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Abstract The multi-frequency hybrid signal is an
important stimulus from the external environment on
the neuronal networks for detection. The mechanism
of the detection may be understood by the vibrational
resonance, in which the moderate intensity of high-
frequency force can amplify the response of neuronal
systems to the low-frequency signal. In this paper,
the effects of electrical and chemical autapses on sig-
nal transmission are investigated in scale-free and
small-world neuronal networks, where an external two-
frequency signal is introduced only to one neuron as
a pacemaker. We observed that the inhibitory autapse
can significantly enhance the signal propagation by the
vibrational resonance, while the electrical and excita-
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tory autapses typically weaken the signal transmission,
indicating that the inhibitory autapse is more beneficial
to transmit the rhythm of the pacemaker to the whole
networks. These findings contribute to our understand-
ing of signal detection and information processing in
the autapic neuronal system.

Keywords Vibrational resonance · Signal
transmission · Autapse · Chemical synapse ·
Electrical synapse

1 Introduction

The external stimulus can be translated into electrical
activities by neurons when the strength of the stimulus
is sufficiently large, and the information of stimulus can
be encoded into the spiking sequence. However, a weak
signal is typically difficult to detect, because it is easily
concealed by the troublesome noise. Interestingly, the
detection of the weak signal can be enhanced by noise
due to the contribution of stochastic resonance (SR),
in which the response to the weak signal can be maxi-
mized by an optimal strength of noise [1,2]. Due to the
universality of noise, SR has been extensively investi-
gated in engineering, chemistry, physics, and biology
[3–5], especially in neuronal systems [6–10].

The constructive roles of noise on signal propaga-
tion have been studiedwidely in the neuronal networks.
For example, transmission of the weak signal can be
enhanced effectively by stochastic resonance in neu-
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ral networks [11], and noise can optimize the prop-
agation of weak periodic signals through a feedfor-
ward neuronal network [12–15]. Recently, a stochastic
resonance-driven pacemaker has also been put forward
to investigate theweak signal transmission [16,17]. The
pacemaker is an autonomous (or driven) rhythm neu-
ron which can regulate the electrical activities of the
whole neuronal network. It has been shown that the
pacemakers have a significant impact on the cardiac
function [18] and on the synchronization of ecosys-
tems [19].

The phenomenon of vibrational resonance (VR), in
which the detection of the low-frequency signal can
be amplified and optimized by the moderate inten-
sity of high-frequency force, shows that the high-
frequency force has an effect similar to that of noise
in signal detection [20–22]. The phenomenon of vibra-
tional resonance has also attracted the interest of scien-
tists [23–30] because multi-frequency signals are not
only ubiquitous, but also play a significant role in biol-
ogy [31–34]. For example, Gerhardt investigated the
effect of two-frequency signals on vocal communica-
tion, which acts significantly on the reproduction of
the green tree frog [35]. Notably, self-generated multi-
frequency signals by weakly electric fishes play an
important role in communication, hunting, location,
and navigation [36]. The transmission of hybrid signals
with a high-frequency force and a low-frequency enve-
lope has also been investigated in an electrosensory
system [37].

The synapse, as a major structure of information
transmission in neuronal networks, is of significance
in electrical activities. Van der Loos and Glaser orig-
inally found a special synapse in the neocortex which
was termed autapse in 1972 [38]. Autapse is defined as
a connection of the neuronwith itself or a neuronal self-
connection. Since its discovery, autapse has been inves-
tigated extensively in the brain and neuronal systems
due to its significant roles in brain functions [39,40].
For example, the autaptic currents are observed in hip-
pocampal neurons of rat [41]. Bekkers found that the
excitability of neuron can be regulated by inhibitory
or excitatory autapses [42]. Experiments showed that
the precision of spike timing can be increased by the
dynamic clamp and artificial GABAergic autapses in
principal cells [43]. Autapses can raise the threshold of
action potentials and inhibit repetitive firing, demon-
strating that the autapse is a forceful synapse [44].
Importantly, many numerical studies showed the sig-

nificant impact of autapses on the rhythmic activity of
neurons, generating rich dynamical phenomena [45–
55].

In this paper, we study the effects of the autapse
on signal transmission in neuronal networks, where
an external two-frequency signal is introduced only to
one neuron as a pacemaker. Our results reveal that the
weak signal acting on the pacemaker can be propagated
accurately to the whole network by vibrational reso-
nance. Interestingly, the inhibitory autapse can effec-
tively enhance signal transmission induced by vibra-
tional resonance, while vibrational resonance is weak-
ened by excitatory or electrical autapses. Thus, these
results differ from the general view that inhibitory
synapse plays an inactive role in neuronal dynam-
ics [56,57]. This paper is organized as follows. In Sect.
2, we present the coupled Hodgkin–Huxley neuronal
network model with an autapse, and a factor for the
measurement of signal transmission is provided. Sec-
tion 3 shows the main numerical results. Finally, Sect.
4 is devoted to our conclusions.

2 Models and methods

To investigate the effect of autapses on signal trans-
mission in neuronal networks, the coupled Hodgkin–
Huxley neuron model is given by [58],

Cm
dVi
dt

= −(gK n
4
i (Vi − VK ) + gNam

3
i hi (Vi − VNa)

+ gl(Vi − Vl)) + I0 + I daut

+ I dstimu + ε

ki

N∑

j=1

gi, j (Vj − Vi ), i = 1, . . . , N ,

(1)
dmi

dt
= 0.1(Vi + 40)

1 − e
−Vi−40

10

(1 − mi ) − 4e
−Vi−65

18 mi , (2)

dni
dt

= 0.01(Vi + 55)

1 − e
−Vi−55

10

(1 − ni ) − 0.125e
−Vi−65

80 ni , (3)

dhi
dt

= 0.07e
−Vi−65

20 (1 − hi ) − 1

1 + e
−Vi−35

10

hi , (4)

where Vi is themembrane potential, the sodium current
is regulated by inactive gating variable hi and active
gating variable mi , and the gating variable ni controls
potassium current. I dstimu = A cos(ωt) + B cos(Ωt) is
the two-frequency signal which is introduced to only
one neuron as a pacemaker by setting i = d. There
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Table 1 Parameter values

Parameter Description Value

Cm Cell capacitance 1.0 µF/cm2

gNa Sodium conductance 120.0 mS/cm2

gK Potassium conductance 36.0 mS/cm2

gl Leakage conductance 0.3 mS/cm2

VK Potassium reversal
potential

− 77.0 mV

VNa Sodium reversal
potential

50.0 mV

Vl Leakage reversal
potential

− 54.0 mV

I0 The injected current 1.0 µA/cm2

Vsyn The autaptic reversal
potential

0.0 or − 80.0 mV

τ Time delay due to finite
signal propagation

0−10ms

td The decay time of the
function

2ms

gsyn The conductance of
autaptic channel

0−6 mS/cm2

ε The conductance of the
gap junction

0−20 mS/cm2

A The amplitude of weak
signal

1.0 µA/cm2

B The amplitude of
high-frequency signal

0–200 µA/cm2

ω The frequency of weak
signal

0.5 /ms

Ω The frequency of
high-frequency signal

1.5 /ms

exists a connection between the nodes j and i when
gi, j = 1, and otherwise gi, j = 0. ki = ∑N

j=1 gi, j is
the degree of the node i . Table 1 shows the description
and value of others parameters.

I daut stands for the autaptic current. Three types of
autapses are considered only for the pacemaker neu-
ron in the network: electrical, excitatory, and inhibitory
autapses. Experiments showed that the
autapse is fitted well by monoexponential or biexpo-
nential functions [59]. In this work, the autaptic cur-
rent is modeled by a monoexponential function, which
is shown as,

I daut = gsynα(t − τ − t f ire)(V − Vsyn), (5)

α(t) = t

td
e
− t

td , (6)

where tfire represents the spiking time, gsyn is the synap-
tic weight, and τ is the time delay in the self-feedback
autapse, which is induced by the finite propagation
speed and the time lapses in synaptic processing. In
real neurons, delay time with tenths milliseconds can
be observed [60].We typically chose the autaptic rever-
sal potential Vsyn = 0.0mV and Vsyn = − 80.0mV
for the excitatory and inhibitory synapses, respec-
tively [12,61].

Although it remains unclear if there exists electrical
autapse in neuronal system, we will still discuss it in
ourmodel as a numerical comparison. For the electrical
autapse, we use the feedback scheme which is given by
Pyragas [62], and we have

I daut = gsyn(V (t − τ) − V (t)), (7)

where gsyn and τ correspond to synapse weight and
time delay, respectively.

To quantify the detection and transmission of the
low-frequency signal in the neuronal network, we cal-
culate Q = 1

N

∑N
i=1 Qi with Qi defined by [20]

Qi =
√
Q2

si + Q2
ci ,

Qsi = 2

nT

∫ T0+nT

T0
Vi sin(ωt)dt,

Qci = 2

nT

∫ T0+nT

T0
Vi cos(ωt)dt, (8)

where T = 2π
ω
, n = 100 is selected. T0 is sufficiently

large for deleting transient evolution. In neuron sys-
tems, the information of stimulus is encoded into time
series of spikes, and we are interested in the frequency
of spikes which could reflect the information of weak
signal. Clearly, the factor Q can check the frequency of
spikes, and the optimal signal transfer is represented by
the synchronization between the weak signal and the
output spiking.

3 Observations and results

First, we investigate the pacemaker-driven signal trans-
mission without the autapse in the Barabási–Albert
(BA) scale-free neuronal network with average con-
nection number 〈k〉 = 4 and total number of neurons
N = 200. The scale-free networksmodel starts with an
all-to-all network with four nodes and grows by prefer-
ential attachment with a probability pi = ki∑

ki
where
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Fig. 1 The ascending Qi at
resonance window for
ε = 0.5, 1.0, 4.0, and 15.0,
respectively. B = 30 (a), 30
(b), 60 (c), and 100 (d).
Here, gsyn = 3.0 and
τ = 5.0

(a) (b)

(c) (d)

ki the degree of node [63]. We choose the pacemaker
as the node with the maximal degree in the scale-free
networks. Figure 1 gives the ascending Qi for differ-
ent values of the parameters ε and B. The parameters
in Fig. 1a–d correspond to ε = 0.5 and B = 30.0,
ε = 1.0 and B = 30.0, ε = 4.0 and B = 60.0, and
ε = 15.0 and B = 100.0, respectively. Our simula-
tion data show that those neurons which are connected
to hub have lower factor Qi . For the weak coupling
strength, the signal transmission is local, Qi � 0 for
about two-thirds of the neurons, indicating that many
neurons cannot receive the weak signal from the pace-
maker (Fig. 1a), and the number of Qi � 0 decreases
with the increase in coupling strength (Fig. 1b). For
medium coupling strength, the signal transmission can
be global since there are two different values which
are larger than zero (Fig. 1c). The weak signal can be
transmitted to more neurons with the increase in cou-
pling strength, indicating that the fine-tuning of a large
enough coupling strength can facilitate the outreach of
theweak signal of the pacemaker. The pacemaker activ-
ities induced by vibrational resonance with a very large
Ω (Ω

ω
> 20) have also been systematically tested, and

vibrational resonance can be observed with a small Q.
However, vibrational resonance can be observed with
a very large Q for the high-frequency signal (Ω

ω
> 20).

Figure 2 presents the spatiotemporal diagram of the
membrane potential of the whole networks. The posi-
tions i in Fig. 2a–d have been reordered by the ascend-

ing Qi in Fig. 1a–d. Figure 2a, b shows that many
neurons do not spike at the weak coupling strength,
while all neurons exhibit periodic spiking at medium
coupling strength. However, there are two different fre-
quencies corresponding to the two different values of
Qi in Fig. 1c (Fig. 2c). For sufficiently large cou-
pling strength, all neurons emit periodic spikes with
the frequency of the weak signal. The weak signal of
the pacemaker can be accurately transmitted to every
neuron of the neuronal network for sufficiently large
coupling strengths (Fig. 2d).

In Fig. 3, we show the average response Q versus
B without autapse, and with inhibitory, electrical, and
excitatory autapses for ε = 0.5, 1.0, 4.0, 15.0, respec-
tively. From these figures, one can find that there is an
optimal range of B corresponding to strong resonance
response for different coupling strengths, and the usual
vibrational resonance is clearly observed. We suggest
that vibrational resonance can induce signal propaga-
tion from pacemaker to the network. Furthermore, we
find that with increasing ε the maximal value of Q
increases and the width of the window of B gets wider
for vibrational resonance. One may intuitively guess
that the excitatory autapse should have an improved
effect on signal transmission. However, compared to
the neuronwithout autapse, the resonance range shrinks
for the excitatory autapse, while the resonance region
enlarges for electrical and inhibitory autapses, indicat-
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Fig. 2 (Color online)
Spatiotemporal evolutions
of the membrane potential
with the evolution time
t = 10 T , where
T = 2π

ω
= 12.56. The

positions i are reordered by
the ascending Qi . B = 30
(a), 30 (b), 60 (c), and 100
(d) respectively. The
parameters are same as
those in Fig. 1

(a) (b) (c) (d)

Fig. 3 (Color online) The
average response Q vs B
without autapse with
inhibitory, electrical, and
excitatory autapses for
ε = 0.5 (a), 1.0 (b), 4.0 (c),
and 15.0 (d), respectively.
Here, gsyn = 3.0 and
τ = 5.0

(a) (b)

(c) (d)

ing that the inhibitory autapse can enhance signal prop-
agation.

To quantitatively discuss the transmission of the
low-frequency signal in the neuronal network, we also
compute power spectrum of membrane potential of
all neurons. Figure 4a–d shows the maximal height of
power spectrum, power spectrum at frequency ω, and
Qi with the inhibitory autapse for neuron i = 1, 6,
9, 150, respectively. From these figures, one could not
find any significant difference between power spectra
at ω and Qi for vibrational resonance. The maximal
height of power spectrumoverlapswith the power spec-

trum at ω in the resonance interval, indicating that the
frequency ω is the most important component for the
output signal of each neuron.

To understand better the inhibitory-autapse-
enhanced signal transmission, Fig. 5 gives the bifur-
cation of �ti (the interval time of successive spikes)
of membrane potential V9(t) for inhibitory (a–c), exci-
tatory (d–f), and electrical autapses(g–i). Here, neuron
i = 9 is chosen randomly. For left, middle, and right
columns in Fig. 5, gsyn = 1.2, 3.0, and 4.8, respec-
tively. There are some periodic windows for inhibitory,
excitatory, and electrical autapses (i.e., ω

ω
′ = 1 : 1 or
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Fig. 4 (Color online) The
maximal height of power
spectrum (hollow circles),
power spectrum at
frequency ω (solid points),
and Qi (pluses) with the
inhibitory autapse for i = 1
(a), 6 (b), 9 (c), and 150 (d),
respectively. Here,
gsyn = 3.0, ε = 15.0, and
τ = 5.0

(a) (b)

(c) (d)

(a) (b) (c)

(e) (f)(d)

(h) (i)(g)

Fig. 5 (Color online) The bifurcation of �ti (the interval time
of successive spikes) of membrane potential V9(t) for inhibitory
(a–c), excitatory (d–f), and electrical (g–i) autapses, respectively.

For left, middle, and right columns, gsyn = 1.2, 3.0, and 4.8,
respectively. Here, ε = 15.0 and τ = 5.0
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 (Color online) The phase diagrams for the frequency
synchronization region for inhibitory autapse (a–c), excitatory
autapse (d–f), and electrical autapse (g–i), respectively. gsyn =
1.2, 3.0 and 4.8, respectively, for figure from left, middle, and

right column, with τ = 5.0. The frequency synchronization
region is determined by ω

ω
′
i

= 1 : 1, i = 1, . . . , N , where ω

is the frequency of weak signal, ω
′
i is the frequency of spiking

Fig. 7 The normalized
scaling factor R = St

S in the
(ε, B) plane as a function of
gsyn for τ = 2.0 (a) and 5.0
(b), respectively, where St is
the size of the frequency
synchronization region in
(ε, B) plane, and S is the
size of the (ε, B) plane with
0 ≤ ε ≤ 20 and
0 ≤ B ≤ 240

(a) (b)
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Fig. 8 (a) Contour plot of
the average response Q
versus B and ε for the
small-world neuronal
networks for
p = 0.3, N = 200 without
autapse. (b) The Qi in
ascending order for
ε = 1.0, B = 30.0 and
ε = 4.0, B = 80.0. (c, d)
Spatiotemporal evolutions
of the membrane potential
in the evolution time
t = 10T , where T = 2π

ω
.

The positions i are
reordered by the ascending
Qi . ε = 1.0, B = 30.0 (c),
ε = 4.0, B = 80.0 (d).
Here, gsyn = 0.9 and
τ = 5.0

(a)

(b) (c) (d)

Fig. 9 (Color online) The
average response Q of the
small-world neuronal
networks as a function of B
(a) without autapse and with
(b) inhibitory, (c) electrical,
and (d) excitatory autapses,
respectively. Here,
gsyn = 0.9, ε = 4.0, and
τ = 5.0

(a) (b)

(c) (d)

2 : 1, where ω
′
is the frequency of spiking) in these fig-

ures. Interestingly, comparing three subfigures in each
row, one can find that the periodic windows for fre-
quency synchronization with ω

ω
′ = 1 : 1 are prolonged

for the electrical autapses with increasing gsyn. The
excitatory autapse destroys these windows for suffi-
ciently large autaptic weight. More surprisingly, the
periodic windows for frequency synchronization can
be kept with the inhibitory autapse.

Furthermore, the phase diagrams on the (ε, B) plane
for frequency synchronization region with different
types of autapse are shown in Fig. 6. From the left col-
umn to right column, gsyn = 1.2, 3.0, and 4.8, respec-
tively. Figure 6 shows that frequency synchronization
appears first at the optimal window of B as ε is larger
than a critical value, and the range of frequency syn-
chronization enlarges when ε further increases. Com-
paring two subfigures in each row on the first and sec-
ond columns, one can observe clearly that the range of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 (Color online) The phase diagrams for the frequency
synchronization region for inhibitory autapse (a–c), excitatory
autapse (d–f), and electrical autapse (g–i), respectively. gsyn =
0.9, 2.1, and 3.9 for the figures in left, middle, and right col-

umn, respectively with τ = 5.0. The frequency synchronization
region is determined by ω

ω
′
i

= 1 : 1, i = 1, . . . , N , where ω is

the frequency of weak signal, ω
′
i is the frequency of spiking

frequency synchronization is larger for network with
inhibitory autapse than with the excitatory autapse. As
a result, the inhibitory autapse has a stronger effect on
the signal transmission. The subfigures in the last col-
umn indicate that the range of frequency synchroniza-
tion increases first and then decreases with the increase
in gsyn for the electrical autapse.

To quantify the change of synchronizing size, we
also introduce a factor R = St

S , where St is the size
for frequency synchronization in the (ε, B) plane, and
S is size of the (ε, B) plane discussed. The results are
shown in Fig. 7. For the excitatory autapse, R decreases
with increasing gsyn, while for the inhibitory autapse,
R increases with increasing gsyn . These results indi-

cate that the inhibitory autapse plays an active role in
the signal transmission, while the excitatory autapse
does not favor the signal transmission. For the electri-
cal autapse, there is an optimal synapse weight gsyn
at which the size of the propagation region becomes
maximal.

Next,we present the results obtainedwith theWatts–
Strogatz small-world neuronal network (p = 0.3, N =
200). For the Watts–Strogatz small-world network, we
start with a neighboring-connected ring with periodic
boundary conditions. With the probability p, we dis-
connect an edge and reconnect this edge with a vertex
which is chosen uniformly from the entire ring and then
repeat this process for each nodes [64]. We examine
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Fig. 11 (Color online) The
normalized scaling factor
R = St

S in the (ε, B) plane
versus gsyn for τ = 2.0 (a)
and 5.0 (b), respectively,
where St is the size of the
frequency synchronization
region in (ε, B) plane, and
S is the size of the (ε, B)

plane with 0 ≤ ε ≤ 5 and
0 ≤ B ≤ 160

(a) (b)

Fig. 12 (Color online) The
average response Q of the
10 × 20 lattice networks as
a function of B (a) without
autapse and with (b)
inhibitory, (c) electrical, and
(d) excitatory autapses,
respectively.
Here,gsyn = 5.0, ε = 10.0,
and τ = 5.0

(a) (b)

(c) (d)

first the pacemaker activity in such a network with-
out autapse. Figure 8a shows the contour plots of Q
as a function of B and ε. Clearly, the vibrational reso-
nance occurs for a sufficiently large ε. Different from
the scale-free neuronal network, the weak signal can be
transmitted to others neurons only when the coupling
strength is larger than a critical value. To show clearly
the signal transmission, Fig. 8b presents the ascend-
ing Qi for the parameters within and without the pink
region. We also find that the weak signal can be trans-
mitted accurately to every neuron in the small-world
neuronal network. Figure 8c, d gives examples of inac-
curate and accurate signal transmission, respectively.

To compare the effect of different types of autapses
on signal propagation, Fig. 9a–d shows Q as a function
of B without autapse and with inhibitory, electrical,
and excitatory autapses, respectively. The vibrational-
resonance-induced signal propagation can be observed
in these four types of neuronal networks. However,
compared to the system without autapse, the optimal
range of B becomes narrower for networks with excita-
tory and electrical atlases, while the inhibitory autapse
makes the optimal window wider.

The phase diagrams on the (ε, B) plane for fre-
quency synchronization region for different types of
autapses are shown in Fig. 10. From top row to bottom
row, the phase diagrams correspond to the inhibitory,
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excitatory, and electrical autapses, respectively. From
left column to right column, gsyn = 0.9, 2.1, and 3.9,
respectively. Comparing three figures in each row, we
find that the inhibitory autapse is indeed advantageous
for signal transmission, while the excitatory and elec-
trical autapses do not favor signal propagation for the
large autaptic weight gsyn .

To show clearly the key role of the autaptic weight
gsyn , we also compute the factor R = St

S , where St is
the size of frequency synchronization region, and S is
size of (ε, B) plane discussed. The results are shown
in Fig. 11. The monotonic increase in the value R with
increasing gsyn for the inhibitory autapse indicates that
the size of accurate signal transmission region increases
with the increase in the autaptic weight, while the accu-
rate signal transmission region disappears for the exci-
tatory and electrical autapses when the autaptic weight
is sufficiently large.

In fact, the cardiacmyocytes architecture in themus-
cle fiber can be represented by a square or cubic lat-
tice networks, and so the Barabasi–Albert and Watts–
Strogatz complex networks are not suitable for the
study of cardiac myocytes architecture. Finally, we are
also interested in verifying the effects of autapse on the
lattice networks. The results for a 10 × 20 grid net-
works with zero flux boundary conditions are shown
in Fig. 12. Compared to neurons without autapse,
we found that electrical and inhibitory autapses can
enhance signal transmission, especially for electrical
autapses, while excitatory autapse makes signal prop-
agation weaken.

4 Conclusions

We investigated in detail the effects of different types
of autapses on signal transmission in the scale-free and
small-world neuronal networks, where only one pace-
maker stimulated by an external two- frequency sig-
nal is introduced. Three types of autapses are consid-
ered only to the pacemaker neuron in the networks:
electrical, excitatory, and inhibitory autapses. Without
autapses, the weak signal stimulated on the pacemaker
can be transmitted accurately to the whole networks
by vibrational resonance for sufficiently large coupling
strengths. We showed that the inhibitory autapse can
enhance the pacemaker activity by vibrational reso-
nance,while the electrical and excitatory autapses show
a weakened effect on this behavior.

For the scale-free networks, compared to the no-
autapse situation, the region of accurate signal trans-
mission becomes large for the network with the
inhibitory autapse, while it is reduced with the excita-
tory autapse and vanishes for sufficiently large autap-
tic weight. There exists an optimal autaptic weight of
the electrical autapse with which the size of signal
transmission is largest. In the small-world networks,
we also found the strengthened effect of the inhibitory
autapse on signal transmission. The size of transmis-
sion decreases with the increase in the autaptic weight
of the electrical and excitatory autapses, indicating that
electrical and excitatory autapses are not favor for sig-
nal propagation.

It has been reported that phase locking is of
great importance in amplification of weak signal in
the excitable system driven by two-frequency signal,
called phase-locking modes induced vibrational reso-
nance [28,29]. We found in the paper that the 1 : 1
phase-locking mode (i.e., frequency synchronization)
can be prolonged or kept by inhibitory and electrical
autapses in neuronal networks, resulting in the strength-
ened signal propagation, while the strong excitatory
autapse destroys the frequency synchronization, lead-
ing to the failure of signal propagation. The signal
transmission enhanced by inhibitory self-feedback is
unexpected and may contribute to expand our under-
standing of the dynamics of biological systems. The
neuronal network may use the inhibitory self-feedback
to amplify or detect the weak signal since the two-
frequency signals are universal in nature for acoustics
and communication [31–33].

The autapses exist widely in 80% cortical pyra-
midal neurons [65]. Different biological functions of
autapse have been investigated. For example, the for-
mation mechanism of atpase is associated with the
injury of neuron, which can enhance self-adaptability
to stimuli [66]. The autapse can suppress the bursting
in neuronal behaviors and thus can regulate the col-
lective behaviors of neural activities [67]. Our study
indicates that the inhibitory autapsemay play an impor-
tant role to detect weak signals in neuronal networks.
The inhibitory self-feedback enhanced vibrational res-
onance is of great interest and may shed more light on
our understanding of the dynamics of biological sys-
tems with self-feedback. We expect that these results
will motivate the inspiration on the experimental stud-
ies of the biological systems in the future.
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