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Abstract This work deals with the amplitude–
frequency response of coaxial parametric resonance
of electrostatically actuated double-walled carbon nan-
otubes (DWCNTs). Nonlinear forces acting on the
DWCNT are intertube van der Waals and electrostatic
forces. Soft alternating current (AC) excitation and
small viscous damping are assumed. In coaxial vibra-
tion, the outer and inner carbon nanotubes move syn-
chronously (in-phase). Euler–Bernoulli beam model is
used for DWCNTs of high length-to-diameter ratio.
Modal coordinates are used for decoupling the lin-
earized differential equations of motion without damp-
ing. The reduced-order model (ROM) method is used
in this investigation. All ROMs using one through five
modes of vibration (terms) are developed in terms of
modal coordinates. ROM using one term is solved and
frequency–amplitude response predicted by using the
method of multiple scales (MMS). All other ROMs
using two through five terms are numerically integrated
using MATLAB in order to simulate time responses
of the structure and also solved using AUTO-07P, a
software package of continuation and bifurcation, in
order to predict the frequency–amplitude response. All
models and methods are in agreement at lower ampli-
tudes, while in higher amplitudes only ROM with five
terms provides reliable results. The effects of voltage

D. I. Caruntu (B) · E. Juarez
Mechanical Engineering Department, University of Texas
Rio Grande Valley, Edinburg, TX 78539, USA
e-mail: dumitru.caruntu@utrgv.edu; caruntud2@asme.org;
dcaruntu@yahoo.com

and damping on the amplitude–frequency response of
electrostatically actuated DWCNTs are reported. It is
shown that increasing voltage and/or decreasing damp-
ing results in a larger range of frequencies for which
pull-in occurs.

Keywords Parametric resonance · Frequency
response · DWCNT resonators · Method of multiple
scales · Reduced-order model

1 Introduction

In 1991, Sumio Iijima discovered the fullerene-based
carbon nanotube (CNT) [1]. CNTs [2] are known
for their excellent mechanical, electrical and chemical
properties. DWCNTs are comprised of two concentric
carbon nanotubes (CNTs), one tube nested within the
other. Applications of DWCNTs may be seen in the
areas of lasers [3–5], sensors [6–10] and transistors
and switches [11,12]. Electrostatic actuation is used
in applications of DWCNTs as resonator sensors for
mass sensing. Pull-in instability is a phenomenon that
occurs in systems under electrostatic actuation [13].
Free vibration response of DWCNTs has been previ-
ously reported [14]. For this case, coaxial vibration has
been considered.

Yan et al. [15] employed the concept of nonlinear
normalmodes (NNMs) tomodel the nonlinear dynami-
cal behavior of DWCNTs. They used a continuum elas-
tic beam model devoid of damping and external forces
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with an intent to focus on free vibration. They investi-
gated the case of internal resonance and the case of no
internal resonance using the method of multiple scales
(MMS) to approximate the solutions of the NNMs.
They concluded that, in the coaxial mode of vibration,
the inner and outer carbon nanotubes vibrate with an
amplitude ratio that is “very close to unity.” Natsuki et
al. [16] also used a continuum Euler–Bernoulli beam
model to characterize DWCNTs of varying lengths of
inner and outer carbon nanotubes, and under free vibra-
tion. They investigated the natural frequencies of a
DWCNT up to the seventh mode of vibration and con-
cluded that vibrational frequencies decrease when the
length of either the inner or outer carbon nanotube is
increased, while the other is kept constant. The utility
of controlling the lengths of the inner and outer car-
bon nanotubes of DWCNTs is that they may operate at
different frequencies as desired.

Murmu et al. [17] used nonlocal Euler–Bernoulli
beam theory to model a DWCNT subjected to an axial
magnetic field. Their analytical solutionswere for natu-
ral frequencies of the DWCNTs under a magnetic field.
They concluded that for both coaxial and noncoax-
ial modes of vibrations, the presence of the longitu-
dinal magnetic field increases the natural frequencies.
Hajnayeb and Khadem [18] modeled DWCNTs using
Euler–Bernoulli beam theory to include linear damp-
ing, stretching terms, nonlinear intertube van derWaals
and nonlinear electrostatic forces. They applied a per-
turbation method and long-time integration method to
approximate for solutions for the amplitude–frequency
response under primary and secondary resonance con-
ditions. They concluded that, like single-walled carbon
nanotubes (SWCNTs), DWCNTs experienced soften-
ing and hardening behavior depending on the value of
DC voltage. Additionally, they remarked that when the
AC frequency is at either the coaxial or noncoaxial fre-
quency, the other mode is “damped out in the steady-
state response because of system damping.” Hudson
and Sinha [19] applied order reduction methods, i.e.,
modal domain analysis (MDA) and modified modal
domain analysis (MMDA), in atomistic simulations
to investigate the effects of defects on the vibrational
behavior of carbon nanotubes. They concluded that,
compared to MDA,MMDA results in a “valid and use-
ful approximation of the perturbed system” and both
are suitable tools for investigation of high-degree-of-
freedom systems.

In this paper, the amplitude–frequency response of
parametric resonance of cantilevered DWCNTs under
soft alternating current (AC) electrostatic actuation is
investigated. The AC frequency is near first coaxial
natural frequency. The electrostatic and intertube van
der Waals forces are nonlinear. Reduced-order models
(ROMs) [20,21] of up tofivemodes of vibration (terms)
are used to transform the partial differential equation of
motion into a system of ordinary differential equations.
The ROM using one mode of vibration is solved using
the method of multiple scales (MMS) [22]. In the ana-
lytical solution of MMS, the equations are coupled by
the intertube van derWaals force. A Taylor polynomial
is used to approximate the nonlinear electrostatic force
per unit length. The equations of motion are decoupled
in their linear part by using modal coordinates. These
coordinates are then used for the nonlinear problem,
and the amplitude–frequency response of the DWCNT
coaxial vibrations is reported. Also, numerical integra-
tions of ROMs using two, three, four and five modes of
vibration are utilized to investigate the parametric res-
onance of coaxial vibrations of DWCNTs. The effects
of voltage and damping parameters on the DWCNT
amplitude–frequency response are reported.

2 Differential equations of motion

Euler–Bernoulli elastic beam model, valid for struc-
tures with high length-to-diameter ratio [23], is used in
this work. The model of DWCNTs (Fig. 1) accounts
for electrostatic, damping and intertube van der Waals
forces. The governing partial differential equations of
motion are given by

ρA1
∂2y1
∂t2

+ E I1
∂4y1
∂x4

= fvdWT−T (1)

ρA2
∂2y2
∂t2

+ E I2
∂4y2
∂x4

= −b
∂y2
∂t

− fvdWT−T + felec

(2)

where y1 (x, t) and y2 (x, t) are the deflections, A1 and
A2 the cross-sectional areas, I1 and I2 cross-sectional
moments of inertia of inner and outer CNTs, respec-
tively, x the axial longitudinal coordinate, t time, ρ

density and b the damping per unit length coefficient.
The forces acting on the DWCNT are given at the right
side of Eqs. (1) and (2). The forces are: damping due to
viscosity, intertube van der Waals fvdWT−T and elec-
trostatic force felec. The subscripts 1 and 2 in Eqs. (1)
and (2) represent the inner and outer tubes, respectively.
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Fig. 1 DWCNT cantilever
under electrostatic, damping
and van der Waals forces

Table 1 Physical constants
[25]

Symbol Description Value (unit)

ε0 Permittivity of vacuum 8.85 × 10−12[C2/N/m2]
E Young modulus 1.0 × 1012 [N/m2]

C1 VdW interlayer coefficient 71.11 × 109 [N/m2]

C3 VdW interlayer coefficient 2.57 × 1031 [N/m4]

ρ Mass density 2.3 × 103 [kg/m3]

KB Boltzmann constant 1.38064852 × 10−23 [m2 kg/(s2K)]

N Avogadro’s number 6.022140857 × 1023 [mol−1]

Table 2 Fluid damping
conditions (dry air)

Symbol Description Value (unit)

P Absolute pressure 110 [Pa]

R Specific gas constant for dry air 287.05 [m2/(s2K)]

T Absolute temperature 300 [K]

d Mean diameter of air molecule 0.3 × 10−9[m]
Mm Molecular mass of dry air 0.02897 [kg/mol]

Due to the presence of a viscous (air) environment,
the damping force must be taken into account when
modeling the DWCNT. Since the viscous fluid comes
into direct contact with the outer tube, the damping is
assumed to be acting only on the outer tube. Damping
is considered to be proportional to the velocity of the
tube as follows fdamp = b · ∂y2/∂t . Bhiladvala and
Wang [24] provide a linear, fluid damping model that

relates pressure and temperature to the fluid damping
coefficient. A dry air medium under a pressure of 110
Pa (medium vacuum) and temperature of 300 K (room
temperature) is considered. The values for the physi-
cal constants and dry air conditions for fluid damping
afterward numerical simulations are given in Tables 1
and 2.
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The intertube force fvdWT−T provides the coupling
that introduces the two modes of vibration of a
DWCNT: coaxial (in-phase CNTs) and noncoaxial
(180◦ out-of-phase CNTs). A Taylor polynomial
describes the intertube van der Waals force as follows
[25]:

fvdWT−T = C1(y2 − y1) + C3(y2 − y1)
3 (3)

where C1 is the van der Waals interlayer interaction
coefficient of the linear term andC3 is the van derWaals
interlayer interaction coefficient of the cubic term.

Using a standard capacitancemodel of amultiwalled
carbon nanotube [13,26] and assuming that all charges
dominate and are applied only on the outer carbon nan-
otube due to the Faraday Cage Effect [27], the electro-
static force per unit length is given by [2,13]:

felec = πε0V 2

R2

√
r̂2(r̂2+2R2)

R2
2

ln2
[
1 + r̂2

R2
+
√

r̂2(r̂2+2R2)

R2
2

]

(4)

where ε0 is the permittivity of vacuum, R2 is the radius
of the conducting outer tube and r̂2 is the distance from
the ground plate (graphite sheet) to the bottom of the
outer carbon nanotube (Fig. 1). TheAC voltage is given
by

V = V0 cosΩt (5)

where V0 and Ω are the amplitude and circular fre-
quency of the AC voltage, respectively. The gap g is
the distance from the graphite sheet to the center of the
DWCNT (Fig. 1), and it is given by:

g = y2 + R2 + r̂2 (6)

Consider the following dimensionless variables:

wn = yn
g

; z = x

�
; τ = t

�2

√
E I2
ρA2

(7)

where n = 1, 2, � is the length of theDWCNT;w, z and
τ are dimensionless deflection, dimensionless longitu-
dinal coordinate and dimensionless time, respectively;
and y, x and t are their corresponding dimensional vari-
ables. Substituting Eqs. (5) and (7) into Eqs. (1) and (2),

the following system of dimensionless partial differen-
tial equations of motion result:

⎧⎪⎨
⎪⎩

A∗ ∂2w1
∂τ 2

+ I ∗ ∂4w1
∂z4

= f̄vdWT−T
∂2w2
∂τ 2

+ ∂4w2
∂z4

= −b∗ ∂w2
∂τ

− f̄vdWT−T

+ δ f̄elec cos2 Ω∗τ
(8)

where the dimensionless intertube van der Waals force
f̄vdWT−T and electrostatic force f̄elec are given by

f̄vdWT−T = C∗
1 (w2 − w1) + C∗

3 (w2 − w1)
3 (9)

f̄elec =
[
(1 − w2)

2 − s22

]− 1
2

× ln−2

(
1 − w2

s2
+
√

(1 − w2)2

s22
− 1

)

(10)

and s2 = R2/g. The dimensionless electrostatic force
Eq. (10) is approximated using a third degree Taylor
polynomial as follows:

f̄elec(w2) =
3∑

k=0

αkw
k
2 (11)

Dimensionless area A∗, dimensionless moment of
inertia I ∗, dimensionless coefficients C∗

1 and C∗
3 of

linear and cubic terms of intertube van der Waals
force, dimensionless damping b∗, dimensionless volt-
age parameter δ and dimensionless AC frequency Ω∗
of Eq. (8) are given by:

A∗ = A1

A2
, I ∗ = I1

I2
, C∗

1 = C1�
4

E I2
,

C∗
3 = C3g2�4

E I2
δ = πε0�

4V 2
0

E I2g2
,

Ω∗ = Ω�2

√
ρA2

E I2
, b∗ = b�2√

ρA2E I2
(12)

Tables 1 and 3 give the values of the physical con-
stants and dimensional parameters of theDWCNTused
for the afterward numerical simulations. The areas and
moments of inertia are calculated as follows (Fig. 2):

An = π
[
(Ri + h/2)2 − (Ri − h/2)2

]
(13)

In = π

4

[
(Ri + h/2)4 − (Ri − h/2)4

]
(14)

where n = 1, 2 and h is the effective thickness of each
tube in the DWCNT.
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Table 3 Dimensional parameters of the system [13]

Symbol Description Value (unit)

� Length of CNT 200 × 10−9 [m]

R1 Inner tube radius 0.35 × 10−9 [m]

R2 Outer tube radius 0.70 × 10−9 [m]

Req Interlayer equilibrium spacing 0.34146 × 10−9 [m]

h Effective thickness 0.34 × 10−9 [m]

g Gap CNT plate 50 × 10−9 [m]

Fig. 2 DWCNT cross section

3 Modal coordinate transformation

The two concentric CNTs are coupled through the
intertube van der Waals force. Modal coordinates are
used to decouple the linearized system of partial dif-
ferential equations of motion, not to include damping,
resulting from Eq. (8). Then the modal coordinates
are substituted into the partial differential equations of
motion (Eqs. (8)). This way, the differential equations
of motion are written in terms of modal coordinates,
denoted by r . Consider the linearized system of par-
tial differential equations resulting from Eq. (8), i.e.,
DWCNT system under free vibration to include the
linear van der Waals force being applied:

⎧⎨
⎩

A∗ ∂2w1
∂τ 2

+ I ∗ ∂4w1
∂z4

= −C∗
1 (w1 − w2)

∂2w2
∂τ 2

+ ∂4w2
∂z4

= C∗
1 (w1 − w2)

(15)

Assume the deflections of the inner and outer tubes as
follows:

w1 = u1(τ )φ1(z); w2 = v1(τ )φ1(z) (16)

where φ1(z) is the first cantilever mode shape and u1
and v1 are functions of time of the inner and outer tubes,
respectively. Assume

u1 (τ ) = A cosω1I τ ; v1 (τ ) = B cosω1Oτ (17)

where A andω1I , and B andω1O are the amplitudes and
natural frequencies of the inner and outer tubes, respec-
tively. To find the natural frequencies of the CNTs, the
right sides of Eq. (15) are equated to zero, i.e., free
vibrations not to include van der Waals forces. Sub-
stituting Eqs. (16) and (17) into Eq. (15) yields the
following:

{
I ∗φ(4)(z) = A∗ω2

1Iφ(z)
φ(4)(z) = ω2

1Oφ(z)
(18)

From Eq. (18), the following relationship can be estab-
lished:

ω2
1O = A∗

I ∗ ω2
1I (19)

Substituting Eqs. (16–19) into Eq. (15) yields the fol-
lowing system of second-order ordinary differential
equations:

{
A∗ü1 + A∗ω2

1I u1 = C∗
1 (v1 − u1)

v̈1 + ω2
1Ov1 = C∗

1 (u1 − v1)
(20)

Equation (20) is rewritten as follows:

M

[
ü1
v̈1

]
+ K

[
u1
v1

]
=
[
0
0

]
(21)

where M is the mass matrix and K is the stiffness
matrix. M and K are as follows:

M =
[
A∗ 0
0 1

]
, K =

[
C∗
1 + A∗ω2

1I −C∗
1

−C∗
1 C∗

1 + ω2
1O

]

(22)
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Table 4 Coordinate transformation constants 1T ROM

Symbol c d e f

Value 0.81649 1.15470 0.81649 −0.57735

The mass-normalized stiffness matrix is given by:

K̃ = M− 1
2 KM− 1

2 (23)

Solving the symmetric eigenvalue problemdet(K̃−λI )
yields λ1,λ2 and V1,V2, the eigenvalues and eigenvec-
tors of the system, respectively. The P-matrix is con-
structed as follows:

P = [
V1 V2

]
(24)

Matrix S that transforms the coordinate system from
the u-coordinates to modal r -coordinates is given by

S = M− 1
2 P (25)

Therefore, the modal coordinate transformation for the
DWCNT system is given by u = Sr, and it can be
written as follows:

[
u1
v1

]
=
[
c d
e f

] [
r1
r2

]
(26)

where c, d, e and f are components of the matrix S.
They are given in Table 4. Using Eq. (26), Eq. (8)
becomes:

r̈ + Λr = PT M− 1
2 F(r), Λ =

[
ω̄2
1 0

0 ω̄2
2

]
(27)

where F(r) is the column matrix of applied forces
found at the right-hand side of Eq. (8), ω̄1 and ω̄2 are
the DWCNT’s coaxial and noncoaxial frequencies of
resonance, 3.07309 and 29660.65309, respectively, and
r = [r1r2]T . One should mention that r1, r2 are coaxial
and noncoaxial modal coordinates, respectively. More-
over, F(r) is the columnmatrix F of the applied forces
after the substitution of modal coordinate transforma-
tion given by Eq. (26). To be able to use Eq. (27) with
nonlinear terms, Eq. (16) is substituted into Eq. (8)
which is then multiplied by the operator

∫ 1
0 ·φ1(z)dz.

The following coefficients result:

Table 5 g-coefficients for first natural frequency [28]

Symbol i = 0 i = 1 i = 2 i = 3

gi 0.7830 1.0000 1.4778 2.3488

gk =
1∫

0

φk+1
1 (z)dz (28)

These coefficients have been previously calculated by
Caruntu and Knecht [28] (Table 5).

4 Method of multiple scales (MMS)

To investigate the parametric resonance of DWCNTs,
MMS is used to solve the r -coordinate system of differ-
ential equationswhere solutions of zero- and first-order
problems may be found more readily. Consider b∗ and
δ to be small, i.e., the system is under soft excitation
and small damping. The intertube coefficients may not
be assumed to be small; in fact, they are large coeffi-
cients. Setting the small parameters to a slow timescale
by multiplying them by ε, a small dimensionless book-
keeping parameter (Eq. (27)) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r̈1 + ω̄2
1r1 = cC∗

3 (er1 + f r2 − cr1 − dr2)3 g3
+e
[
C∗
3 (cr1 + dr2 − er1 − f r2)3 g3 − εb∗(eṙ1

+ f ṙ2) + εδ
∑3

k=0 αkgk(er1 + f r2)k cos2 Ω∗τ
]

r̈2 + ω̄2
2r2 = dC∗

3 (er1 + f r2 − cr1 − dr2)3 g3
+ f

[
C∗
3 (cr1 + dr2 − er1 − f r2)3 g3 − εb∗(eṙ1

+ f ṙ2) + εδ
∑3

k=0 αkgk(er1 + f r2)k cos2 Ω∗τ
]

(29)

where the values of coefficients αk are given in Table 6.
Consider fast T0 = τ and slow T1 = ετ timescales, and
first-order expansions of r1 and r2 as follows:{
r1 = r10 + εr11
r2 = r20 + εr21

(30)

where r10, r20, and r11, r21 are the zero-order and first-
order approximation solutions, respectively. The time

Table 6 Taylor expansion coefficients of Eq. (4)

Symbol i = 0 i = 1 i = 2 i = 3

αi 0.04062 0.0570 0.07016 0.08193
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derivative is then expressed in terms of derivatives with
respect to the fast and slow scales:

∂

∂τ
= D0+εD1; ∂2

∂τ 2
= D2

0+2εD0D1; Di = ∂

∂Ti
(31)

Substituting Eqs. (30) and (31) into Eq. (29), it results:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
D2
0 + 2εD0D1

)
(r10 + εr11) + ω̄2

1 (r10 + εr11)
= cC∗

3

[
e (r10 + εr11) + f (r20 + εr21)

−c (r10 + εr11) − d (r20 + εr21)
]3
g3

+e
{
C∗
3

[
c (r10 + εr11) + d (r20 + εr21)

−e (r10 + εr11) − f (r20 + εr21))
]3
g3

−εb∗[e (D0 + εD1) (r10 + εr11)
+ f (D0 + εD1) (r20 + εr21)

]
+εδ

∑3
k=0 αkgk

[
e (r10 + εr11)

+ f (r20 + εr21)
]k cos2 Ω∗T0

}
(
D2
0 + 2εD0D1

)
(r20 + εr21) + ω̄2

2 (r20 + εr21)
= dC∗

3 [e (r10 + εr11) + f (r20 + εr21)
−c (r10 + εr11) − d (r20 + εr21)]3g3
+ f

{
C∗
3

[
c (r10 + εr11) + d (r20 + εr21)

−e (r10 + εr11) − f (r20 + εr21)
]3
g3

−εb∗[e (D0 + εD1) (r10 + εr11)
+ f (D0 + εD1) (r20 + εr21)

]
+εδ

∑3
k=0 αkgk

[
e (r10 + εr11)

+ f (r20 + εr21)
]k cos2 Ω∗T0

}
(32)

From Eq. (32), the following two problems result, the
zero-order problem

ε0 :

⎧⎪⎪⎨
⎪⎪⎩

D2
0r10 + ω̄2

1r10 = (c − e)C∗
3g3

(er10 + f r20 − cr10 − dr20)3

D2
0r20 + ω̄2

2r20 = (d − f )C∗
3g3

(er10 + f r20 − cr10 − dr20)3

(33)

and first-order problem:

ε1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D2
0r11 + ω̄2

1r11 = −2D0D1r10
−eb∗ (eD0r10 + f D0r20) + eδ

∑3
k=0 αkgk

(er10 + f r20)k cos2 Ω∗T0
D2
0r21 + ω̄2

2r21 = −2D0D1r20
− f b∗ (eD0r10 + f D0r20) + f δ

∑3
k=0 αkgk

(er10 + f r20)k cos2 Ω∗T0
(34)

Fig. 3 Free response of the coaxial vibrational mode of the free
end z = 1 of DWCNT

In order to solve the zero-order problem (Eq. (33)),
consider r10 and r20 to be as follows:

{
r10 = p(T1)

[
eiωT0 + e−iωT0

]
r20 = q(T1)

[
eiωT0 + e−iωT0

] (35)

and use the harmonic balance method (HBM). Sub-
stituting Eq. (35) into Eq. (33) and multiplying by∫ ·2π/ω

0 cos (ωt) dT0, the following system of equations
results:

{
m[(e − c)p + ( f − d)q]3 = (

ω̄2
1 − ω2

)
pμ1

m[(e − c)p + ( f − d)q]3 = (
ω̄2
2 − ω2

)
qμ2

(36)

where

μ1 = 2
c−e

∫ 2π
ω

0 cos2 (ωT0) dT0

μ2 = 2
d− f

∫ 2π
ω

0 cos2 (ωT0) dT0

m = 8C∗
3g3

∫ 2π
ω

0 cos4 (ωT0) dT0

(37)

Solving Eq. (36) for amplitudes p and q yields the
amplitude–frequency response for free vibration. Two
cases result in coaxial vibrations [25], i.e., the inner and
outer tubesmove together synchronouslywith the same
amplitude (Fig. 3), and noncoaxial vibrations, i.e., the
inner and outer tubes move in opposite phase (Fig. 4).
This work deals with coaxial vibrations. In this case,
the following conclusion can be reached u1 = u2 [14]
(Eq. (26)):

e · r10 + f · r20 − c · r10 − d · r20 = 0 (38)
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Fig. 4 Free response of the noncoaxial vibrational mode of the
free end z = 1 of DWCNT

4.1 Coaxial parametric resonance

For coaxial parametric resonance, the AC frequency
Ω∗ is near coaxial frequency ω̄1:

Ω∗T0 = ω̄1T0 + σT1 (39)

where σ is the detuning parameter for the frequency
of actuation. Substituting Eq. (35) with ω = ω̄1 into
Eq. (34) and rewriting the amplitudes in polar form

p = 1

2
a1e

iβ, q = 1

2
a2e

iβ (40)

yield the following secular terms expression equated to
zero:

−iω̄1a
′
1 − iω̄1a1(iβ

′) − 1

2
iω̄1e

2b∗a1

+1

8
α1δe

2g1
(
2 + e2i(σT1−β)

)
a1

+ 1

16
α3δe

4g3
(
3 + 2e2i(β−σT1)

)
a31 = 0 (41)

Denote

γ = σT1 − β (42)

Applying steady-state assumptions γ ′ = a′
1 = 0,

the imaginary and real components of Eq. (41) yield
zero-amplitude steady-state solutions and nonzero-

amplitude steady-state solutions given by the following
amplitude–frequency a1, σ equations:

a1 =
√
8e2b∗ω̄1

α3δe4g3
· 1

sin 2γ
− 2α1g1

α3e2g3
(43)

σ = −α1δe2g1
8ω̄1

(2 + cos 2γ )

−α3δe4g3
16ω̄1

[
3 + 2 cos 2γ

]
a21 (44)

5 Reduced-order model (ROM)

Reduced-order models (ROMs) with up to six modes
of vibration are used in this paper. Equation (8) can be
written as follows:

⎧⎨
⎩

A∗ ∂2w1
∂τ 2

+ I ∗ ∂4w1
∂z4

= f̄vdWT−T
∂2w2
∂τ 2

+ ∂4w2
∂z4

= −b∗ ∂w2
∂τ

− f̄vdWT−T + δ cos2 Ω∗τ∑5
k=0 akw

k
2

(45)

in which the electrostatic force felec is approximated
by a fifth-degree Taylor polynomial in the denomina-
tor. This way, the singularities of the electrostatic force
felec are approximated and not lost as in the case of Tay-
lor polynomial in the numerator approximation [2]. 5T
ROM ismore accurate for bothweak and strong nonlin-
earities, as well as for both small and large amplitudes.
ROM accuracy increases with the number of modes of
vibrations considered. The solutions of the dimension-
less deflections are assumed as follows:

⎧⎪⎪⎨
⎪⎪⎩

w1(z, τ ) =
N∑
i=1

ui (τ )φi (z)

w2(z, τ ) =
N∑
i=1

vi (τ )φi (z)
(46)

where N is the number of ROM terms (modes of vibra-
tion), ui and vi are the time functions to be determined
and φi are cantilever mode shapes. Note that φi (1) is
the value of the mode shape at the tip (free end) of the
DWCNT resonator. Substituting Eq. (46) into Eq. (45)
and multiplying the second equation by

∑5
k=0 akw

k
2,

and then multiplying the entire system of equations by
the operator

∫ 1
0 ·φn(z)dz yield:
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Table 7 Coefficients of electrostatic denominator
∑5

k=0 akw
k
2

Symbol i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

ai 24.6170 −34.5454 5.96045 1.65281 0.74268 0.41202

Table 8 Coordinate transformation constants for 5T ROM

Symbol i = 1 i = 2 i = 3 i = 4 i = 5

ci 0.81649658 0.81649679 0.81649824 0.81650298 0.81651408

di 1.15470053 1.15470038 1.15469935 1.15469600 1.15468816

ei 0.81649657 0.81649647 0.81649574 0.81649337 0.81648782

fi − 0.57735027 − 0.57735041 − 0.57735144 − 0.57735479 − 0.57736264

A∗
N∑
i=1

∂2ui
∂τ 2

hni = −I ∗
N∑
i=1

ω2
i ui hni

+ c∗
1

(
N∑
i=1

vi hni −
N∑
i=1

ui hni

)

+ c∗
3

(
N∑
i=1

vi hni −
N∑
i=1

ui hni

)3

(47)

N∑
i=1

∂2vi

∂τ 2

⎛
⎝a0hni +

5∑
k=1

ak

N∑
j1... jk=1

v j1...v jk hni j1... jk

⎞
⎠

= −b∗
N∑
i=1

∂vi

∂τ

⎛
⎝a0hni +

5∑
k=1

ak

N∑
j1... jk=1

v j1...v jk hni j1... jk

⎞
⎠

−
N∑
i=1

ω2
i vi

⎛
⎝a0hni +

5∑
k=1

ak

N∑
j1... jk=1

v j1...v jk hni j1... jk

⎞
⎠

− c∗
1

[
N∑
i=1

(vi − ui ) (a0hni

+
5∑

k=1

ak

N∑
j1... jk=1

v j1...v jk hni j1... jk

⎞
⎠
⎤
⎦

− c∗
3

[
N∑
i=1

(vi − ui )
3 (a0hni

+
5∑

k=1

ak

N∑
j1... jk=1

v j1...v jk hni j1... jk

⎞
⎠
⎤
⎦

+ δhn cos
2 Ω∗τ (48)

where n = 1, 2, . . ., N and i , j1 . . . jk = 1, 2, . . ., N .
The values of ak coefficients are given in Table 7, and
coefficients h are as follows:

hn =
1∫

0

φndz, hni =
1∫

0

φiφndz, hni j1

=
1∫

0

φiφ j1φndz · · · hni j1... jk

=
1∫

0

φiφ j1 . . . φ jkφndz (49)

One should notice that hni = δni where δni is Kro-
necker’s delta. In the case of an N -term ROM, the
linearized system of differential equations, similar to
Eq. (20), is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗ · · · 0 0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 · · · A∗ 0 · · · 0
0 · · · 0 1 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ü1
.
.
.

üN

v̈1

.

.

.

v̈N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗
1 + I ∗ω2

1I · · · 0 −c∗
1 · · · 0

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 · · · C∗
1 + I ∗ω2

N I 0 · · · −c∗
1

−c∗
1 · · · 0 C∗

1 + ω2
1O · · · 0

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 · · · −c∗
1 0 · · · C∗

1 + ω2
NO

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
.
.
.

vN

u1
.
.
.

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.
.
.

0
0
.
.
.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)
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Following the same modal analysis procedure outlined
in Eqs. (21–25), the modal coordinate transformation
for an N -term ROM becomes:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

uN

v1
...

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 · · · 0 d1 · · · 0
...

. . .
...

...
. . .

...

0 · · · cN 0 · · · dN
e1 · · · 0 f1 · · · 0
...

. . .
...

...
. . .

...

0 · · · eN 0 · · · fN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11
...

r1N
r21
...

r2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51)

where the square matrix consists of four diagonal
sub-matrices. Coefficients ci , di , ei and fi are given
in Table 8. Subsequently, substituting Eq. (51) into
Eq. (46), a ROM is constructed in the modal r -
coordinate system as:

⎧⎪⎪⎨
⎪⎪⎩

w1(z, τ ) =
N∑
i=1

(cir1i + dir2i )(τ )φi (z)

w2(z, τ ) =
N∑
i=1

(eir1i + fi r2i )(τ )φi (z)
(52)

From Eqs. (27) and (38), the modal ROM system of
equations in modal r -coordinate is as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i=1 r̈1iφi (z) + b∗∑N

i=1 e
2
i ṙ1iφi (z)

+b∗∑N
i=1 ei fi ṙ2iφi (z) +∑N

i=1 ω̄2
1i r1iφi (z)

= ∑N
i=1

ei δV 2
t∑5

k=0 ak [(ei r1i+ fi r2i )φi (z)]k

N∑
i=1

r̈2iφi (z) + b∗∑N
i=1 ei fi ṙ1iφi (z)

+b∗∑N
i=1 f 2i ṙ2iφi (z) +∑N

i=1 ω̄2
2i r2iφi (z)

=
N∑
i=1

ei δV 2
t∑5

k=0 ak [(ei r1i+ fi r2i )φi (z)]k

(53)

This system of equations for N = 1, 2, 3, 4 is numeri-
cally integrated usingMATLAB in order to predict time
responses of the system andAUTO-07P in order to pre-
dict the amplitude–frequency response of the system.
CNT deflections w1(z, τ ) and w2(z, τ ) (Eq. 52) can
be written as the sum of coaxial modal deflection and
noncoaxialmodal deflection. The coaxialmodal deflec-
tions w11N (z, τ ) and w21N (z, τ ) contain the coax-
ial modal coordinates r1i (τ ), while the noncoaxial
modal deflections w12N (z, τ ) and w22N (z, τ ) contain
the noncoaxial modal coordinates r2i (τ ). Therefore,
the CNT deflections can be written (decomposed) as

w1 = w11N + w12N and w2 = w21N + w22N , for N
terms ROM used, where

w11N (z, τ ) =
N∑
i=1

ci · r1i (τ )φi (z),

w12N (z, τ ) =
N∑
i=1

di · r2i (τ )φi (z)

w21N (z, τ ) =
N∑
i=1

ei · r1i (τ )φi (z),

w22N (z, τ ) =
N∑
i=1

fi · r2i (τ )φi (z) (54)

For instance, w12N (z, τ ) is the noncoaxial modal
deflection of w1 of inner CNT containing the r2i (τ )

noncoaxial modal coordinates, for N terms ROM. The
reason for this decomposition is the later use of modal
truncation method [29-31] for N = 5, 6, i.e., 5T ROM
and 6T ROM. In this method, modes of frequency far
from excitation frequency can be neglected. Truncated
models reduce the size of the ROM and therefore allow
for numerical simulations of ROMs with larger num-
ber N of modes, such as 5T ROM and 6T ROM. In this
work, the terms w12N and w22N containing the non-
coaxial modal coordinates r2i (τ ) in the tested cases are
shown to be negligible and therefore to not contradict
the truncation method. Therefore, only coaxial modal
coordinates r1i (τ ), i = 1, 2, . . .N , are significant. In
modal truncation method, the noncoaxial modal coor-
dinates r2i (τ ) are neglected, as well as their differential
equations. This way, the system of Eq. (53) is replaced
by the truncated model

N∑
i=1

r̈1iφi (z) + b∗
N∑
i=1

e2i ṙ1iφi (z) +
N∑
i=1

ω̄2
1i r1iφi (z)

=
N∑
i=1

eiδV 2
t∑5

k=0 ak [eir1iφi (z)]k
(55)

Similar to Eqs. (47)–(48), Eq. (55) is multiplied by the
denominators at the right-hand side. Then, the resulting
equation ismultiplied byφn(z) and integrated from 0 to
1, n = 1, 2, . . ., N , resulting in a system of N second-
order differential equations

123



Voltage effect on amplitude–frequency response of parametric resonance 3105

N∑
i=1

∂2r1i
∂τ 2

⎛
⎝ N∑

j1=1

a0hnj1

+
5∑

k=1

ak

N∑
j2... jk=1

e j2...e jk r1 j2...r1 jk hnj1 j2... jk

⎞
⎠

= −b∗
N∑
i=1

e2i
∂vi

∂τ

⎛
⎝ N∑

j1=1

a0hnj1

+
5∑

k=1

ak

N∑
j2... jk=1

e j2...e jk r1 j2...r1 jk hnj1 j2... jk

⎞
⎠

−
N∑
i=1

ω̄2
1ivi

⎛
⎝ N∑

j1=1

a0hnj1

+
5∑

k=1

ak

N∑
j2... jk=1

e j2...e jk r1 j2...r1 jk hnj1 j2... jk

⎞
⎠

+
N∑
i=1

eiδhn cos
2 Ω∗τ (56)

Besides n = 1, 2, . . ., N , the subscripts j1, j2 . . . jk =
1, 2, . . ., N . The values of ak coefficients are given in
Table 7, and coefficients h are as follows:

hn =
1∫

0

φndz, hnj1 =
1∫

0

φ j1φndz, hnj1 j2

=
1∫

0

φ j1φ j2φndz · · · hnj1 j2... jk

=
1∫

0

φ j1φ j2 . . . φ jkφndz (57)

6 Numerical simulations

AUTO-07P, a software package for continuation and
bifurcation, is utilized to calculate ROMs’, N =
2, 3, 4, 5, 6, solutions and predict the frequency–
amplitude response. To investigate solutions of higher
amplitudes, and validate those of small amplitudes,
ROMs with a larger number of modes of vibration are
used. While it is more accurate at higher amplitudes,
these ROMs are computationally demanding.

MATLAB software is used to plot the amplitude–
frequency response predicted by MMS which is a per-

turbation technique [32–34] utilized due to the ease of
identifying amplitude–frequency responses for weak
nonlinearities and small amplitudes. MMS provides
an approximate analytical solution for ROM with one
mode of vibration.

MATLAB is also used to numerically integrate
ROMs and predict time responses of the structure.
In this work, time responses for specified parameters
are obtained using a MATLAB ODE solver, namely
ode15s. One should mention that ode15s is a “multi-
step, variable-order solver based on numerical differ-
entiation formulas” [35,36].

Figure 5 shows the amplitude–frequency response
of the DWCNT under parametric resonance using 5T
ROM and a direct comparison with MMS. Dash and
solid lines represent the unstable and stable solutions,
respectively. This response is characterized by two
Hopf bifurcations: subcriticalwith the bifurcation point
at A and supercritical with the bifurcation point at
B. Both methods, 5T ROM solved using AUTO-07P
and 1T ROM solved using MMS, are in agreement for
amplitudes less than 0.5 of the gap.However, for ampli-
tudes larger than 0.5 of the gap MMS overestimates
both the stable and the unstable steady-state ampli-
tudes. (MMS branches are above 5T ROM branches.)
This is expected sinceMMS is valid only for weak non-
linearities to include small amplitudes (small geomet-
ric nonlinearities). For 5T ROM, the unstable branch
(left) of the subcritical bifurcation divides the area into
two distinct regions. For initial amplitudes below the
dash line, the system settles to zero amplitudes, while
for initial amplitudes above the dash line the resonator
is “pulled in” to the ground plate or settles to large
amplitudes. For frequencies below that of point C , the
MEMS resonator settles to zero amplitude regardless
of initial amplitude. For frequencies between those of
point A and D, the resonator is pulled in regardless of
initial amplitude. One can observe that for amplitudes
less than 0.5 of the gap, the ROM and MMS are in
excellent agreement. MMS underestimates the soften-
ing effect and does not predict the pull-in phenomenon
from large amplitudes, points C and D.

Figure 6a–d shows time responses of the tip of the
DWCNT resonator using 5TROMfor b∗ = 0.0003 and
δ = 0.15 considering various initial amplitudes and
values of detuning frequency, where u = w1(1, τ ) and
v = w2(1, τ ). They are in excellent agreement with the
frequency responses from 5T ROM AUTO and MMS,
as shown in Fig. 5. Pull-in phenomena are evidenced in
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Fig. 5 Amplitude–
frequency response,
parametric resonance, using
five terms (5T) ROM
(present work) and MMS,
b∗ = 0.0003, δ = 0.15

Fig. 6 Time response using
5T ROM for DWCNT
resonator for AC frequency
near natural frequency;
b∗ = 0.0003, δ = 0.15, a
initial amplitude U0 = 0.25,
σ = −0.001, b initial
amplitude U0 = 0.9,
σ = −0.001, c initial
amplitude U0 = 0.1,
σ = −0.0004, d initial
amplitude U0 = 0.25,
σ = 0

(a) (b)

(c) (d)

Fig. 6b, c, while attenuation to zero-amplitude results is
shown in Fig. 6a, d. One should mention that pull-in is
reached when the dimensionless amplitude of the tip of
the DWCNT reaches 1, i.e., the dimensional amplitude
reaches the value of the gap, so the DWCNT makes
contact with the ground plate. The observed beating
behavior is typical in the transient response nonlinear

oscillators subjected to harmonic forcing [37,38]. It
is important to note that a large enough time span is
chosen for each case in order for the responses to reach
a steady-state solution.
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Fig. 7 Time response using
1T ROM for DWCNT
resonator for AC frequency
near natural frequency.
Initial amplitude U0 = 0.05,
b∗ = 0.0003, δ = 0.15,
σ = 0. a r1i only, b r2i only

(a)

(b)

7 Discussion and conclusions

This work predicted the effects of voltage and damp-
ing on amplitude–frequency of coaxial parametric res-
onance of cantilever DWCNTs. Five ROMs using one
through five modes of vibration were developed and
used. All ROMs were expressed in terms of modal
coordinates of the DWCNT. Modal coordinates have
been found using undamped DWCNT to include linear
intertube van derWaals forces. Twomodes of vibration
resulted: coaxial and noncoaxial. The coaxial mode of
vibration was investigated.

The ROM using one mode of vibration was solved
using the method of multiple scales in order to obtain
the amplitude–frequency response. All other ROMs
using one through five modes of vibration were solved
either through numerical integration in MATLAB in
order to obtain time responses [20–22,28,39], or using
AUTO-07P, a software package for continuation and
bifurcation, in order to obtain the amplitude–frequency
response. All methods are in agreement for amplitudes
lower than 0.5 of the gap. For larger amplitudes, only
ROM using five modes of vibration predicts accurately
the behavior of the DWCNT. Increasing voltage and/or
decreasing damping results in a larger range of frequen-
cies for which pull-in occurs.

In Figs. 7, 8, 9 and 10, the modal truncation method
is tested. Numerical investigation conducted using 1T,

2T, 3T and 4T ROMs of parametric resonance of coax-
ial vibrations in which the response of the resonator,
investigation that includes both coaxial r1i (τ ) and non-
coaxial r2i (τ )modal coordinates, i.e., full-order modal
system, is shown not to contradict the modal trunca-
tion method (includes only coaxial r1i (τ ) modal coor-
dinates) that was used for 5T and 6T ROMs. Time
responses for b∗ = 0.0003, δ = 0.15, small initial
amplitude U0 = 0.05 and zero detuning frequency
have been simulated for 1T–4T ROMs, respectively.
Modal deflections, coaxial w11N and w21N , and non-
coaxial w12N and w22N , represented in Figs. 7, 8, 9
and 10 are the decomposition of Eq. (52) as shown in
Eq. (54) that relate the modal coordinates to the dimen-
sionless deflections. One can notice that all noncoaxial
modal deflections w12N and w22N of inner and outer
CNTs, respectively, for all ROMs N = 1, 2, 3, 4, are in
the 10−12 order of magnitude, while the coaxial modal
deflections w11N and w21N are in the 10−2 order of
magnitude. Then, Figs. 7, 8, 9 and 10 do not contra-
dict the fact that noncoaxial modal coordinates r2i (τ )

can be neglected, since they do not have any effect on
the deflections of Eq. (52). So, this does not contradict
the modal truncation method in which the noncoaxial
modal coordinates r2i (τ ), and their differential equa-
tions, can be neglected. Therefore, the tip deflection of
the DWCNT resonator may be defined satisfactorily by
considering only the coaxial modal coordinates r1i (τ ).
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Fig. 8 Time response using
2T ROM for DWCNT
resonator for AC frequency
near natural frequency.
Initial amplitude U0 = 0.05,
b∗ = 0.0003, δ = 0.15,
σ = 0. a r1i only, b r2i only

(a)

(b)

Fig. 9 Time response using
3T ROM for DWCNT
resonator for AC frequency
near natural frequency.
Initial amplitude U0 = 0.05,
b∗ = 0.0003, δ = 0.15,
σ = 0. a r1i only, b r2i only

(a)

(b)

Since the AC actuation frequency is near the first natu-
ral frequency of the coaxial vibration, the coaxial reso-
nant case investigated in this paper is far from the non-
coaxial resonance and thus devoid of any internal reso-
nance. From perturbation methods, such as MMS, the
nonresonant mode, i.e., noncoaxial mode, is “damped
out” after steady-state assumptions are made [18]. The
concept of modal system reduction is also known as

modal truncation, with the general basis that “certain
modes occur at frequencies well outside the system’s
domain of operating frequencies…these modes can be
safely removed from the model with minimal approx-
imation error since they [do] not contribute much to
the relevant dynamics of the system” [29–31]. More-
over, the full-order modal responses were numerically
compared with their modally truncated (no r2) models
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Fig. 10 Time response
using 4T ROM for DWCNT
resonator for AC frequency
near natural frequency.
Initial amplitude U0 = 0.05,
b∗ = 0.0003, δ = 0.15,
σ = 0. a r1i only, b r2i only

(a)

(b)

Fig. 11 ROM AUTO convergence of the amplitude–frequency
response forDWCNTresonator using two terms (2TROM), three
terms (3TROM),…and six terms (6TROM).AC frequency near
natural frequency. b∗ = 0.0001, δ = 0.15

for time responses and bifurcation diagrams for 1T–
4T ROMs. There was no significant difference. The
errors were observed in the 10−12 range. Therefore,
for higher-order ROM, the expansions are performed
using only r1i (τ ), which not only reduces the system of
equations by half, but also reduces computational time
in the MATLAB time responses.

Figure 11 illustrates the convergence of the ROM
method. Using numerical simulation with AUTO-07P,

the number of terms considered is between two and
six. One can see that the difference between 5T ROM
AUTOand 6TROMAUTO is in the 10−3 order ofmag-
nitude, meaning that tip deflections can be achieved
with adequate accuracy by 5TROMwith reduced com-
putational time. Between the two bifurcation points,
the zero-amplitude steady states are unstable, and the
system either experiences pull-in or settles to nonzero
steady-state amplitudes on the stable branch, regardless
of the initial amplitude.

Figure 12 shows the solution convergence to increas-
ing the degree of the Taylor polynomial in the denom-
inator for ROM, Eq. (45). Similar to the term conver-
gence shown in Fig. 11, a numerical solution conver-
gencemay be seen in the fifth degreeTaylor polynomial
approximation of the electrostatic force in the denom-
inator.

Figure 13 shows the effect of applied voltage on the
amplitude–frequency response. The voltage parameter
δ has a significant effect on the response. Increasing the
voltage parameter increases the distance between the
Hopf bifurcations; therefore, the range of frequencies
forwhich the systemexperiences pull-in is significantly
larger. Also, both branches shift to lower frequencies,
the unstable branch more than the stable branch. Fur-
thermore, increasing the voltage parameter shows an
increase in softening effect.
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2nd-degree
3rd-degree
4th-degree
5th-degree

Fig. 12 ROM AUTO Taylor polynomial degree of the denom-
inator convergence for the amplitude–frequency response of
DWCNT resonator using five terms (5T ROM). AC frequency
near natural frequency. b∗ = 0.0003, δ = 0.15

Fig. 13 Effect of applied voltage, δ, on frequency response,
MMS and ROM AUTO

Figure 14 illustrates the effect of dimensionless
damping on the amplitude–frequency response. As
damping increases, the distance between the subcritical
and supercritical Hopf bifurcations decreases, until the
unstable and stable branches coalesce for high enough
damping coefficients. Increasing damping reduces the
range of frequencies for which the DWCNT undergoes
large amplitudes or pull-in.

The applicability of Euler–Bernoulli beam model-
ing over molecular dynamics (MD) methodology and
nonlocal continuummechanics (small-scale effect) has
been comprehensibly discussed in the study of elec-
trostatically actuated single-walled carbon nanotubes

Fig. 14 Effect of dimensionless damping, b∗, on frequency
response, MMS and ROM AUTO

[2]. It has been shown that the small-scale effect does
not have a significant influence on the fundamental fre-
quencies of long slender carbon nanotubes [2].Amodel
limitation is that this investigation does not account for
thermal vibrations that arise from an axial load induced
by thermal expansion [40]. Also, this work does not
include the effects of various parameters on natural fre-
quencies. Elishakoff [41] reported on fundamental nat-
ural frequencies of double-walled carbon nanotubes,
and Ouakad and Younis [42] reported on the effects of
slack and DC voltage on natural frequencies of initially
curved carbon nanotube resonators.
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