which are only designed at the kinematic
level).

The remaining part of this paper is organized as
follows: The kinematic and dynamic modeling of the
FFSM is provided in Sect. 2. The adaptive coordinated
control scheme on the FFSM with prescribed control
performance is designed in Sect. 3. The according sim-
ulation results are shown in Sect. 4. The conclusions
are given in Sect. 5.

2 Preliminaries

The motion of the FFSM is determined by the motion
of the base spacecraft and the motion of the mounted
manipulator. First, denote qm ∈ R

m1 as the joint angle
of the FFSM, pe ∈ R

m2 as the FFSM end-effector
position in the inertia frame, qe ∈ R

m3 as the FFSM
end-effector attitude in the inertia frame, pb ∈ R

m2 as
the position of the base spacecraft centroid in the inertia
frame, qb ∈ R

m3 as the attitude of the base spacecraft
in the inertia frame and ze = col(pe, qe) ∈ R

m2+m3

as the FFSM end-effector pose in the inertia frame.
Note that m2 = m3 = 3 when the spatial FFSM is
employed, and in this condition, the variables qb and
qe can be viewed as the modified Rodriguez param-
eters (MRPs) of the base spacecraft attitude and the
end-effector attitude, respectively. Besides, m2 = 2
and m3 = 1 when the planar FFSM is considered,
and in this condition, the variables qb and qe are the
rotation angles of the base spacecraft and the end-
effector. Then, denote q � col(qb, qm) ∈ R

m1+m3 and
w � col(wb, wm) ∈ R

m1+m3 .

2.1 Kinematic modeling of the FFSMs

Denote vb � ṗb ∈ R
m2 and wb ∈ R

m3 as the linear
and angular velocities of the base spacecraft satisfying
the following equation

q̇b = Lb(qb)wb, (1)

where the matrix Lb(qb) ∈ R
m3×m3 with LT

b Lb ≥
λbEm3 and λb > 0.

Additionally, the FFSM end-effector position and
attitude pe and qe obey the following kinematic equa-
tions, respectively [57]

ṗe = Jpbwb + Jpmwm + v0, (2a)

q̇e = Jqbwb + Jqmwm, (2b)

where wm ∈ R
m1 is the joint velocity of the FFSM,

Jpb(q) ∈ R
m2×m3 , Jpm(q) ∈ R

m2×m1 , Jqb(q) ∈
R
m3×m3 and Jqm(q) ∈ R

m3×m1 are the correspond-
ing Jacobian matrices, and v0 ∈ R

m2 is the nonzero
constant velocity stemming from the nonzero linear
momentum of the FFSM.

The kinematic equations of the FFSM (2a)–(2b) can
be also rewritten in a compact form as

że = Jbwb + Jmwm + v̄0, (3)

where Jb(q) = [Jpb(q); Jqb(q)] ∈ R
(m2+m3)×m3 ,

Jm(q) = [Jpm(q); Jqm(q)] ∈ R
(m2+m3)×m1 , and v̄0 =

col(v0, 0m3), and ze is the FFSM end-effector pose in
the inertia frame defined before.

For the kinematics of the FFSM (3), the following
property holds.

Property 1 The kinematic equation (3) of the FFSM
is linear toward parameter θz ∈ R

n1 , that is,

Jbwb + Jmwm + v̄0 = Yzθz, (4)

where Yz(q, w) ∈ R
(m2+m3)×n1 is the according

regressor matrix.

2.2 Dynamic modeling of the FFSMs

The FFSM dynamics is formulated as [57]:

Mbbẇb + Mbmẇm + Cbbwb + Cbmwm = 0m3 , (5a)

MT
bmẇb + Mmmẇm + Cmbwb + Cmmwm = um, (5b)

where ẇb ∈ R
m3 is angular acceleration of the

base spacecraft, ẇm ∈ R
m1 is joint acceleration of

mounted manipulator, um ∈ R
m1 is input torque

of the mounted manipulator, Mbb(q, pb) ∈ R
m3×m3

is inertia matrix of the base spacecraft, Mmm(q) ∈
R
m1×m1 is inertia matrix of the mounted manipula-

tor, Mbm(q, pb) ∈ R
m3×m1 is coupled inertia matrix

between the base spacecraft and the mounted manip-
ulator, Cbb(q, w, pb, vb) ∈ R

m3×m3 is centrifugal and
Coriolis matrix of the base spacecraft, Cmm(q, w, pb)
∈ R

m1×m1 is centrifugal and Coriolis matrix of
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the mounted manipulator, and Cbm(q, w, pb, vb) ∈
R
m3×m1 and Cmb(q, w, pb, vb) ∈ R

m1×m3 are coupled
centrifugal and Coriolis matrices between the mounted
manipulator and the base spacecraft.

Notice that Eq. (5a) depicts the dynamic couplings
between the spacecraft attitudemotion and themounted
manipulator motion [59]. Due to the fact that the space
manipulator is in the free-floatingmode, the base space-
craft is driven by the joint motion of the mounted
manipulator. Hence, Eq. (5a) can be rewritten as

Mbbẇb + Cbbwb = Fr , (6)

where

Fr � −Mbmẇm − Cbmwm, (7)

is the reaction torque exerted on the base spacecraft by
the manipulator motion [59].

For the sake of simplicity, Eqs. (5a)–(5b) can be
rewritten as

M(q, pb)ẇ + C(q, w, pb, vb)w = u, (8)

where u � col(0m3; um) ∈ R
m1+m3 , and the matrices

M(q, pb) ∈ R
(m1+m3)×(m1+m3) and C(q, w, pb, vb) ∈

R
(m1+m3)×(m1+m3) are

M �
[
Mbb Mbm

MT
bm Mmm

]
, (9a)

C �
[
Cbb Cbm

Cmb Cmm

]
. (9b)

Note that the matrix M is uniformly bounded and pos-
itive definite [22]. This means that there exist λM,min

> 0 and λM,max > 0 such that λM,minEm1+m3 < M <

λM,maxEm1+m3 . It can be seen in Eqs. (5a)–(5b) and
(8) that the matrices in the FFSM dynamics contain
the information on the centroid position and the linear
velocity of the base spacecraft. For the sake of sim-
plicity, the variables in the matrices, like M(q, pb) and
C(q, w, pb, vb), will be omitted when there is no con-
fusion in the context.

From (5a)–(5b), it can be seen that there exist
dynamic couplings between the base spacecraft and the
mounted manipulator. Substitute the spacecraft angu-
lar acceleration ẇb in (5a) into (5b), and we can obtain
the reduced form of the FFSM dynamics as [4]:

M∗
mmẇm + C∗

mbwb + C∗
mmwm = um, (10)

where the matrices M∗
mm ∈ R

m1×m1 , C∗
mb ∈ R

m1×m3

and C∗
mm ∈ R

m1×m1 are

M∗
mm � Mmm − MT

bmM
−1
bb Mbm, (11a)

C∗
mb � Cmb − MT

bmM
−1
bb Cbb, (11b)

C∗
mm � Cmm − MT

bmM
−1
bb Cbm . (11c)

For the FFSM dynamics (8), the following property
holds.

Property 2 The matrices and vectors in the FFSM
dynamics (8) are linear toward dynamic parameter
θd ∈ R

n2 , and correspondingly denote

Mς1 − Ṁς2 + Cς3 = Ydθd , (12)

where ς1 ∈ R
m1+m3 , ς2 ∈ R

m1+m3 , ς3 ∈ R
m1+m3 ,

matrix Ṁ ∈ R
(m1+m3)×(m1+m3) is defined as Ṁ � dM

dt ,
and Yd(q, w, pb, vb, ς1, ς2, ς3) ∈ R

(m1+m3)×n2 is the
corresponding regressor matrix.

2.3 Principle of the angular momentum conservation

Note that the space manipulator is in the free-floating
mode, and therefore, the FFSMmotion obeys the prin-
ciple of angular momentum conservation, which can
be formulated as [36]:

Hbbwb + Hbmwm = A0, (13)

where A0 ∈ R
m3 is nonzero constant angular momen-

tum of the FFSM, Hbb(q, pb) ∈ R
m3×m3 and

Hbm(q, pb) ∈ R
m3×m1 .

Then, the following property holds [22].

Property 3 The angular momentum conservation
equation (13) is linear to the parameter θb ∈ R

n3 , that
is,

Hbbwb + Hbmwm − A0 = Ybθb, (14)

where Yb ∈ R
m3×n3 is the corresponding regressor

matrix.
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It is noted from (4) and (14) that v0 and A0 are
components of θz and θb, respectively. Besides, based
upon (13) and (14), it is obtained that

Ybθb = 0m3 . (15)

Remark 1 In several on-orbit serving missions, it is
desirable to reduce the usage of the actuators of the
base spacecraft. This means that the space manipula-
tor is usually in the free-floating mode during the on-
orbit serving missions. This is because when the space
manipulator is near the space target, any abrupt action
of the actuators of the base spacecraft may result in the
unwanted collision between the space manipulator and
the space target [2]. Even through the base spacecraft is
equipped with the momentum wheels, it is still prefer-
able to close the ACS of the base spacecraft during the
on-orbit serving missions, owing to the inaccurate and
transient behavior of the ACS [3]. Moreover, when the
base spacecraft is actuated by the thrusters, the non-
renewable fuels in the base spacecraft can be saved and
the lifespan of the space manipulator can be prolonged
in the free-floating mode [4].

Furthermore, as long as the FFSM end-effector is
not in contact with the space targets, the FFSM will
be free from the contact force and torque. Moreover,
the FFSM is maneuvered in the micro-gravity envi-
ronment, and the external disturbances exerted on the
FFSM, such as the gravity gradient, are small. In all,
the linear and angular momenta of the FFSM can be
viewed as constants within a time interval.

Remark 2 As pointed out in [20,22], when the FFSM
is deterministic, the control methods that are designed
for fixed-base robotic manipulators are also applica-
ble into the FFSMs based upon the reduced form of
the FFSM dynamics (10) (see [32–34] and references
therein). However, note that the matrices M∗

mm (11a),
C∗
mb (11b) and C

∗
mm (11c) contain the matrix M−1

bb , the
inverse of the matrix Mbb. This means that the reduced
form of the FFSM dynamics (10) is not linear toward
the dynamic parameter θd , which differs from the fixed-
base robotic manipulators. Since the previous adaptive
control methods on the fixed-base robotic manipula-
tors rely on the linear parameterization model, they are
inapplicable to the uncertain FFSMs [22].

Moreover, the following lemmawill be utilizedhere-
inafter [60].

Lemma 1 For a function f (t) : R
+ → R

n, if it is
uniformly continuous on t and satisfies f (t) ∈ Lp(1 ≤
p ≤ +∞), then it is obtained that limt→+∞ f (t) =
0n.

3 Adaptive prescribed performance coordinated
control of the FFSMs

In this section, we construct a coordinated control
scheme on the uncertain FFSM to achieve the end-
effector trajectory tracking task and the spacecraft atti-
tude regulation task simultaneously. Denote pe,d(t) ∈
R
m2 and qe,d(t) ∈ R

m3 as the desired end-effector
position and attitude trajectory in the inertia frame,
respectively, denote ze,d(t) � col(pe,d(t), qe,d(t)) ∈
R
m2+m3 as the desired end-effector pose trajectory

in the inertia frame, and denote qb,d ∈ R
m3 as the

desired attitude of the base spacecraft in the inertia
frame. Accordingly, denote the end-effector position
tracking error as Δpe(t) � pe(t) − pe,d(t) ∈ R

m2 ,
the end-effector attitude tracking error as Δqe(t) �
qe(t) − qe,d(t) ∈ R

m3 , the end-effector pose tracking
error asΔze(t) = [Δpe(t);Δqe(t)] ∈ R

m2+m3 , and the
spacecraft attitude regulation error asΔqb(t) � qb(t)−
qb,d ∈ R

m3 . The proposed coordinated control scheme
renders the FFSM end-effector track the desired tra-
jectory ze,d(t) and the spacecraft attitude converge to
the desired attitude qb,d simultaneously. This means
that for the end-effector pose tracking error Δze(t) �
ze(t) − ze,d(t) ∈ R

m2+m3 , the time derivative of the
end-effector pose tracking error Δże(t) � że(t) −
że,d(t) ∈ R

m2+m3 , the spacecraft attitude regulation
error Δqb(t) � qb(t) − qb,d ∈ R

m3 , and the space-
craft angular velocity wb(t) ∈ R

m3 , the FFSM should
be controlled to realize limt→+∞ Δze(t) = 0m2+m3 ,
limt→+∞ Δże(t) = 0m2+m3 , limt→+∞ Δqb(t) = 0m3 ,
and limt→+∞ wb(t) = 0m3 . Note that the reference
end-effector pose trajectory ze,d(t) and the correspond-
ing time derivatives że,d(t) and z̈e,d(t) are all uniformly
bounded.

3.1 Prescribed performance control and error
transformations

It should be pointed out that compared with the con-
trol schemes in [35,36], both the end-effector pose
tracking error Δze(t) and the spacecraft attitude reg-
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ulation error Δqb(t) should satisfy the prescribed
control performances in this paper. To be specific,
for the spacecraft attitude regulation error Δqb(t) =
[Δqb,1(t); . . . ; Δqb,m3(t)] and the end-effector track-
ing errorΔze(t) = [Δze,1(t); . . . ;Δze,m2+m3(t)], they
should satisfy the following prescribed performance
constraints which are defined element-wisely as

{−σb,iρb,i (t) < Δqb,i (t) < ρb,i (t), Δqb,i (0) ≥ 0;
−ρb,i (t) < Δqb,i (t) < σb,iρb,i (t), Δqb,i (0) < 0,

(16)

for i = 1, . . . ,m3, and

{−σz,iρz,i (t) < Δze,i (t) < ρz,i (t), Δze,i (0) ≥ 0;
−ρz,i (t) < Δze,i (t) < σz,iρz,i (t), Δze,i (0) < 0,

(17)

for i = 1, . . . ,m2 + m3 [40,41]. In (16)–(17), ρb,i (t)
and ρz,i (t) are decaying functions of time defined as

ρb,i (t) � (ρ0
b,i − ρ∞

b,i ) exp(−βb,i t) + ρ∞
b,i , (18a)

ρz,i (t) � (ρ0
z,i − ρ∞

z,i ) exp(−βz,i t) + ρ∞
z,i . (18b)

In Eqs. (16)–(17) and (18a)–(18b), ρ0
b,i , ρ

0
z,i , ρ

∞
b,i , ρ

∞
z,i ,

βb,i , βz,i , σb,i and σz,i are all positive constants with
ρ∞
b,i < ρ0

b,i and ρ∞
z,i < ρ0

z,i , which means that the
functions ρb,i (t) and ρz,i (t) are both positive at all the
timewithρb,i (t) ≥ ρ∞

b,i andρz,i (t) ≥ ρ∞
z,i , and are both

monotonically decreasing. The parameters σb,i and σz,i
are set such that 0 < σb,i ≤ 1 and 0 < σz,i ≤ 1.

Notice that the parameters ρ0
b,i and ρ0

z,i are the initial
values of functions ρb,i (t) and ρz,i (t), respectively, and
their values are chosen based upon the initial pose of the
FFSM end-effector and the initial value of the desired
trajectory. To be specific, the parameters ρ0

b,i and ρ0
z,i

are set such that the relations (16) and (17) are satisfied
at the initial instant, that is, |Δqb,i (0)| < ρ0

b,i for i =
1, . . . ,m3 and |Δze,i (0)| < ρ0

z,i for i = 1, . . . ,m2 +
m3.

Taking the derivatives of ρb,i (t) (18a) and ρz,i (t)
(18b) yields

ρ̇b,i (t) = −βb,i (ρ
0
b,i − ρ∞

b,i ) exp(−βb,i t), (19a)

ρ̇z,i (t) = −βz,i (ρ
0
z,i − ρ∞

z,i ) exp(−βz,i t), (19b)

and correspondingly, it is obtained that
limt→+∞ ρ̇b,i (t) = limt→+∞ ρ̇z,i (t) = 0.

Based upon (16) and (17), denote that sb,i (t) �
ρ−1
b,i (t)Δqb,i (t) and sz,i (t) � ρ−1

z,i (t)Δze,i (t), and the
prescribedperformance error transformations on sb,i (t)
and sz,i (t) are designed as

ψb,i (t) � Rb,i (sb,i (t)), (20a)

ψz,i (t) � Rz,i (sz,i (t)), (20b)

where the transformation functions Rb,i (·) and Rz,i (·)
are constructed as

Rb,i (sb,i (t)) �
{
ln( σb,i+sb,i (t)

σb,i−σb,i sb,i (t)
), sb,i (0) ≥ 0;

ln( σb,i+σb,i sb,i (t)
σb,i−sb,i (t)

), sb,i (0) < 0,

(21a)

Rz,i (sz,i (t)) �
{
ln( σz,i+sz,i (t)

σz,i−σz,i sz,i (t)
), sz,i (0) ≥ 0;

ln( σz,i+σz,i sz,i (t)
σz,i−sz,i (t)

), sz,i (0) < 0.

(21b)

For the function Rb,i (·), it satisfies Rb,i (·) : (−σb,i , 1)
→ (−∞,+∞) when sb,i (0) ≥ 0 and Rb,i (·) :
(−1, σb,i ) → (−∞,+∞) when sb,i (0) < 0. It is also
obtained from (21a) that the ψb,i (t) = 0 if and only if
sb,i (t) = 0, and ψb,i (t) approaches zero if and only if
sb,i (t) approaches zero. These properties also hold for
the function Rz,i (·).

Then, denoteψb(t) � col(ψb,1(t), . . . , ψb,m3(t)) =
col(Rb,1(sb,1(t)), . . . , Rb,m3(sb,m3(t))) ∈ R

m3 and
ψz(t) � col(ψz,1(t), . . . , ψz,m2+m3(t)) = col
(Rz,1(sz,1(t)), . . . , Rz,m2+m3(sz,m2+m3(t))) ∈ R

m2+m3 .
Invoking (20a)–(20b) and (21a)–(21b), the derivatives
of ψb(t) and ψz(t) are

ψ̇b = Φb(sb, ρb)(Δq̇b − ρ̇bsb), (22a)

ψ̇z = Φz(sz, ρz)(Δże − ρ̇zsz), (22b)

where ρb � diag(ρb,1, . . . , ρb,m3), ρz � diag(ρz,1,
. . . , ρz,m2+m3), ρ

−1
b = diag(ρ−1

b,1, . . . , ρ−1
b,m3

), ρ−1
z =

diag(ρ−1
z,1 , . . . , ρ−1

z,m2+m3
), ρ̇b = diag(ρ̇b,1, . . . , ρ̇b,m3),

ρ̇z = diag( ρ̇z,1, . . . , ρ̇z,m2+m3), sb � ρ−1
b Δqb =

col(sb,1, . . . , sb,m3), sz � ρ−1
z Δze = col(sz,1; . . . ;

sz,m2+m3), Φb (sb, ρb) � diag(Φb,1(sb,1, ρb,1), . . . ,

Φb,m3(sb,m3, ρb,m3)) with Φb,i (sb,i , ρb,i ) � dRb,i (sb,i )
dsb,i

ρ−1
b,i , and Φz(sz, ρz) � diag(Φz,1 (sz,1, ρz,1), . . . ,

Φz,m2+m3(sz,m2+m3 , ρz,m2+m3))withΦz,i (sz,i , ρz,i ) �
dRz,i (sz,i )

dsz,i
ρ−1
z,i . In addition, from the structure of Rb,i (·)

(21a) and Rz,i (·) (21b), it is obtained that
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‖sb(t)‖2 ≤ 1

4
‖ψb(t)‖2, (23)

once ‖ψb(t)‖ < +∞, and

‖sz(t)‖2 ≤ 1

4
‖ψz(t)‖2, (24)

once ‖ψz(t)‖ < +∞.

Remark 3 Note that the parameters ρ0
b,i , ρ0

z, j , βb,i ,
βz, j , σb,i and σz, j , for i = 1, . . . ,m3 and j =
1, . . . ,m2 +m3, are essential to determine the control
performance of the proposed scheme. First, the param-
etersρ0

b,i , i = 1, . . . ,m3 andρ0
z, j , j = 1, . . . ,m2+m3,

are selected such that the prescribed performance con-
straints (16)–(17) are satisfied at the initial instant.
Then, parameters βb,i , i = 1, . . . ,m3, and βz, j , j =
1, . . . ,m2 + m3, are chosen to determine the tran-
sient regulation/tracking performance of the space-
craft attitude regulation error Δqb and the end-effector
pose tracking error Δze, respectively. Once the pre-
scribed performance constraints (16)–(17) are satis-
fied at all the time, it can be obtained that the sig-
nals Δqb,i (t) and Δze, j (t), for i = 1, . . . ,m3 and
j = 1, . . . ,m2 + m3, can converge with at least
exp(−βb,i t) and exp(−βz, j t) exponential rates into the
sets Θb,i � {Δqb,i | |Δqb,i | < 2ρ∞

b,i } and Θb, j �
{Δze, j | |Δze, j | < 2ρ∞

z, j }, respectively. Moreover,
the parameters σb,i and σb,i , for i = 1, . . . ,m3 and
j = 1, . . . ,m2 + m3, are selected to determine the
overshoots of the signals Δqb and Δze. That is to say,
the overshoots of the signals Δqb,i (t), i = 1, . . . ,m3,
and Δze, j (t), j = 1, . . . ,m2 + m3 will be less than
σb,iρ

0
b,i and σz,iρ

0
z,i , respectively, once the prescribed

performance constraints (16)–(17) hold at all the time.

Remark 4 It should be noted that as long as ψb(t)
is uniformly bounded, the spacecraft attitude regula-
tion error Δqb(t) can satisfy prescribed control perfor-
mance (16) [40,41]. Similarly, as long as signal ψz(t)
is uniformly bounded, the end-effector pose tracking
error Δze(t) can also satisfy prescribed control perfor-
mance (17) [40,41]. Therefore, we can turn to design-
ing control schemes on the FFSMs such that the pre-
scribed performance error signals ψb(t) and ψz(t) are
uniformly bounded, which means that the correspond-
ing prescribed control performances (16)–(17) can be
satisfied.On the other hand, the end-effector pose track-
ing error Δze(t) and the spacecraft attitude regulation

error Δqb(t) of the FFSM should satisfy prescribed
control performances (16)–(17) simultaneously in the
presence of the nonlinearly parametric feature and the
nonzero linear and angular momenta, which is differ-
ent from the fixed-base robot manipulators. Therefore,
it is worth investigating the adaptive prescribed perfor-
mance coordinated control of the FFSM.

3.2 Adaptive prescribed performance control for
spacecraft attitude regulation at the kinematic
level

To regulate the spacecraft attitude, the following adap-
tive prescribed performance controller is designed at
the kinematic level

wm,c = Ĥ†
bm( Â0 + kb ĤbbL

T
b Φbψb)

+ (Em1 − Ĥ†
bm Ĥbm)ξ,

(25)

where Ĥbb � Hbb(qb, θ̂b), Ĥbm � Hbm(qb, qm, θ̂b)

and Â0 are the estimates of Hbb, Hbm and A0, respec-
tively, θ̂b is the estimate of the parameter θb,matrix Ĥ†

bm

is the pseudo-inverse of the matrix Ĥbm , kb is a posi-
tive constant, Lb is introduced in (1), and the signalsψb

andΦb are introduced in the previous subsection. Note
that Â0 is the component of θ̂b. The vector ξ ∈ R

m1

in (25) is introduced to achieve trajectory tracking of
the FFSM end-effector and will be designed in the next
subsection.

Pre-multiplyingboth sides of (25) by thematrix Ĥbm

leads to

Ĥbmwm,c = Â0 + kb ĤbbL
T
b Φbψb, (26)

where Ĥbm Ĥ
†
bm = Em3 and Ĥbm(Em1 − Ĥ†

bm Ĥbm) =
0m3×m1 are utilized. The corresponding sliding vector
wm,r ∈ R

m1 is obtained as

wm,r = wm − wm,c. (27)

Note that θ̂b is the estimate of θb, and its updated
law is designed as

˙̂
θb = −Γ1Y

T
b Yb θ̂b, (28)

where Yb(qb, qm, wb, wm) is the regressor matrix that
is defined in (14), and Γ1 is a positive constant. Denote
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the estimation error of θb as θ̃b � θb − θ̂b. Correspond-
ingly based upon (15) and (28), the derivative of θ̃b is
obtained as

˙̃
θb = −Γ1Y

T
b Ybθ̃b. (29)

It can be seen in (29) that θ̃b(t) is uniformly bounded,
and the parameter Γ1 determines the decaying rate of
θ̃b(t).

From (14) and (15), it is obtained that

Ĥbbwb + Ĥbmwm − Â0 = Yb θ̂b = −Yb θ̃b. (30)

Substituting (26) and (27) into (30) yields

wb + kbL
T
b Φbψb + Ĥ−1

bb Ĥbmwm,r = −Ĥ−1
bb Yb θ̃b.

(31)

In view of the Young’s inequality, it is obtained from
(31) that

‖wb‖2 ≤ 3k2b‖LT
b Φbψb‖2 + 3λ2hb‖Ybθ̃b‖2

+ 3‖Ĥ−1
bb Ĥbmwm,r‖2,

(32)

where λhb > 0 is defined such that λ2hbEm3 >

Ĥ−T
bb Ĥ−1

bb . Substitute (31) into the attitude kinematics
of the base spacecraft q̇b = Lbwb and the derivative of
Δqb = qb − qb,d is obtained as

Δq̇b(t) = −kbLbL
T
b Φbψb − Lb Ĥ

−1
bb Ybθ̃b

− Lb Ĥ
−1
bb Ĥbmwm,r .

(33)

Substituting (33) into (22a) also yields

ψ̇b = −kbΦbLbL
T
b ΦT

b ψb − ΦbLb Ĥ
−1
bb Yb θ̃b

− ΦbLb Ĥ
−1
bb Ĥbmwm,r − Φbρ̇bsb.

(34)

Then, denote a Lyapunov function candidate Vb as

Vb � c1
2Γ1

‖θ̃b‖2 + 1
2‖ψb‖2, where c1 � 4λ2b

kb
. From

(29), (32), (34), the Young’s inequality and the relation
LbLT

b ≥ λbEm3 , the derivative of Vb is scaled as

V̇b = −kb‖LT
b ΦT

b ψb‖2 − ψT
b ΦbLb Ĥ

−1
bb Ybθ̃b

− ψT
b ΦbLb Ĥ

−1
bb Ĥbmwm,r

− ψT
b Φbρ̇bsb − c1‖Yb θ̃b‖2

≤ −kb
2

‖LT
b ΦT

b ψb‖2 − 3c1
4

‖Ybθ̃b‖2

+ 2

λbkb
‖ρ̇bsb‖2 + 2

kb
‖Ĥ−1

bb Ĥbmwm,r‖2

≤ −kb
4

‖LT
b ΦT

b ψb‖2 − c1
2

‖Yb θ̃b‖2 − c2‖wb‖2

+ 2

λbkb
‖ρ̇bsb‖2 + c3‖wm,r‖2,

(35)

where c2 � min{ 1
12kb

, c1
12λ2hb

} and c3 > 0 is set such

that c3Em1 > (3c2 + 2
kb

)λ2hb Ĥ
T
bm Ĥbm .

3.3 Adaptive prescribed performance coordinated
control of the FFSMs at the kinematic level

When the FFSM performs on-orbit serving missions,
not only should the base spacecraft realize attitude reg-
ulation, but also the FFSM end-effector should track
desired trajectory. In view of the virtual controller at the
kinematic level (25), the auxiliary variable ξ is designed
as

ξ = ( ĴmÛ )†(−ˆ̄v0 + że,d − kzΦzψz

− Ĵm Ĥ
†
bm( Â0 + kb ĤbbL

T
b Φbψb)),

(36)

where Û � Em1 − Ĥ†
bm Ĥbm , Ĵm � Jm(qb, qm, θ̂z), and

ˆ̄v0 are the estimates of U � Em1 − H†
bmHbm , Jm and

v̄0, respectively, θ̂z is the estimate of the parameter θz ,
kz is a positive constant, kb > 0, że,d is time derivative
of desired end-effector pose trajectory ze,d(t), and the
signals ψz and Φz are defined in Sect. 3.1. Note that
the matrices Ĥ†

bm , Ĥbb, Lb and the vector Â0 have been

defined in (25), and the matrix ( ĴmÛ )† is the pseudo-
inverse of the matrix ĴmÛ .

Pre-multiplying both side of (25) by the matrix Ĵm
and substituting (36) lead to

Ĵmwm,c = −ˆ̄v0 + że,d − kzΦzψz, (37)

where the relation ĴmÛ ( ĴmÛ )† = Em2+m3 is utilized.
Then, from (3), (4), (27) and (37), the derivative of
Δze(t) is obtained as
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Δże(t) = Jbwb + Jmwm + v̄0 − że,d

= Ĵbwb + Ĵmwm,c + Ĵmwm,r

+ ˆ̄v0 + Yz θ̃z − że,d

= Ĵbwb + Ĵmwm,r − kzΦzψz + Yz θ̃z,

(38)

where matrix Ĵb � Jb(q, θ̂z) is the estimate of the
matrix Jb, θ̃z � θz − θ̂z is the estimation error of
the parameter θz , and Yz is the corresponding regres-
sor matrix defined in (4). Substituting (38) into (22b)
yields

ψ̇z = Φz Ĵbwb − kzΦzΦzψz + ΦzYz θ̃z

+ Φz Ĵmwm,r − Φz ρ̇zsz .
(39)

Besides, in order to obtain the adaptive law on θ̂z ,
denote vector ˆ̇ze as
ˆ̇ze � Ĵbwb + Ĵmwm + ˆ̄v0. (40)

Correspondingly denote ˜̇ze � że− ˆ̇ze, and it is obtained
from (3), (4) and (40) that

˜̇ze = J̃bwb + J̃mwm + ˜̄v0 = Yz θ̃z, (41)

where J̃b � Jb(qb, qm, θ̃z) = Jb − Ĵb, J̃m �
Jm(qb, qm, θ̃z) = Jm − Ĵm and ˜̄v0 � v̄0 − ˆ̄v0 are esti-
mation errors of Jb, Jm and v̄0, respectively. Then, the
corresponding adaptive law on θ̂z is designed as

˙̂
θz = Γ2Y

T
z

˜̇ze, (42)

whereΓ2 is a positive constant. From (41) and (42), the
derivative of estimation error θ̃z = θz − θ̂z is obtained
as

˙̃
θz = −Γ2Y

T
z Yz θ̃z . (43)

It is obtained from (43) that θ̃z(t) is uniformly bounded,
and the parameterΓ2 determines decaying rate of θ̃z(t).

Then, denote a Lyapunov function candidate Vz as
Vz � 1

2‖ψz‖2 + 2
kzΓ2

‖θ̃z‖2. Taking the derivative of Vz
along with (39) and (43) leads to

V̇z = ψT
z Φz Ĵbwb − kz‖Φzψz‖2 + ψT

z ΦzYz θ̃z

+ ψT
z Φz Ĵmwm,r − ψT

z Φz ρ̇zsz − 4

kz
‖Yz θ̃z‖2

≤ −kz
2

‖Φzψz‖2 − 2

kz
‖Yz θ̃z‖2 + 2μJ

kz
‖wb‖2

+ 2μJ

kz
‖wm,r‖2 + 2

kz
‖ρ̇zsz‖2,

(44)

where the Young’s inequality is utilized and μJ > 0
is set such that μJEm3×m3 > Ĵ Tb Ĵb and μJEm1×m1 ≥
Ĵ Tm Ĵm . Then, denote Vk � Vz +c4Vb, where c4 � 4μJ

c2kz
.

The derivative of Vk according to (35) and (44) is scaled
as

V̇k ≤ −kz
2

‖ΦT
z ψz‖2 − 2

kz
‖Yz θ̃z‖2 − c2c4

2
‖wb‖2

− kbc4
4

‖LT
b ΦT

b ψb‖2 − c1c4
2

‖Yb θ̃b‖2

+ 2

kz
‖ρ̇zsz‖2 + 2c4

λbkb
‖ρ̇bsb‖2 + c5‖wm,r‖2,

(45)

where c5 � 2μJ
kz

+ c3c4 > 0.

3.4 Attractive manifold control of the FFSMs at the
dynamic level

As pointed out in Remark 2 and [20–22], since the
reduced form of the FFSM dynamics is nonlinearly
parameterized toward dynamic parameter θd , several
adaptive control methods on the uncertain fixed-base
robotic manipulators, including the attractive mani-
fold control method in [62–65], are inapplicable to the
uncertain FFSMs. In this paper, we propose a novel
attractivemanifold controlmethod to overcomenonlin-
early parametric feature of the uncertain FFSMs. First,
the estimate of w, that is, ŵ � col(ŵb, ŵm), is intro-
duced which obeys the following dynamic equation

M̂ ˙̂w − ˆ̇Mw̃ + Ĉw = kde M̂w̃ + ηx + u, (46)

where matrices M̂ � M(q, θ̂d),
ˆ̇M � Ṁ(q, w, θ̂d)

and Ĉ � C(q, w, θ̂d) are the estimates of the matrices
M(q), Ṁ(q, w) and C(q, w), respectively, and θ̂d is
the estimate of uncertain parameter θd . Besides in (46),
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w̃ � w − ŵ = col(w̃b, w̃m) is the estimation error of
w, kde is a positive constant, and ηx ∈ R

m1+m3 is an
auxiliary variable which will be designed later.

Subtracting (46) from (8) yields

M ˙̃w + M̃ ˙̂w + Ṁw̃ − ˜̇Mw̃ + C̃w

= −kdeMw̃ + kde M̃w̃ − ηx ,
(47)

where M̃ � M − M̂ = M(q, θ̃d),
˜̇M � Ṁ − ˆ̇M =

Ṁ(q, w, θ̃d) and C̃ � C − Ĉ = C(q, w, θ̃d) is
estimation errors of M , Ṁ and C , respectively, and
θ̃d � θd − θ̂d is estimation error of dynamic parameter
θd . Note that from Property 2, the matrices in (12) are
linear toward dynamic parameter θd . Therefore, based
on (12), Eq. (47) can be rewritten as

M ˙̃w + Ṁw̃ + Yd,cθ̃d = −kdeMw̃ − ηx , (48)

where Yd,c � Yd(q, w, ˙̂w − kdew̃, w̃, w) such that

Yd,c θ̃d = M̃( ˙̂w − kdew̃) − ˜̇Mw̃ + C̃w. (49)

For the regressor matrix Yd,c, an auxiliary variable
Yd, f (t) ∈ R

(m1+m3)×n2 is introduced and obeys the
following dynamic equation

Ẏd, f + kdeYd, f = Yd,c. (50)

Then, for the estimate of the uncertain dynamic param-
eter θd , that is, θ̂d , its adaptive law is designed as

˙̂
θd = −Γ3Y

T
d, f w̃, (51)

where Γ3 is a positive constant. Correspondingly, the
auxiliary variable ηx in (46) is designed as

ηx � −Yd, f
˙̂
θd = Γ3Yd, f Y

T
d, f w̃, (52)

where the adaptive law on θ̂d (51) is utilized.
Substituting (50) and (52) into (48) and adding term

Yd, f
˙̃
θd − kdeYd, f θ̃d on both sides of (48) yield

(Mw̃)
′ + (Yd, f θ̃d)

′ = −kde(Mw̃ + Yd, f θ̃d). (53)

Denote

e � Mw̃ + Yd, f θ̃d , (54)

and therefore, Eq. (53) can be simplified as

ė = −kdee. (55)

It can be seen from (55) that the variable e(t) decays
to zero with exp(−kdet) exponential convergence rate.
Then, in view of (51) and (54), the derivative of θ̃d =
θd − θ̂d can be obtained as

˙̃
θd = Γ3Y

T
d, f w̃

= Γ3Y
T
d, f M

−1e − Γ3Y
T
d, f M

−1Yd, f θ̃d .
(56)

Denote Vθ,d � 1
2Γ3

‖θ̃d‖2, and according to (56) and
λM,minEm1+m3 < M , the derivative of Vθ,d is bounded
as

V̇θ,d = θ̃Td (Y T
d, f M

−1e − Y T
d, f M

−1Yd, f θ̃d)

≤ −3

4
θ̃Td Y

T
d, f M

−1Yd, f θ̃d + eT M−1e

≤ 1

λM,min
‖e‖2.

(57)

Since the signal e(t) converges to zerowith exp(−kdet)
exponential rate, it can be obtained that e(t) = e(0)
exp(−kdet). Thus, it is further obtained from (57) that

Vθ,d(t) ≤ Vθ,d(0) + 1

λM,min

∫ t

0
‖e(s)‖2ds

= Vθ,d(0) + ‖e(0)‖2
2kdeλM,min

(1 − exp(−2kdet)).

(58)

It can be seen in (58) that θ̃d(t) is uniformly bounded.
The parameter Γ3 in (56) determines the decaying rate
of θ̃d(t).

Besides, according to (54) and the Young’s inequal-
ity, it is obtained that

‖w̃‖2 ≤ 2

λ2M,min

‖e‖2 + 2

λM,min
θ̃Td Y

T
d, f M

−1Yd, f θ̃d ,

(59)
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where λM,min > 0 is defined in the preliminaries with
λM,minEm1+m3 ≤ M(q).

To derive the control input, denote Yd, f = [Yd, f 1;
Yd, f 2], where matrix Yd, f 1 ∈ R

m3×n2 is the first m3

rows of the matrix Yd, f and matrix Yd, f 2 ∈ R
m1×n2 is

the lastm1 rows of the matrix Yd, f . Then, the dynamic
equation of the variable ŵ (46) can be rewritten as

M̂bb
˙̂wb + M̂bm

˙̂wm + ζb = 0m3 , (60a)

M̂T
bm

˙̂wb + M̂mm
˙̂wm + ζm = um, (60b)

where matrices M̂bb, M̂bm and M̂mm are the estimates
of the matrices Mbb, Mbm and Mmm , respectively, and
vectors ζb ∈ R

3 and ζm ∈ R
m1 are defined as

ζb � − ˆ̇Mbbw̃b − ˆ̇Mbmw̃m + Ĉbbwb + Ĉbmwm

− kde M̂bbw̃b − kde M̂bmw̃m − Γ3Yd, f 1Y
T
d, f w̃,

(61a)

ζm � − ˆ̇MT
bmw̃b − ˆ̇Mmmw̃m + Ĉmbwb + Ĉmmwm

− kde M̂
T
bmw̃b − kde M̂mmw̃m − Γ3Yd, f 2Y

T
d, f w̃,

(61b)

andmatrices Ĉbb, Ĉbm , Ĉmb, Ĉmm ,
ˆ̇Mbb,

ˆ̇Mbm and ˆ̇Mmm

in (61a)–(61b) are the estimates of the matrices Cbb,
Cbm , Cmb, Cmm , Ṁbb, Ṁbm and Ṁmm , respectively.

Substituting ˙̂wb in (60a) into (60b) leads to

M̂∗
mm

˙̂wm + ζ ∗
m = um, (62)

where

M̂∗
mm � M̂mm − M̂T

bm M̂
−1
bb M̂bm, (63a)

ζ ∗
m � ζm − M̂T

bm M̂
−1
bb ζb. (63b)

Then, denote ŵm,r � ŵm − wm,c, where ŵm is the
estimate of wm defined before, and correspondingly,
ŵm,r is the estimate of wm,r which satisfies ŵm,r =
wm,r − w̃m . The control input um is designed as

um = ζ ∗
m + M̂∗

mmẇm,c − kd M̂
∗
mmŵm,r , (64)

where kd is a positive constant. Substituting (64) into
(62) leads to

˙̂wm,r = −kdŵm,r . (65)

Then, denote Vd � ‖θ̃d‖2
2Γ3

+ ‖e‖2
kdeλM,min

+ λM,min‖ŵm,r‖2
4kd

.
In view of (55), (56), (59), (65), the Young’s inequal-
ity and the relation ‖wm,r‖2 = ‖w̃m + ŵm,r‖2 ≤
3
2‖w̃m‖2+3‖ŵm,r‖2, the derivative of Vd can be scaled
as

V̇d = θ̃Td Y
T
d, f M

−1e − θ̃Td Y
T
d, f M

−1Yd, f θ̃d

− 2

λM,min
‖e‖2 − λM,min

2
‖ŵm,r‖2

≤ −3

4
θ̃Td Y

T
d, f M

−1Yd, f θ̃d − 1

λM,min
‖e‖2

− λM,min

2
‖ŵm,r‖2

≤ −1

4
θ̃Td Y

T
d, f M

−1Yd, f θ̃d − 1

2λM,min
‖e‖2

− λM,min

4
‖w̃‖2 − λM,min

2
‖ŵm,r‖2

≤ −1

4
θ̃Td Y

T
d, f M

−1Yd, f θ̃d − 1

2λM,min
‖e‖2

− λM,min

16
‖w̃‖2 − λM,min

8
‖ŵm,r‖2

− λM,min

8
‖wm,r‖2.

(66)

Then, denote ct � 16c5
λM,min

and Vc � Vk + ct Vd . The
derivative of Vc in view of (45) and (66) is bounded as

V̇c ≤ −kz
2

‖ΦT
z ψz‖2 − 2

kz
‖Yz θ̃z‖2 − c2c4

2
‖wb‖2

− kbc4
4

‖LT
b ΦT

b ψb‖2 − c1c4
2

‖Ybθ̃b‖2

− ct
4

θ̃Td Y
T
d, f M

−1Yd, f θ̃d − ct
2λM,min

‖e‖2

− λM,minct
16

‖w̃‖2 − λM,minct
8

‖ŵm,r‖2

− λM,minct
16

‖wm,r‖2 + 2

kz
‖ρ̇zsz‖2

+ 2c4
λbkb

‖ρ̇bsb‖2.
(67)

3.5 Stability analysis

In view of the proposed adaptive prescribed perfor-
mance coordinated control scheme (25), (28), (36),
(42), (46), (50), (51) and (64), the following result is
obtained.
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Theorem 1 For the uncertain FFSM (3) and (5a)-
(5b), the controller with the form (25), (28), (36), (42),
(46), (50), (51) and (64) is employed. The parameters
ρ0
b,i , i = 1, . . . ,m3, and ρ0

z,i , i = 1, . . . ,m2 + m3,

are set such that |Δqb,i (0)| < ρ0
b,i and |Δze,i (0)| <

ρ0
z,i . Then, the signals ψb(t), ψz(t), θ̃b(t), θ̃z(t), w̃(t),

Yd, f (t), θ̃d(t), e(t), ŵm,r (t), wm,r (t), and w(t) are
all uniformly bounded, and limt→+∞ Δqb(t) = 0m3 ,
limt→+∞ wb(t) = 0m3 , limt→+∞ Δze(t) = 0m2+m3 ,
limt→+∞ Δże(t) = 0m2+m3 , limt→+∞ Yb(t) θ̃b(t) =
0m3 , limt→+∞ Yz(t)θ̃z(t) = 0m2+m3 , limt→+∞
Yd, f (t)θ̃d(t) = 0m1+m3 , limt→+∞ w̃(t) = 0m1+m3 ,
and limt→+∞ wm,r (t) = 0m1 . Moreover, the pre-
scribed control performances on the spacecraft attitude
regulation error Δqb(t) (16) and the end-effector pose
tracking error Δze(t) (17) are both satisfied.

Proof The proof of Theorem 1 can be divided into the
following three steps.

Step 1 The uniform boundedness of Vc(t).
The proof procedure of Step 1 is inspired by [44]

and [61].
Notice that the relations (35), (45), (66) and (67) are

obtained at the time instant t , based upon the bounded-
ness of the signals ψb(t) and ψz(t) at the time instant
t . Therefore, it should be proved first that the signals
Δqb(t) and Δze(t) meet the prescribed performance
constraints (16) and (17) at all the time, respectively.
Denote χ(t) � (Δqb(t),Δze(t)).

Suppose that for the signal χ(t), the prescribed per-
formance constraints (16)–(17) are not satisfied at all
the time. Hence, denote tM ≥ 0 as the minimum time
instant when χ(t) violates the prescribed performance
constraints (16)–(17). Due to the fact that |Δqb,i (0)| <

ρ0
b,i for i = 1, . . . ,m3 and |Δze,i (0)| < ρ0

z,i for
i = 1, . . . ,m2+m3, it is obtained that 0 < tM ≤ +∞.
This means that the signal χ(t) meets the prescribed
performance constraints (16)–(17) when t ∈ [0, tM ).

Besides, it can be seen in (29), (43), (55) and (65)
that Yb(t)θ̃b(t) ∈ L2[0, tM ), Yz(t)θ̃z(t) ∈ L2[0, tM ),
e(t) ∈ L2[0, tM ), ŵm,r (t) ∈ L∞[0, tM ). Correspond-
ingly, from (56), it is further that Yd, f (t)θ̃d(t) ∈
L2[0, tM ). Hence, it can be seen from (54) that w̃(t) ∈
L2[0, tM ), and accordingly for wm,r (t) = ŵm,r (t) +
w̃m(t), we havewm,r (t) ∈ L2[0, tM ). According to the
definition of ρ̇b(t) (19a), ρ̇z(t) (19b), sb(t) and sz(t),
it is also obtained that ρ̇b(t) ∈ L∞[0, tM ), ρ̇z(t) ∈
L∞[0, tM ), sb(t) ∈ L∞[0, tM ) and sz(t) ∈ L∞[0, tM ),

and correspondingly ρ̇b(t)sb(t) ∈ L∞[0, tM ) and
ρ̇z(t)sz(t) ∈ L∞[0, tM ).

In addition, denote Vψ,b � 1
2‖ψb‖2 and Vψ,z �

1
2‖ψz‖2. According to the definition of the time instant
tM , it is obtained that ψb(t) and ψz(t) are both finite
for any t ∈ [0, tM ). According to (34) and (39) and the
Young’s inequality, the derivative of Vψ,b at any time
instant t ∈ [0, tM ) is scaled as

V̇ψ,b = −kbψ
T
b ΦbLbL

T
b ΦT

b ψb − ψT
b ΦbLb Ĥ

−1
bb Ybθ̃b

− ψT
b ΦbLb Ĥ

−1
bb Ĥbmwm,r − ψT

b Φbρ̇bsb

≤ − kb‖LT
b ΦT

b ψb‖2 + ‖Ĥ−1
bb Yb θ̃b‖‖LT

b ΦT
b ψb‖

+ ‖Ĥ−1
bb Ĥbmwm,r‖‖LT

b ΦT
b ψb‖

+ ‖ρ̇bsb‖‖ΦT
b ψb‖

≤ −kbλb
2

‖ΦT
b ψb‖2 + 2

kbλb
‖ρ̇bsb‖2

+ c3‖wm,r‖2 + λ2hb

kb
‖Yb θ̃b‖2,

(68)

where LbLT
b ≥ λbEm3 , λ2hbEm3 > Ĥ−T

bb Ĥ−1
bb and

c3Em1 > (3c2 + 2
kb

)λ2hb Ĥ
T
bm Ĥbm are utilized. Then,

for any t ∈ [0, tM ), it is obtained from (68) that

Vψ,b(t) ≤ Vψ,b(0) + c3

∫ t

0
‖wm,r (s)‖2ds

+ λ2hb

kb

∫ t

0
‖Yb(s)θ̃b(s)‖2ds

+ 2

kbλb

∫ t

0
‖ρ̇b(s)sb(s)‖2ds.

(69)

Due to the fact that wm,r (t) ∈ L2[0, tM ), Yb(t)θ̃b(t) ∈
L2[0, tM ) and ρ̇b(t)sb(t) ∈ L∞[0, tM ), it can be seen
that all the integral terms of the right side of (69) are
uniformly bounded in [0, tM ). This implies that Vψ,b(t)
is also uniformly bounded in [0, tM ), and ψb(t) is also
uniformly bounded in [0, tM ). Accordingly, Φb(t) and
Lb(t) are also uniformly bounded in [0, tM ) owing to
the uniform boundedness of ψb(t) in [0, tM ).

Additionally, in view of (32), (39) and the Young’s
inequality, the derivative of Vψ,z is scaled as

V̇ψ,z = ψT
z Φz Ĵbwb − kz‖Φzψz‖2 + ψT

z ΦzYz θ̃z

+ ψT
z Φz Ĵmwm,r − ψT

z Φz ρ̇zsz
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≤ − kz
2

‖Φzψz‖2 + 2

kz
‖Yz θ̃z‖2 + 2μJ

kz
‖wm,r‖2

+ 2

kz
‖ρ̇zsz‖2 + 6k2bμJ

kz
‖LT

b Φbψb‖2

+ 6λ2hbμJ

kz
‖Ybθ̃b‖2 + 6μJ

kz
‖Ĥ−1

bb Ĥbmwm,r‖2

≤ −kz
2

‖Φzψz‖2 + 2

kz
‖Yz θ̃z‖2 + 2

kz
‖ρ̇zsz‖2

+ 6k2bμJ

kz
‖LT

b Φbψb‖2 + 6λ2hbμJ

kz
‖Yb θ̃b‖2

+
(
3c3kbμJ

kz
+ 2μJ

kz

)
‖wm,r‖2 (70)

whereμJEm3 > Ĵ Tb Ĵb,μJEm1 ≥ Ĵ Tm Ĵm and c3Em1 >

(3c2 + 2
kb

)λ2hb Ĥ
T
bm Ĥbm are used. Integrating both sides

of (70) leads to

Vψ,z(t) ≤ Vψ,z(0) + 2

kz

∫ t

0
‖Yz(s)θ̃z(s)‖2ds

+ 2

kz

∫ t

0
‖ρ̇z(s)sz(s)‖2ds

+ 6k2bμJ

kz

∫ t

0
‖LT

b (s)Φb(s)ψb(s)‖2ds

+ 6λ2hbμJ

kz

∫ t

0
‖Yb(s)θ̃b(s)‖2ds

+
(
3c3kbμJ

kz
+ 2μJ

kz

)∫ t

0
‖wm,r (s)‖2ds,

(71)

for t ∈ [0, tM ). Note that based upon the previ-
ous proof, we have LT

b (t)Φb(t)ψb(t) ∈ L∞[0, tM ).
Besides, it has beenproved thatYz(t)θ̃z(t) ∈ L2[0, tM ),
ρ̇z(t)sz(t) ∈ L∞[0, tM ), Yb(t)θ̃b(t) ∈ L2[0, tM ) and
wm,r (t) ∈ L2[0, tM ). Therefore, it can be seen that all
the integral terms in the right-hand side of (71) are uni-
formly bounded in [0, tM ), and accordingly Vψ,z(t) is
uniformly bounded in [0, tM ). This implies that ψz(t)
and Φz(t) are also uniformly bounded in [0, tM ).

In all, according to the above analysis, it is obtained
that ψb(t) and ψz(t) are uniformly bounded in [0, tM ).
This contradicts with the assumption that the regula-
tion/tracking error χ(t) = (Δqb(t),Δze(t)) violates
the prescribed performance constraints (16)–(17) when
t = tM . Hence, this assumption is invalid and, due to
the generality of the time instant tM (0 < tM ≤ +∞),
it is obtained that both ψb(t) and ψz(t) are uniformly

bounded, and the prescribed performance constraints
(16)–(17) are always satisfied for χ(t) in [0,+∞).

Then, it will be proved that Vc(t) is uniformly
bounded. Since it has been proved that the pre-
scribed performance constraints (16)–(17) are satis-
fied in [0,+∞), the aforementioned inequality (67)
is always established in [0, +∞), and the relations
|sb,i (t)| < 1 for i = 1, . . . , m3 and |sz,i (t)| < 1 for
i = 1, . . . ,m2 + m3 are also always established in
[0,+∞). Correspondingly, due to the fact that ρ̇b(t)
and ρ̇z(t) are both uniformly bounded in [0,+∞),
ρ̇b(t)sb(t) and ρ̇z(t)sz(t) are also uniformly bounded
in [0,+∞).

Due to the fact that limt→+∞ ρ̇b(t) = 0m3×m3

and limt→+∞ ρ̇z(t) = 0(m2+m3)×(m2+m3) from (19a)–
(19b), denote λ́(t) � max{ 1

kz
‖ρ̇z(t)‖2, 1

λbkb
‖ρ̇b(t)‖2},

and it is obtained that limt→+∞ λ́(t) = 0. This
means that there exists tN > 0 such that λ́(t) ≤
min{2kz, kbλb} for any t ≥ tN . Notice that accord-
ing to the previous proof, it is obtained that ρ̇b(t)sb(t)
and ρ̇z(t)sz(t) are uniformly bounded in [0, tN ], mean-
ing that Vc(t) is also uniformly bounded in [0, tN ]
based upon (67). Moreover, for any time instant t ∈
[tN ,+∞), the derivative of Vc(t) in (67) can be further
scaled as

V̇c ≤ −2kz‖ψz‖2 − 2

kz
‖Yz θ̃z‖2 − c2c4

2
‖wb‖2

− kbc4λb‖ψb‖2 − c1c4
2

‖Ybθ̃b‖2

− ct
4λM,max

‖Yd, f θ̃d‖2 − λM,minct
16

‖w̃‖2

− λM,minct
8

‖ŵm,r‖2 − ct
2λM,min

‖e‖2

− λM,minct
16

‖wm,r‖2 + λ́(t)

2
‖ψz‖2

+ c4λ́(t)

2
‖ψb‖2

≤ −Π, (72)

where

Π = kz‖ψz‖2 + 2

kz
‖Yz θ̃z‖2 + c2c4

2
‖wb‖2

+ kbc4λb
2

‖ψb‖2 + c1c4
2

‖Ybθ̃b‖2

+ ct
4λM,max

‖Yd, f θ̃d‖2 + λM,minct
16

‖w̃‖2
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+ λM,minct
8

‖ŵm,r‖2 + ct
2λM,min

‖e‖2

+ λM,minct
16

‖wm,r‖2

≥ 0, (73)

and the relations ΦbΦ
T
b ≥ 4Em3 and ΦzΦ

T
z ≥

4Em2+m3 when ‖ψb‖ < +∞ and ‖ψz‖ < +∞,
LbLT

b ≥ λbEm3 and (23)–(24) are utilized. From (72)–
(73), it is obtained that Vc(t) is also uniformly bounded
in [tN ,+∞). In all, it is concluded that Vc(t) is uni-
formly bounded in [0,+∞).

Step 2The asymptotical convergence of signalΠ(t).
First, due to uniform boundedness of Vc(t), the sig-

nals ψb(t), Φb(t), θ̃b(t), θ̂b(t), ψz(t), Φz(t), θ̃z(t),
θ̂z(t), e(t), θ̃d(t), θ̂d(t), ŵm,r (t) andwm,r (t) are all uni-
formlybounded.Remind that it has beenproved that the
signals sb(t) and sz(t) are both uniformly bounded and,
together with the uniform boundedness of ρb(t) and
ρz(t), it is also obtained that Δqb(t) = ρb(t)sb(t) and
Δze(t) = ρz(t)sz(t) are both uniformly bounded. Due
to uniform boundedness of θ̂b(t), the matrices Ĥbb(t),
Ĥ−1
bb (t), Ĥbm(t), Ĥ†

bm(t), Û (t) are also uniformly
bounded. Similarly, owing to the uniform boundedness
of θ̂z(t), thematrices Ĵb(t) and Ĵm(t) are also uniformly
bounded. According to the uniform boundedness of
Ĵm(t) and Û (t), it is obtained that Ĵm(t)Û (t) and
( Ĵm(t)Û (t))† are both uniformly bounded. Note that
the estimates of A0 and v0, that is, Â0(t) and v̂0(t), are
the components of θ̂b(t) and θ̂z(t), respectively, which
means that both Â0(t) and v̂0(t) are also uniformly
bounded in view of the uniform boundedness of θ̂b(t)
and θ̂z(t). It is also noted that qb(t) and Lb(t) are both
uniformly bounded due to the uniform boundedness of
Δqb(t) = qb(t)−qb,d . In all, in view of (25) and (36),
the signals wm,c(t) are uniformly bounded. Accord-
ingly, the signals wm(t) = wm,c(t) + wm,r (t), wb(t)
= H−1

bb (t)A0 − H−1
bb (t)Hbm(t) wm(t) and w(t) =

col(wb(t), wm(t)) are all uniformly bounded, due to
the uniform boundedness of wm,c(t) and wm,r (t).

Then, we will prove that the signals ψ̇b(t), ψ̇z(t),
Φ̇b(t), Φ̇z(t) and ė(t) are uniformly bounded. From
the structures of the regressor matrices Yb(t) (14) and
Yz(t) (4), it is obtained that Yb(t) and Yz(t) are both
uniformly bounded, owing to the uniform boundedness
of w(t). In view of the uniform boundedness of θ̃b(t),
Yb(t), ψb(t), Φb(t), Ĥ

−1
bb (t), Lb(t), wm,r (t), Ĥbm(t),

sb(t) and ρ̇b(t), it is obtained that Δq̇b(t) in (33) and

ψ̇b(t) in (34) are both uniformly bounded. Correspond-
ingly, ṡb(t) is also uniformly bounded in view of the
uniform boundedness of Δqb(t), Δq̇b(t), ρ−1

b (t) and
ρ̇b(t), and Φ̇b(t) is also uniformly bounded owing to
the uniformboundedness ofψb(t), sb(t) and ṡb(t). Sim-
ilarly, from (22b) and (38), the signalsΔż(t) and ψ̇z(t)
are also uniformly bounded due to the uniform bound-
edness of w(t), v0, że,d(t), Jb(t), Jm(t), Φz(t), ρ̇z(t)
and sz(t). Accordingly, ṡz(t) and Φ̇z(t) are also uni-
formlyboundeddue to uniformboundedness ofΔze(t),
Δże(t), ρ−1

z (t), ρ̇z(t), sz(t), ψz(t). Besides, ė(t) in
(55) is also uniformly bounded in view of the uniform
boundedness of e(t).

Next, the uniform boundedness of ẇm,c(t) will be

verified. From (29) and (43), the signals ˙̃
θb(t),

˙̂
θb(t),˙̃

θz(t) and ˙̂
θz(t) are all uniformly bounded in view

of the uniform boundedness of Yb(t), Yz(t), θ̃b(t)

and θ̃z(t). Accordingly, the signals ˙̂A0(t) and ˙̂v0(t),
which are the components of ˙̂

θb(t) and
˙̂
θz(t), respec-

tively, are also uniformly bounded. Correspondingly,

in view of the uniform boundedness of θ̂b(t),
˙̂
θb(t),

θ̂z(t),
˙̂
θz(t), w(t), Ĥbm(t), Ĥ†

bm(t), Û (t) and Ĵm(t),

it is obtained that (Ĥbb(t))
′
, (Ĥbm(t))

′
, (Ĥ†

bm(t))
′
,

(Û (t))
′
, ( Ĵm(t))

′
, ( Ĵb(t))

′
and ( Ĵm(t)Û (t))

′
are all

uniformly bounded. Based upon the uniform bound-
edness of Ĵm(t)Û (t), ( Ĵm(t)Û (t))† and ( Ĵm(t)Û (t))

′
,

the matrix (( Ĵm(t)Û (t))†)
′
is also uniformly bounded.

Besides, based upon the uniform boundedness of qb(t)
and wb(t), it is obtained that L̇b(t) is also uniformly
bounded. In all, according to the uniform bounded-
ness of the signals ψb(t), Φb(t), Lb(t), Ĥbb(t), Â0(t),
Ĥbm(t), Ĥ†

bm(t), Û (t), Ĵm(t), ( Ĵm(t)Û (t))†, ψz(t),
Φz(t), że,d(t), v̂0(t) and the corresponding derivatives,
it is obtained that ẇm,c(t) is uniformly bounded.

In addition, it will be proved that the control input
um(t) is uniformlybounded.Note that ˙̂wm,r (t) in (65) is
uniformly bounded due to the uniform boundedness of
ŵm,r (t). ˙̂wm(t) = ẇm,c(t)+ ˙̂wm,r (t) is also uniformly
bounded due to the uniform boundedness of ẇm,c(t)
and ˙̂wm,r (t). Similarly, ŵm(t) = wm,c(t) + ŵm,r (t)
is uniformly bounded due to uniform boundedness of
wm,c(t) and ŵm,r (t). w̃m(t) = wm(t) − ŵm(t) is also
uniformly bounded, owing to the uniform bounded-
ness of wm(t) and ŵm(t). Therefore, it is obtained
that Yd,c(t) in (49) is also uniformly bounded. The
signals Yd, f (t) = [Yd, f 1(t); Yd, f 2(t)] and Ẏd, f (t)
in (50) are also uniformly bounded, according to the
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uniform boundedness of Yd,c(t). The estimation error
w̃(t) in (54) is also uniformly bounded due to the uni-
form boundedness of e(t), M(t), Yd, f (t) and θ̃d(t).
Correspondingly, ŵ(t) = w(t) − w̃(t) is uniformly
bounded. Besides, due to the uniform boundedness of

w(t) and θ̂d(t), it is obtained that the matrices ˆ̇Mbb(t),ˆ̇Mbm(t), ˆ̇MT
bm(t), ˆ̇Mmm(t), Ĉbb(t), Ĉbm(t), Ĉmb(t),

Ĉmm(t), M̂bb(t), M̂bm(t), M̂T
bm(t), M̂mm(t) are all uni-

formly bounded. Therefore, it is obtained that M̂∗
mm

in (63a), ζb(t) in (61a) and ζm(t) in (61b) are all uni-
formly bounded. The vector ζ ∗

m(t) in (63b) is also uni-
formly bounded, according to the uniform bounded-
ness of ζb(t), ζm(t), M̂bb(t) and M̂T

bm(t). In all, it is
obtained that the control input um(t) in (64) is uni-
formly bounded, based upon the uniform boundedness
of ζ ∗

m(t), M̂∗
mm(t), ẇm,c(t) and ŵm,r (t).

Moreover, itwill be proved that signals (Yb(t)θ̃b(t))
′
,

(Yz(t)θ̃z(t))
′
, and (Yd, f (t)θ̃d(t))

′
are uniformly

bounded. According to the uniform boundedness of

Yd, f (t) and w̃(t), it is obtained from (51) that ˙̂
θd(t)

and ˙̃
θd(t) are uniformly bounded. Therefore, (Yd, f (t)

θ̃d(t))
′
is uniformly bounded, according to the uni-

form boundedness of Yd, f (t), Ẏd, f (t), θ̃d(t) and
˙̃
θd(t).

Besides, due to the uniform boundedness of w(t), the
matrix C(q(t), w(t)) is also uniformly bounded. Cor-
respondingly, according to the uniform boundedness of
um(t), w(t), C(q(t), w(t)) and M(q(t)), it is obtained
that ẇ(t) = [ẇb(t); ẇm(t)] in (8) is also uniformly
bounded. Due to the uniform boundedness of the sig-
nalsw(t) and ẇ(t), it is obtained from the structures of
the regressormatricesYb(t) (14) andYz(t) (4) that Ẏb(t)
and Ẏz(t) are also uniformly bounded. Therefore, based
on the uniform boundedness of the signals Yb(t), θ̃b(t),
Yz(t), θ̃z(t) and their derivatives, it is obtained that
both (Yb(t)θ̃b(t))

′
and (Yz(t)θ̃z(t))

′
are also uniformly

bounded. Additionally, due to the uniform bounded-

ness of ˙̂
θd(t) and Yd, f (t), it is obtained that ηx (t) in

(52) is uniformly bounded. Ṁ(t) is also uniformly
bounded due to the uniform boundedness of w(t).
Therefore, due to the uniform boundedness of M(t),
Ṁ(t), w̃(t), Yd,c(t), θ̃d(t) and ηx (t), the signal ˙̃w(t) =
[ ˙̃wb(t); ˙̃wm(t)] in (48) is also uniformly bounded. Cor-
respondingly, ẇm,r (t) = ˙̂wm,r (t) + ˙̃wm(t) is also uni-
formly bounded due to the uniform boundedness of
˙̂wm,r (t) and ˙̃wm(t).
In all, it is obtained that ψ̇b(t), (Yb(t)θ̃b(t))

′
, ψ̇z(t),

(Yz(t)θ̃z(t))
′
, ẇb(t), (Yd, f (t)θ̃d(t))

′
, ˙̂wm,r (t), ė(t),

ẇm,r (t), ˙̃w(t) are all uniformly bounded. Besides, from
(72)–(73), it is further obtained that

∫ +∞

tN
Π(t)dt ≤ Vc(tN ) < +∞, (74)

which means that ψb(t) ∈ L2, Yb(t)θ̃b(t) ∈ L2,
ψz(t) ∈ L2,Yz(t)θ̃z(t) ∈ L2,wb(t) ∈ L2,Yd, f (t)θ̃d(t)
∈ L2, ŵm,r (t) ∈ L2, e(t) ∈ L2, wm,r (t) ∈ L2, w̃(t) ∈
L2.BaseduponLemma1 inSection2, it is obtained that
limt→+∞ ψb(t) = 0m3 , limt→+∞ Yb(t)θ̃b(t) = 0m3 ,
limt→+∞ ψz(t) = 0m2+m3 , limt→+∞ Yz(t)θ̃z(t) =
0m2+m3 , limt→+∞ wb(t)= 0m3 , limt→+∞ Yd, f (t)θ̃d(t)
= 0m1+m3 , limt→+∞ ŵm,r (t) = 0m1 , limt→+∞ e(t) =
0m1+m3 , limt→+∞ wm,r (t) = 0m1 , limt→+∞ w̃(t) =
0m1+m3 . Besides based upon (23)–(24), it is further
obtained that limt→+∞ sb(t) = 0m3 and limt→+∞
sz(t) = 0m2+m3 , and correspondingly limt→+∞ Δqb(t)
= limt→+∞ ρb(t)sb(t) = 0m3 and limt→+∞ Δze(t)
= limt→+∞ ρz(t)sz(t) = 0m2+m3 .

Step 3 The prescribed control performances on the
spacecraft attitude regulation errorΔqb(t) and the end-
effector pose tracking error Δze(t).

From the previous proof, it is obtained that the pre-
scribed performance error signals ψb(t) and ψz(t) are
both uniformly bounded. Therefore, based on Remark
4, it is obtained that the spacecraft attitude regulation
error Δqb(t) and the end-effector pose tracking error
Δze(t) can satisfy the prescribed control performances
(16)–(17), respectively. Besides, in the previous proof,
it is verified that limt→+∞ wb(t) = 0m3 . Further-
more, due to the fact that limt→+∞ wb(t) = 0m3 ,
limt→+∞ wm,r (t) = 0m1 , limt→+∞ ψz(t) = 0m2+m3

and limt→+∞ Yz(t)θ̃z(t) = 0m2+m3 , it is obtained from
(38) that limt→+∞ Δże(t) = 0m2+m3 . The proof of this
Theorem is complete. 
�
Remark 5 According to the proposed control scheme,
the base spacecraft and themountedmanipulator can be
coordinated controlled to realize the spacecraft attitude
regulation task and the end-effector pose tracking task
simultaneously. Besides, compared with the adaptive
null-space control methods in [35,36], the proposed
control scheme can further ensure the prescribed con-
trol performances on the spacecraft attitude regulation
error Δqb(t) and the end-effector pose tracking error
Δze(t) (16)–(17) simultaneously.

Remark 6 The attractive manifold control methods
have been put forward to achieve adaptive control of
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several controlled systems [62–65]. For instance, in
[63], the attractive manifold control method has been
utilized to achieve trajectory tracking control of the
uncertain fully actuated robotic manipulators with the
following dynamic equation

M f (q f )q̈ f + C f (q f , q̇ f )q̇ f + G f (q f ) = u f , (75)

where q f , q̇ f and q̈ f are the joint angle, joint veloc-
ity and joint acceleration of the robotic manipulator,
M f (q f ),C f (q f , q̇ f ) and G f (q f ) is the inertia matrix,
the centrifugal/Coriolis matrix, the potential force vec-
tor of the robotic manipulator, and u f is the control
input. In [63], the robotic manipulator (75) is con-
trolled to track the desired trajectory q f,d(t). Denote
the tracking error as Δq f (t) � q f (t) − q f,d(t), and
accordingly Δq̇ f (t) � q̇ f (t) − q̇ f,d(t) and Δq̈ f (t) �
q̈ f (t) − q̈ f,d(t). Then, it is obtained from (75) that

M f (q f )Δq̈ f (t) = −M f (q f )q̈ f,d − C f (q f , q̇ f )q̇ f

− G f (q f ) + u f . (76)

The proposed attractive manifold controller in [63] is
designed on the above tracking error dynamic equation
(76). For the dynamic parameter θ f in (76), the pro-
posed adaptive controller in [63] can ensure that the
uncertain parameter estimation error term on θ f can
converge to zero independent of the persistent excita-
tion condition.

However, it should be noted that the method in [63]
is designed for the fully actuated robotic manipulator
(75) and besides depends on the linearly parametric
feature of the robotic dynamics, that is,

W (q f , q̇ f , q̈ f,d)θ f = −M f (q f )q̈ f,d − C f (q f , q̇ f )q̇ f

− G f (q f ), (77)

where W (q f , q̇ f , q̈ f,d) is the according regressor
matrix. Unfortunately, owing to the free-floating mode
of the space manipulator, the FFSM is an underactu-
ated system. Besides, the reduced form of the FFSM
dynamics (10) is nonlinearly parameterized toward
the dynamic parameter. Hence, the attractive manifold
method in [63] is inapplicable toward the FFSM.

In this paper, a novel attractive manifold control
method is proposed. A nonlinear filter on the FFSM
dynamics is constructed in (46), and the designed
updated law on the dynamic parameter estimate (51)
is driven by estimation error of the joint velocity. Dif-

ferent from themethods in [62,63] inwhich the updated
laws on the uncertain parameters are designed directly
on the tracking error equations (like Eq. (76)), the
proposed adaptive law is constructed on the dynamic
equation on the estimation error of the joint velocity
(47), and correspondingly, the nonlinearly parametric
issue of the FFSM is overcome. Hence, compared with
[35,36], the proposed control scheme can be designed
at the dynamic level.

Remark 7 Similar to [62–65], the proposed attractive
manifold control method renders parameter estimation
error term decay to zero, that is,

lim
t→+∞ Yd, f (t)θ̃d(t) = 0m1+m3 , (78)

independent of the persistent excitation condition
which is the prerequisite for the several adaptive control
methods to render the parameter estimation error terms
converge to zero. Once the parameter estimation error
term Yd, f θ̃d falls to zero, that is, Yd, f θ̃d = 0m1+m3 , it
is obtained from (54) and (55) that

(Mw̃)
′ = −kdeMw̃. (79)

This means that the estimation error w̃(t) = (w̃T
b (t),

w̃T
m(t))T can tend to zero with exp(−kdet) exponential

convergence rate. Besides, since ŵm,r (t) in (65) also
tends to zero with exp(−kd t) exponential convergence
rate, it is obtained that the sliding vectorwm,r = ŵm,r+
w̃m can also tend to zero with exponential convergence
rate. In addition, the proposed adaptive control method
also ensures that the parameter estimation error terms
Yb(t)θ̃b(t) and Yz(t)θ̃z(t) tend to zero, independent of
the persistent excitation conditions. This means that
limt→+∞ Φb(t)Lb(t)Ĥ

−1
bb (t)Yb(t)θ̃b(t) = 0m3 in (34)

and limt→+∞ Φz(t)Yz(t)θ̃z(t) = 0m2+m3 in (39). In
all, the proposed adaptive control method can eliminate
the influences of kinematic and dynamic uncertainties
of the FFSM, independent of the persistent excitation
conditions.

4 Simulation results

In this section, a 4-DOF planar FFSM (see Fig. 1) is
taken as an example to show the control performances
of the proposed control scheme [36]. For this planar
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Fig. 1 Planar free-floating space manipulator with 4 degrees of
freedom

FFSM, its base spacecraft is equipped with a 4-DOF
manipulator, which means that m1 = 4. For the end-
effector pose tracking task of this planar FFSM, the
number of task variables is m2 + m3 = 3. For the
spacecraft attitude regulation task of this planar FFSM,
the number of task variable is m3 = 1 [36]. Therefore,
it is obtained that m1 = m2 + 2m3, which means that
the DOFs of the mounted manipulators are enough to
realize the spacecraft attitude regulation task and the
end-effector pose tracking task simultaneously [36].

The system parameters are chosen based upon [36]
and are given in Table 1, where the base spacecraft is
labeled 0, m0 represents the mass of the base space-
craft, mi , i = 1, 2, 3, 4, represents the mass of the i th
link, I0 stands for the moment of inertia of the base
spacecraft, Ii , i = 1, 2, 3, 4, stands for the moment
of inertia of the i th link, and the physical meanings
of li and lc,i , i = 0, 1, 2, 3, 4, can be seen in Fig. 1.
The structure of matrices in (3), (5a), (5b) and (13)
can be seen in [36]. Besides, the nonzero constant
velocity v0 and the nonzero constant angular momen-
tum A0 are v0 = [0.0988; 0.0943] m/s and A0 =
−1.6467 kgm2/s, and correspondingly, the uncertain
parameters θz ∈ R

n1 , θd ∈ R
n2 and θb ∈ R

n3 are θz =
[0.0988, 0.0943, 0.6277 1.1550, 1.2600, 1.3542]T ,
θd = [34.5482, 20.0140, 11.9952, 3.1686, 11.9952,

Table 1 System parameters of the free-floating space manipu-
lator

Base spacecraft & i th
link

mi (kg) Ii (kgm2) li (m) lc,i (m)

0 61.2 26.112 1.6 0.8

1 6.3 1.0290 1.4 0.7

2 5.4 0.8820 1.4 0.7

3 5.1 0.8330 1.4 0.7

4 5.1 0.8330 1.4 0.7

12.6126, 4.1234, 6.8544, 4.4982, 2.2409]T
and θb = [−1.6467, 34.5482, 20.0140, 11.9952,
3.1686, 11.9952, 12.6126, 4.1234, 6.8544, 4.4982,
2.2409]T .

Besides, the desired attitude in the inertia frame is
qb,d = 0, and the desired trajectory of the end-effector
pose in the inertia frame is set as

ze,d(t) =
⎡
⎢⎣

3.9 + 0.1 cos(π
9 t) + 0.1 cos( 13 t)

2.3 + 0.1 sin(π
9 t) + 0.1 sin( 13 t)

0.03 + 0.03 cos(π
9 t) + 0.05 cos( 13 t)

⎤
⎥⎦ ,

(80)

where the first two rows of ze,d(t) constitute the desired
end-effector position trajectory, and the last row of
ze,d(t) is the desired end-effector attitude trajectory.

In order to verify the control performance of the
proposed control scheme, two control schemes are
employed as compared control scheme. The first con-
trol scheme resembles the proposed control scheme but
does not consider the prescribed performance require-
ments (16)–(17), in order to show the transient and
steady control performance of the proposed control
scheme. The second control scheme only considers
the prescribed performance control of the FFSM end-
effector, but overlooks the requirement of spacecraft
attitude regulation, to show the coordinated control per-
formance of the proposed control scheme.

4.1 Compared simulation results between the
proposed control scheme and the control scheme
without prescribed performance requirement

In this case, the corresponding control scheme with-
out the prescribed control performances is employed
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Table 2 Initial values of system variables and control variables

Variables Initial values

qb(0) (rad) 0.18

qm(0) (rad) [π/3; −π/3; π/3; −π/3]
wb(0) (rad/s) −0.0037

wm(0) (rad/s) 04

θ̂z(0) [0; 0; 0.1; 1.9; 0.8; 1.5; 1]
θ̂d (0) [34; 30; 18; 14; 3.5; 17; 9; 7; 1.5;

20; 10; 4.1; 12; 4.6; 4.1]
θ̂b(0) [0; 34; 30; 18; 14; 3.5; 17; 9; 7; 1.5;

20; 10; 4.1; 12; 4.6; 4.1]
ŵ(0) 05
Yd, f (0) 05×15

as compared control scheme, to verify the control per-
formances of the proposed control scheme [66]. To be
specific, in the compared control scheme, the variables
ψb(t) (20a), ψz(t) (20b), ρb(t) (18a) and ρz(t) (18b)
are replaced byΔqb(t),Δze(t), 1 and E3, respectively.
Correspondingly, it means that the variables sb(t),
sz(t), Φb(t) and Φz(t) are also replaced by Δqb(t),
Δze(t), 1 and E3, respectively, and ρ̇b(t) = 0 and
ρ̇z(t) = 03×3 for the compared control scheme.

The control parameters of proposed control scheme
are set as kb = 0.04, Γ1 = 10, kz = 0.04, Γ2 = 10,
kde = 0.3, kd = 0.8, Γ3 = 10, ρ0

b = 0.4, ρ0
z,1 =

ρ0
z,2 = 1, ρ0

z,3 = 0.2, ρ∞
b = 0.03, ρ∞

z,1 = ρ∞
z,2 =

0.08, ρ∞
z,3 = 0.05, βb = 0.22, βz,1 = βz,2 = βz,3 =

0.22, σb = 0.8, σz,1 = σz,2 = σz,3 = 0.8. As for
the compared control scheme, its control parameters
are set the same as the counterparts of the proposed
control scheme, expect for the control parameters in
the decaying functions of time ρb(t) (18a) and ρz(t)
(18b). The initial values of the system variables and
control variables can be seen in Table2.

The control performances of proposed and com-
pared control schemes are shown in Figs. 2 and 3.
In Figs. 2 and 3, the proposed control scheme is
denoted as case 1, and the compared control scheme
is denoted as case 2. Besides, the black dotted lines in
Fig. 2a–d depict the corresponding decaying functions
of time (18a)–(18b), and the regions surrounded by
these black dotted lines are the prescribed performance
constraints. If, in Fig. 2a–d, the spacecraft attitude reg-
ulation error Δqb(t) and the end-effector pose track-
ing error Δze(t) = [Δze,1(t); Δze,2(t); Δze,3(t)] are
within the corresponding prescribed performance con-

straints, itmeans that the corresponding control scheme
satisfies the prescribed control performances (16)–(17).

The control performances of the proposed control
scheme are analyzed first. Notice that in Fig. 2a–d, both
the spacecraft attitude regulation error Δqb(t) and the
end-effector pose tracking error Δze(t) = [Δze,1(t);
Δze,2(t);Δze,3(t)] of the proposed control scheme can
converge to zeros within 10s, and satisfy prescribed
control performances (16)–(17). Besides, in Fig. 2e–g,
the spacecraft angular velocity wb(t), the time deriva-
tive of the end-effector position tracking error Δ ṗe(t),
and the time derivative of the end-effector attitude
tracking error Δq̇e(t) of the proposed control scheme
can all converge to zero within 10s. In Fig. 2h, the
joint velocity wm(t) of the proposed control scheme is
bounded.

In addition, as shown in Fig. 3a–d, the uncertain
parameter estimation errors θ̃b(t), θ̃z(t) and θ̃d(t) of the
proposed control scheme can converge into the neigh-
borhoods of the desired equilibriums within 15s, and
the variable Yd, f (t) of the proposed control scheme
is bounded. This means that the parameter estimation
error terms Yb(t)θ̃b(t), Yz(t)θ̃z(t) and Yd, f (t)θ̃d(t) of
the proposed control scheme can also converge into the
neighborhoods of the desired equilibriums asymptoti-
cally. Moreover in Fig. 3e–f, the estimation error w̃(t)
of the proposed control scheme can also converge to
zero within 8s, the control input um(t) of the proposed
control scheme is bounded, and the maximum value of
‖um(t)‖ is nearly 6.38 Nm.

On the other hand, inFig. 3a–c, the compared control
scheme can also ensure the convergence properties of
the parameter estimation errors θ̃b(t), θ̃z(t) and θ̃d(t).
In Fig. 3d, e, the auxiliary variable Yd, f (t) of the com-
pared control scheme is bounded, and the estimation
error w̃(t) of the compared control scheme can also
converge to zero. In Fig. 3f, the control input um(t) of
the compared control scheme is also bounded, and the
maximum value of ‖um(t)‖ is nearly 3.75 Nm, which
is smaller than that of the proposed control scheme.

However, the compared control scheme does not
possess the same control performance as the pro-
posed control scheme. First, in Fig. 2a–d, it can be
seen that both the spacecraft attitude regulation error
Δqb(t) and the end-effector pose tracking errorΔze(t)
= [Δze,1(t); Δze,2(t); Δze,3(t)] of the compared con-
trol schemeviolate the prescribed control performances
(16)-(17). This is because the compared control scheme
does not take the prescribed control performances (16)–
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(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Fig. 2 Regulation and tracking performance of the proposed control scheme and the control scheme without prescribed performance
constraint. Case 1: The proposed control scheme. Case 2: The control scheme without the prescribed performance requirements
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 3 Estimation performance and control input of the pro-
posed control scheme and the control scheme without prescribed
performance constraint. Case 1: The proposed control scheme.

Case 2: The control scheme without the prescribed performance
requirements

(17) into consideration. Besides, in Fig. 2e–g, the
spacecraft angular velocity wb(t), the time derivative
of the end-effector position tracking error Δ ṗe(t) and
the time derivative of the end-effector attitude track-
ing error Δq̇e(t) of the compared control scheme do
not converge as fast as the counterparts of the proposed
control scheme.

4.2 Compared simulation results between the
proposed control scheme and the control scheme
without spacecraft attitude regulation

In this subsection, the control scheme that only con-
siders the end-effector pose tracking and neglects the
spacecraft attitude regulation is introduced as a com-
pared control scheme.Different from the proposed con-
trol scheme, the controller of this compared control
scheme at the kinematic level is designed as
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(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Fig. 4 Regulation and tracking performance of the proposed control scheme and the control scheme without the base spacecraft attitude
regulation. Case 1: The proposed control scheme. Case 3: The control scheme without the base spacecraft attitude regulation
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wm,c = Ĵ †m(−ˆ̄v0 + że,d − Ĵbwb − kzΦzψz). (81)

The updated law on the parameter estimates θ̂z (42),
the updated law on the parameter estimate θ̂d (51), the
filters (46) and (50) and the control input (64) are still
employed in this compared control scheme. It can be
seen that the spacecraft attitude regulation errorΔqb(t)
and the corresponding prescribed performance errorψb

do not appear in (81), which means that the spacecraft
attitude regulation is not considered in the compared
control scheme.

The control parameters of this compared control
scheme are still the same as the counterparts of the
proposed control scheme. The simulation results on
the proposed control scheme and the compared control
scheme can be seen in Fig. 4. In Fig. 4a–h, the pro-
posed control scheme is denoted as case 1, the above
compared control scheme is denoted as case 3, and
the corresponding decaying functions on time are also
shown in Fig. 4a–d as the black dotted lines.

On the one hand, in Fig. 4b–d, the end-effector
pose tracking error of the compared control scheme
obeys the prescribed performance requirement (17).
The time derivatives of the end-effector position and
attitude tracking errors also converge to zero within
10s in Fig. 4d, e. On the other hand, compared with the
proposed control scheme, the spacecraft attitude reg-
ulation error of the compared control scheme violates
the prescribed performance requirement (16) in Fig. 4a,
and the corresponding spacecraft angular velocity does
not converge to zero in Fig. 4e.Moreover, in Fig. 4h, the
reaction torque Fr (t) of the compared control scheme
does not fall to zero within 20 s, compared with the
proposed control scheme whose reaction torque falls
to zero within 7 s.

The reason of these differences in Fig. 4a, e, h is that
the spacecraft attitude regulation is not taken in consid-
eration in this compared control scheme. Notice that
there exists dynamic couplings (5a) between the base
spacecraft and the mounted manipulator, and hence,
the manipulator motion of the FFSM will induce reac-
tion torque toward the base spacecraft. However, since
the requirement on the spacecraft attitude regulation is
overlooked in this compared control scheme, the FFSM
will not be controlled to reduce the spacecraft attitude
regulation error, even if the spacecraft attitude is far
away from the desired attitude. Therefore, the uncon-
trolled reaction torque of the compared control scheme

will alter the base spacecraft attitude, such that the
spacecraft attitude deviates from the desired attitude.
On the other hand, the proposed control scheme takes
the requirement on the spacecraft attitude regulation
into account. Hence, for the proposed control scheme,
its spacecraft attitude regulation error obeys the pre-
scribed performance requirement (16) and converges
to zero in Fig. 4a, its spacecraft angular velocity falls
to zero in Fig. 4e, and its reaction torque exerted on the
base spacecraft also converges to zero in Fig. 4h.

5 Conclusions

In this paper, the coordinated control of the uncer-
tain FFSM is investigated. Both the prescribed per-
formance error transformations and the reaction null
space are carefully designed to realize the spacecraft
attitude regulation task and the end-effector trajectory
tracking task simultaneously. Besides, in face of the
nonlinearly parameterized feature of the FFSM, a novel
attractivemanifold control method is proposed, and the
convergence of the parameter estimation error terms
does not rely on the persistent excitation conditions.
Based upon the proposed adaptive coordinated control
scheme, both the spacecraft attitude regulation error
and the end-effector pose tracking error can meet the
prescribed control performances, in the presence of the
nonlinearly parametric feature and the nonzero linear
and angular momenta of the FFSM. Future work will
focus on the detumbling control of the uncertain space
manipulator with prescribed control performance.
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