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Abstract In this paper,we consider nonlinear dynam-
ics with continuously distributed lags. A generaliza-
tion of the logistic equation, its solution and eco-
nomicmodels of logistic growth are proposed by taking
into account continuously distributed lags. The logistic
integro-differential equations are considered for expo-
nential and gamma distributions of delay time. The
integro-differential equations of the proposed model of
logistic growth with distributed lag are represented by
differential equationswith derivatives of integer orders.
The solution of the logistic integro-differential equa-
tions with exponentially distributed lag is obtained.
Characteristic properties of nonlinear dynamics with
continuously distributed lags are described. The main
difference between dynamics with lag from standard
dynamics without delay lies in the existence of a cut-
off threshold of growth. We propose the principle of
growth clipping by distributed lag, which states that
the distributed lag can lead to the emergence of the
cutoff threshold, below which growth is replaced by
decline. For economy, this means that for production
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growth, the starting production should exceed a certain
minimum (critical) value of production.
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1 Introduction

The logistic differential equations with integer and
noninteger derivatives are simple nonlinear equations
that find their applications for describing processes in
the natural sciences and economics [1–8] including
the processes with memory [9–11]. The changes of
the exogenous variable (input, impact, force) do not
lead to instant changes of endogenous variable (out-
put, response to an impact). Between exposure and
response, there often exists a finite time interval due
to the finite speed of the processes. In economic mod-
els with continuous time, the final speed of process is
taken into account as a time delay (lag) [12–14]. In
the simplest form, this lag is considered in the form
of fixed time delay. For example, the economic multi-
plier with fixed time lag is described by the equation
Y (t) = mX(t − τ), where τ > 0 is the time con-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-019-05050-1&domain=pdf
http://orcid.org/0000-0002-4718-6274


1314 V. E. Tarasov, V. V. Tarasova

stant that is called delay time (see equation 6 in [12, p.
25]), m > 0 is the multiplier coefficient and X (t) and
Y (t) are exogenous and endogenous variables, respec-
tively. The economic accelerator with fixed time lag
is described by the equation Y (t) = aX (1)(t − τ),

where τ > 0 is the delay time, a > 0 is the mul-
tiplier coefficient (see equation 2 in [12, p. 62]) and
X (1)(t) = dX (t)/dt is first-order derivative of the
exogenous variable.

In general, the delay time is not a constant value and
is often regarded as a random variable whose distribu-
tion is determined by some probability density function
M(τ ) on the positive semiaxis. Averaging the multi-
plier and accelerator equationswith respect to the delay
time,we obtain themultiplier and accelerator equations
with continuously distributed lag.

Continuously distributed delay times in economy
can be described by exponential and gamma distribu-
tions. Exponential distribution is the continuous ana-
log of the geometric distribution. This distribution
describes the time of receipt of the order for the enter-
prise, the waiting time for an insurance event, time
between visits by shop, the service life of parts of com-
plex products. Note that the main characteristic prop-
erty of the exponential distribution is memoryless. The
gamma distribution is often used to take into account
waiting times in econometrics. The gamma distribu-
tions are applied to describe economic processes, in
which there is a sharp increase in the average duration
of time delays, including delays orders in queues and
delays in payments.

In macroeconomics, the first time the continuously
distributed lag was considered by William Phillips in
1954.Macroeconomic growthmodels, where exponen-
tially distributed lags are taken into account in the form
of ordinary differential equations, have been proposed
in the Phillips articles [15,16]. In the Phillips mod-
els, economicmultiplier and accelerator are considered
with a continuous (exponential) lag. To obtain Phillips
model, in which the continuous change of delay time
is represented, an exponentially distributed time lag is
introduced by the assumption that “whenever the pro-
duction flow is different from the flow of demand, the
production flow will be changing in a direction which
tends to eliminate the difference and at a rate propor-
tional to the difference” (see [15], and [16, p. 135]).

An application of exponentially distributed lag in
economics has been described by Allen in 1956 [12–
14]. The linear differential equations with operators

that describe continuously distributed lag are used in
various economic models. For example, macroeco-
nomic models based on economic accelerators and
multipliers with exponentially distributed lags are in
Section 1.9 of [12, pp. 23–29], Section 5.8 of [12,
pp. 166–170] and [14, pp. 88–94]. The operators
with continuously distributed lag have wide applica-
tions in describing various economic processes with
lag. Recently, these operators with exponentially dis-
tributed lag were defined in works of Caputo and Fab-
rizio [17,18], where they have been misinterpreted as
fractional derivatives and integrals of noninteger orders
[19–21]. It iswell known that the finite speed of the pro-
cess does not mean that there is memory in the process
[9–11]. In addition, the exponential distribution has the
key property of being memoryless.

Note that the continuously distributed lag in eco-
nomic models with continuous time is considered only
for linear differential equations. Nonlinear differen-
tial equations with a continuously distributed lag have
not yet been investigated. Therefore, it is important to
investigate the effects of accounting for the distributed
lag in nonlinear models and to describe the features
of their behavior. The most well-known nonlinear eco-
nomic models are the model of growth in competitive
environment and the logistic growth model (for exam-
ple, see [4] and references therein).

This paper actually consists of two parts.
The first part of the paper describes the general-

izations of the logistic differential equation, in which
we take into account the exponentially and gamma-
distributed lags, its solutions and some characteristic
properties that are important for application. We pro-
pose a generalization of the logistic differential equa-
tions, where the continuously distributed lags are taken
into account in integer-order derivative. A solution of
the logistic integro-differential equation with exponen-
tially distributed lag is suggested. Using the computer
simulations, we describe properties of the nonlinear
dynamics with continuously distributed lag for gamma
distribution.

The second part is devoted to applications of the
results, which are derived in the first part, to describe
economic growth with exponentially and gamma-
distributed lag. Using the investment accelerator with
exponential lag, we generalize the nonlinear economic
model of growth in competitive environment and the
logistic growth model. In this part, we describe the dis-
tinctive features of logistic growth with distributed lag
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Logistic equation with continuously distributed lag 1315

from the standard economic dynamics that does not
take into account the distribution of the delay time.

2 Differential operator with continuously
distributed lag

The translation operator [1, pp. 95–96] is defined by
the equation

(Tτ X) (t) = X (t − τ) , (1)

where τ ∈ R+. Operator (1) maps a function X (t) on
R to its translation X (t − τ) on the fixed value τ ∈ R+
that is positive constant that characterizes the fixed time
delay. In the general case, the delay time τ is not a
constant value. This parameter can be considered as a
random variable, whose distribution is determined by
some probability density functionM(τ ) on the positive
semiaxis. The density M(τ ) satisfies the conditions of
nonnegativity and the normalization

M (τ ) ≥ 0,
∫ ∞

0
M (τ ) dτ = 1. (2)

Averaging Eq. (1) with respect to the delay time, we
obtain the translation operator with continuously dis-
tributed lag [12, pp. 25–26] that is defined by the equa-
tion

(TMX) (t) =
∫ ∞

0
M (τ ) T 1

τ X (t) dτ

=
∫ ∞

0
M (τ ) X (t − τ) dτ. (3)

Note that the translation operator (1)with fixed time lag
is a particular case of (3), when density is described
by the Dirac delta function. Operator (3) can be also
called as the operator of the continuously distributed
lag. Note that operator is actively used in mathematical
economics to describe macroeconomic growth mod-
els with continuously distributed lag [12–14]. Using
operator (3), we can define the derivatives of inte-
ger order with continuously distributed lag as a com-
position of the translation operator (3) with continu-
ously distributed lag and the derivative of integer order
X (n) (t) = dn X (t) /dtn by the equation
(
Dn
T+X

)
(t) =

(
TMX (n)

)
(t)

=
∫ ∞

0
M (τ ) Dn

τ,t X (t) dτ

=
∫ ∞

0
M (τ ) X (n) (t − τ) dτ, (4)

where M (τ ) satisfies the nonnegativity and the nor-
malization conditions (2).

Let us consider a simple probability density function
of the exponential distribution, the probability density
function is

M (τ ) =
{

λ exp (−λτ)

0
τ > 0
τ ≤ 0

(5)

where λ > 0 is the rate parameter that is also called
the speed of response [12, p. 27]. For function (5), the
normalization condition (2) holds (see equation 8 of
[12, p. 26]). As an alternative parameter to the speed of
response for the exponential lag, we can consider the
time constant T = 1/λ. For exponentially distributed
lag, the parameter T is the average delay time [12, p.
27].

Exponential distribution describes the time between
events in a Poisson point process, i.e., a process in
which events occur continuously and independently at a
constant average rate. It is the continuous analog of the
geometric distribution [12–14]. The exponential dis-
tribution has the main property of being memoryless.
The memoryless means that the distribution of “wait-
ing time” to a certain event does not depend on how
much time has passed. If the probability of an event on
a small time interval is very small and does not depend
on the onset of other events, then the time intervals
between the event sequences are distributed according
to an exponential distribution.

Usingoperator (4)with density (5),we candefine the
integer-order differential operator with exponentially
distributed lag

(
Dλ,n
T+X

)
(t) = λ

∫ t

−∞
exp {−λ (t − τ)} X (n) (τ ) dτ,

(6)

where λ > 0 is the rate parameter of exponential distri-
bution and X (n) (t) is the derivative of the integer order
n ∈ N. Differential operators for other types of proba-
bility distributions of lag can be defined analogously.

The operators with exponentially distributed lag,
which are integer-order derivatives with lag, have been
described in [12–14] (for example, see Section 1.9
of [12, pp. 23–29], Section 5.8 of [12, pp. 166–170]
and [14, pp. 88–94]). Recently, these operators with
exponentially distributed lag were defined in works of
Caputo and Fabrizio [17,18], where it has been mis-
interpreted as a derivative of a fractional order [19–
21]. We can state that the derivative of integer order

123
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with exponentially distributed lag coincides with the
Caputo–Fabrizio operator of the order α = n − 1 +
λ/ (λ + 1) . Note that the memoryless property of the
exponential distribution allows us to state that differen-
tial operator (6) cannot be used to describe processes
with memory.

The logistic differential equation without lags has
the form

X (1) (t) = r (1 − X (t)) X (t) , (7)

where the constant r > 0 defines the growth rate. Equa-
tion (7) is the logistics differential equation that is also
called theVerhulst equation [1]. The solution of logistic
Eq. (7) is described by so-called logistic function.

Using operator (6), we can generalize the logistic
integro-differential equation by taking into account the
exponentially distributed lag in the form(
Dλ,n
T+X

)
(t) = r (1 − X (t)) X (t) , (8)

where λ is the speed of response. Note that Eq. (8) is
naturally obtained in the economicmodelwith continu-
ous time by taking into account the standard investment
accelerator with an exponentially distributed lag used
in economics [12–14]. In this paper, we will also con-
sider the logistic equation with the gamma-distributed
lag. The following sections will discuss solutions and
their properties of this equation, and then the applica-
tion of this equation to the economy will be described.

3 Logistic equation with exponentially distributed
lag

Let us formulate and prove theorem about equation of
logistic growth with the exponentially distributed lag.

Theorem 1 The logistic equation with the exponen-
tially distributed lag(
Dλ,1
T+X

)
(t) = r (1 − X (t)) X (t) , (9)

can be represented as the differential equation(
1 − λ

r
− 2X (t)

)
X (1) (t)

+ λ (1 − X (t)) X (t) = 0, (10)

where r is the investment coefficient and λ is the speed
of response, and it has the solution in the form

(2 − 2X (t))r+λ (X (t))r−λ = C exp (−rλt) , (11)

where C is a constant.

Proof Let us define the auxiliary variable ξ (t) by the
equation

ξ (t) = λ

∫ t

−∞
exp {−λ (t − τ)} X (1) (τ ) dτ

= λ exp {−λt}
∫ t

−∞
exp {λτ } X (1) (τ ) dτ, (12)

that is ξ (t) =
(
Dλ,1
T+X

)
(t) . The differentiation of

Eq. (12) gives

ξ (1) (t) = −λ2 exp {−λt}
∫ t

−∞
exp {λτ } X (1) (τ ) dτ

+ λ exp {−λt} exp {λt} X (1) (t) . (13)

Using Eq. (12), Eq. (13) can be represented in the form

ξ (1) (t) = −λξ (t) + λX (1) (t) . (14)

Then, Eq. (9) can be represented as the system of dif-
ferential equation{

ξ (t) = r (1 − X (t)) X (t) ,

λX (1) (t) = ξ (1) (t) + λξ (t) .
(15)

Substituting the variable ξ (t) from the first equation
of system (14) into the second equation, we obtain the
differential equation

λX (1) (t) = r (1 − 2X (t)) X (1) (t)

+ λr (1 − X (t)) X (t) . (16)

Then, Eq. (16) takes the form

(r − λ − 2r X (t)) X (1) (t)

+ λr (1 − X (t)) X (t) = 0. (17)

Let us obtain solution of Eq. (16) that is rewritten in
the form(

1 − λ

r
− 2X (t)

)
X (1) (t)

+ λ (1 − X (t)) X (t) = 0. (18)

Using the variable

Z (t) = 1 − λ

r
− 2X (t) , (19)

Eq. (18) takes the form

Z (t) Z (1) (t) + λ

2

(
Z (t) + λ

r

)2

− λ

2
= 0 (20)

that can be rewritten in the form

Z (t) Z (1) (t)(
Z (t) + λ

r

)2 − 1
= −λ

2
. (21)
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Using the separation of variables and the table integral
∫

ZdZ

(Z (t) + λ/r)2 − 1

= r − λ

2r
ln

(
−Z (t) − λ

r
+ 1

)

+r + λ

2r
ln

(
Z (t) + λ

r
+ 1

)
+ const, (22)

we obtain the solution

Z
r − λ

2r
ln

(
−Z (t) − λ

r
+ 1

)

+r + λ

2r
ln

(
Z (t) + λ

r
+ 1

)

= −λ

2
t + const . (23)

Equation (23) can be written in the form

(r − λ) ln (2X (t)) + (r + λ) ln (2 − 2X (t))

= −λr t + const. (24)

As a result, the solution of the logistic equation with
exponentially distributed lags has form (11).

This is the end of the proof. ��

4 Features of logistic growth with distributed lag

Let us consider the logistic differential equation with
exponentially distributed lags in the form

(r − λ − 2r X (t)) X (1) (t) + λr (1 − X (t)) X (t) = 0.

(25)

The stationary (equilibrium) states (X (1) (t) = 0) are
defined by the expression X (t) = 0 and X (t) = 1. The
logistic equation demonstrates the evolution to these
equilibrium (or steady) states.

If the process, which is described by Eq. (25), is ini-
tially at steady state X (0) = 0, then it remains in this
state for an infinitely long time and change of state can-
not be realized. For this reason, there should be certain
initial pushes,whichwill transfer the process to another
steady state. This can be achieved by fluctuations and
random external influence (random force).

For economic application, we will consider the ini-
tial conditions X (0) ∈ [0, 1].

It should be emphasized that in contrast to processes
without distributed lags, the process can return to the

stationary state X (t) = 0 if in the initial values X (0) ∈
(0, 1) satisfies the condition

r − λ − 2r X (0) > 0, (26)

and growth in the opposite sign of inequality. This
means that there is a critical value Xcr of the initial
value X (0) of the variable X (t) defined by the expres-
sion

Xcr = r − λ

2r
= 1 − 1

rT
, (27)

where T = 1/λ is the average time of delay.
In the presence of the exponentially distributed lag,

the behavior of X (t) differs from the case of absence
of a lag. In general case, there is no growth of the func-
tion X (t) at the slightest and infinitely small deviation
from the equilibrium value X (t) = 0. For example,
for some values of X (0), the dynamics of further val-
ues X (t) may show a decline instead of growth. As a
result, the behavior of X (t) demonstrates the decline
if the inequality 0 < X (0) < Xcr is satisfied. We have
the growth of X (t) if the condition Xcr < X (0) < 1
is satisfied.

To illustrate this behavior of X (t), we give Figs. 1,
2 and 3.

For Figs. 1 and 2, we consider parameters r = 0.5,
λ = 0.2 that lead to the critical value Xcr = 0.3. Fig-
ure 1 illustrates the decline since X (0) = 0.29 < Xcr.
Figure 2 illustrates the growth since X (0) = 0.31 >

Xcr. For Fig. 3, we consider parameters r = 1, λ = 2
that lead to the critical value Xcr < 0 and we have the
growth for small initial values of the output Y (0) =
0.0001.

Fig. 1 Plot of the function X (t) that is described by Eq. (25)
with r = 0.5, λ = 0.2 and X (0) = 0.29
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1318 V. E. Tarasov, V. V. Tarasova

Fig. 2 Plot of the function X (t) that is described by Eq. (25)
with r = 0.5, λ = 0.2 and X (0) = 0.31

Fig. 3 Plot of the function X (t) that is described by Eq. (25)
with r = 1, λ = 2 and X (0) = 0.0001

Figures 2 and 3 demonstrate the shape similar to the
classical logistic curve, with ’turning point’ (i.e., the
growth in the first phase of development and slowing
growth while approaching the upper equilibrium).

5 Logistic equation with exponentially distributed
lag and second-order derivative

The logistic equationwith the exponentially distributed
lag, where the derivative has the second order (n = 2),
has the form(
Dλ,2
T+X

)
(t) = r (1 − X (t)) X (t) . (28)

Equation (28) can be represented as the differential
equation of second order

Fig. 4 Plot of the function X (t) that is described by Eq. (29)
with r = 1, λ = 10 and X (0) = 0.1, X (1) (t) = 0.1

Fig. 5 Plot of the function X (t) that is described by Eq. (29)
with r = 1, λ = 2 and X (0) = 0.1, X (1) (t) = 0.1

X (2) (t) − r

λ
(1 − 2X (t)) X (1) (t)

+ r (1 − X (t)) X (t) = 0. (29)

This statement is proved similarly to the proof of Theo-
rem 1. For n = 2, Eq. (29) has the form of the Lienard
equation often used in the theory of oscillations and
dynamical systems.

The computer simulation of the behavior of X (t) is
given in Figs. 4, 5 and 6, where we can see the damping
oscillations.

In Figs. 4, 5 and 6, we use the initial conditions
X (0) = 0.1, X (1) (0) = 0.1. We use the following
parameters in Fig. 4 with r = 1, λ = 10; in Fig. 5 with
r = 1, λ = 2; and in Fig. 6 with r = 0.2, λ = 10.
Comparison of Figs. 4 and 5 shows that if the average
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Fig. 6 Plot of the function X (t) that is described by Eq. (29)
with r = 0.2, λ = 10 and X (0) = 0.1, X (1) (t) = 0.1

time of delay T = 1/λ increases (from 0.1 to 0.5),
then oscillations near the upper equilibrium position
decrease. Comparison of Figs. 4 and 6 shows that if the
growth rate decreases (from 1 to 0.2), then damping of
the oscillation amplitude decreases.

We see that in this case, which is described by
Eq. (29), we have the damping oscillation that tends
to the upper steady state X (t) = 1. Note that the clip-
ping of growth by distributed lag and the effect of the
return to the lower equilibrium value by continuously
distributed lag are absent.

6 Logistic equation with gamma-distributed lag

For the gamma distribution, the probability density
function is

M (τ ) =
{

λaτa−1

�(a)
exp (−λτ)

0

τ > 0,
τ ≤ 0,

(30)

where a > 0 is the coefficient of shape and λ > 0 is the
rate, where θ = 1/λ is scale coefficient. The gamma
distributions are used to describe complex economic
processes, where appears a sharp increase in the aver-
age duration of various delays (delay orders in queues,
delays in payments, etc.), as well as an increase in the
likelihood of risk events or insurance events. These
interpretations are very close to the continuously dis-
tributed time lag. The special case of the gamma dis-
tribution when the shape parameter is integer number
(a = m ∈ N) is also called the Erlang distribution. If
a = 1, the gamma density function takes the form of
the exponential density function.

Using the gamma distribution, we can define the
integer-order differential operator with gamma-
distributed lags
(
Dλ,a,n
T+ X

)
(t) = λa

� (a)

∫ t

−∞
(t − τ)a−1

exp (−λ (t − τ)) X (n) (τ ) dτ (31)

Since the exponential distribution is a special case of

gamma distribution for a = 1, we have
(
Dλ,n
T+X

)
(t) =(

Dλ,1,n
T+ X

)
(t) .

Let us give and prove a statement that allows us to
represent nonlinear integro-differential equations with
the Erlang distribution of lag by a system of differential
equations.

Theorem 2 The nonlinear integro-differential equa-
tion(
Dλ,m,n
T+ X

)
(t) = F [X (t)] , (32)

with the Erlang distribution of lag can be represented
as the system of the differential equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m−1∑
k=0

Yk (t) = F [X (t)] ,

Y (1)
k (t) = (

(m − 1 − k) t−1 − λ
)
Yk (t)

+ (−1)k λm

�(m)

(
m − 1
k

)
tm−1X (n) (t) ,

(33)

where k = 0, 1, . . . , (m − 1) , where m ∈ N is the
shape parameter of the gamma distribution.

Proof Using the binomial expansion, the weighting
function (30) can be written in the form

M (t − τ) = λm

� (m)

m−1∑
k=0

(−1)k
(
m − 1
k

)

tm−1−ke−λtτ k exp (λτ) . (34)

This allows us to represent the density function of the
Erlang distribution as the sum

M (t − τ) =
m−1∑
k=0

Ak (t) Bk (τ ) , (35)

where

Ak (t) = (−1)k
λm

� (m)

(
m − 1
k

)
tm−1−ke−λt , (36)

Bk (τ ) = τ k exp (λτ) (37)
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for k = 0, 1, . . . , (n − 1). Then we get∫ t

−∞
M (t − τ) X (n) (τ ) dτ

=
m−1∑
k=0

Ak (t)
∫ t

−∞
Bk (τ ) X (n) (τ ) dτ. (38)

Let us define the auxiliary variables

Yk (t) = Ak (t)
∫ t

−∞
Bk (τ ) X (n) (τ ) dτ. (39)

The differentiation of the variable Yk (t) gives

Y (1)
k (t) = A(1)

k (t)
∫ t

−∞
Bk (τ ) X (n) (τ ) dτ

+ Ak (t) Bk (t) X (n) (t) . (40)

Equality (39) can be written in the form

Y (1)
k (t) = A(1)

k (t) A−1
k (t) Yk (t)

+ Ak (t) Bk (t) X (n) (t) , (41)

where k = 0, 1, . . . , (m − 1), and

A(1)
k (t) A−1

k = (m − 1 − k) t−1 − λ, (42)

Ak (t) Bk (t) = (−1)k
λm

� (m)

(
m − 1
k

)
tm−1. (43)

Substituting (42) and (43) into (41), we obtain the sec-
ond equation of system (33).

This is the end of the proof. ��
Let us consider the case, when the shape parameter

is equal to two, i.e., m = 2. Then, the density of the
gamma-distributed lag has the form

M (t − τ) = λ2

� (2)
(t − τ) exp (−λ (t − τ))

= λ2te−λt exp (λτ) − λ2e−λtτ exp (λτ) , (44)

and

A0 (t) = λ2te−λt , A1 (t) = −λ2e−λt , (45)

B0 (t) = exp (λt) , B1 (t) = t exp (λt) . (46)

Then, using Theorem 2, the nonlinear integro-
differential equation

λ2
∫ t

−∞
(t − τ) exp (−λ (t − τ)) X (n) (τ ) dτ

= F [X (t)] (47)

can be represented as the system of the differential
equation⎧⎪⎨
⎪⎩
Y0 (t) + Y1 (t) = F [X (t)] ,

Y (1)
0 (t) = (

t−1 − λ
)
Y0 (t) + λ2t X (n) (t) ,

Y (1)
1 (t) = −λY1 (t) − λ2t X (n) (t) .

(48)

For t > 0, the elimination of the auxiliary variables
Y0 (t) and Y1 (t) from system (47) gives

λ2X (n) (t) = F (2) [X (t)] + 2λF (1) [X (t)]

+ λ2F [X (t)] . (49)

The logistic equation is defined by the function

F [X (t)] = r X (t) (1 − X (t)) . (50)

As a result, we prove the following statement.

Theorem 3 The logistic equation with lag, which is
distributed by gamma distribution with shape parame-
ter a = 2, has the form(
Dλ,2,n
T+ X

)
(t) = r (1 − X (t)) X (t) , (51)

and it can be represented as the differential equation

X (n) (t) − r

λ2
(1 − 2X (t)) X (2) (t)

− 2r

λ
(1 − 2X (t)) X (1) (t)

+ 2r

λ2

(
X (1) (t)

)2 − r (1 − X (t)) X (t) = 0. (52)

Let us consider the special cases of the first-order and
second-order derivatives in Eqs. (50) and (51).

For n = 1, Eq. (76) takes the form

(1 − 2X (t)) X (2) (t) −
(

λ2

r
− 2λ + 4λX (t)

)
X (1) (t)

− 2
(
X (1) (t)

)2 + λ2 (1 − X (t)) X (t) = 0. (53)

We have the growth if 1 − 2X (0) < 0 and decline if
1 − 2X (0) > 0. For n=1, the critical value Xcr of the
initial value X (0) of the variable X (t) is defined by
the expression Xcr = 0.5. Note that the critical value
does not depend on the parameters of r and λ.

To illustrate the behavior of X (t), we give the com-
puter simulation of the dynamics of X (t) in Figs. 7
and 8. For Figs. 7 and 8, we consider parameters
r = 1 and λ = 5. Figure 7 illustrates the decline since
X (0) = 0.45 < Xcr. Figure 8 illustrates the growth
since X (0) = 0.55 > Xcr.

For n = 2, Eq. (52) takes the form(
1 − r

λ2
+ 2r

λ2
X (t)

)
X (2) (t)

− 2r

λ2
(1 − 2X (t)) X (1) (t)

+ 2r

λ2

(
X (1) (t)

)2 − r (1 − X (t)) X (t) = 0. (54)
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Fig. 7 Plot of the function X (t) that is described by Eq. (53)
with r = 1, λ = 5 and X (0) = 0.45, X (1) (t) = 0.1

Fig. 8 Plot of the function X (t) that is described by Eq. (53)
with r = 1, λ = 5 and X (0) = 0.55, X (1) (t) = 0.1

For the region X (0) ∈ [0, 1], we have the decline in
the case

1 − r

λ2
+ 2r

λ2
X (0) > 0, (55)

and we get the growth if

1 − r

λ2
+ 2r

λ2
X (0) < 0. (56)

As a result, we have the critical value Xcr of the variable
X (t) is defined by the expression

Xcr = r − λ2

2r
. (57)

In addition, in this case, the growth of X (t) can be
accompanied by damped oscillations near the upper
equilibrium state X (t) = 1.

The computer simulation of the behavior of X (t) is
given in Figs. 9, 10, 11 and 12.

Fig. 9 Plot of the function X (t) that is described by Eq. (54)
with r = 0.6, λ = 0.6 and X (0) = 0.19, X (1) (t) = 0.1

Fig. 10 Plot of the function X (t) that is described by Eq. (54)
with r = 0.6, λ = 0.6 and X (0) = 0.21X (1) (t) = 0.1

Fig. 11 Plot of the function X (t) that is described by Eq. (54)
with r = 0.6, λ = 1 and X (0) = 0.2 and X (1) (t) = 0.1
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Fig. 12 Plot of the function X (t) that is described by Eq. (54)
with r = 0.6, λ = 3 andX (0) = 0.2 and X (1) (t) = 0.1

For Figs. 9 and 10, we consider parameters r = 0.6,
λ = 0.6 and X (1) (t) = 0.1. In this case, the criti-
cal value is equal to Xcr = 0.2. Figure 9 illustrates
the decline since X (0) = 0.19 < Xcr. Figure 10 illus-
trates the growth since X (0) = 0.21 > Xcr. For Figs. 9
and 10, we use the initial conditions X (0) = 0.2 and
X (1) (t) = 0.1. For Figs. 11 and 12, we use the ini-
tial conditions X (0) = 0.2 and X (1) (t) = 0.1. Fig-
ure 11 illustrates the growth with damped oscillations
for r = 0.6, λ = 1. Figure 12 illustrates the growth
with damped oscillations for r = 0.6, λ = 3. From
Figs. 11 and 12, we see as the rate parameter of the
gamma-distributed lag increases, then the oscillations
increase.

Note that Fig. 10 demonstrates the shape similar to
the classical logistic curve, with ’turning point’ (i.e.,
growth in the first phase of development and slowing
growth while approaching the upper equilibrium state).
The shape of Fig. 10 has some differences. These dif-
ferences lie in a faster initial growth, which are hard to
see in Fig. 10. In order to show this, we give the initial
stage of growth in Fig. 13. The slowing growth while
approaching the upper equilibrium state can be seen in
Fig. 10.

Moreover, the similar shapes (with ’turning point’)
have all figures with growth (nonstandard logistic
curves). The main differences between nonstandard
logistic curves and the standard curve are the follow-
ing three features: (1) a possibility of a decline instead
of growth for small initial values; (2) a possibility of
faster initial growth; and (3) a possibility of oscilla-
tions around the upper equilibrium state. The ’turning

Fig. 13 Plot of initial growth of X (t) for the parameters
of Fig. 10, i.e., with r = 0.6, λ = 0.6 and X (0) =
0.21X (1) (t) = 0.1

point’ is defined by the existence of a moment in time
tturning > 0, in which the function X (2) (t) changes
the sign, i.e., X (2)

(
tturning

) = 0, X (2)
(
tturning

)
> 0

for t < tturning, X (2)
(
tturning

)
< 0 for t > tturning.

The ’turning points’ exist for all figures for which
X (0) > Xcr.

7 Application in economics: logistic growth with
distributed lag

First, let us consider the economicmodel of growth in a
competitive environment and the logistic growthmodel
without lag in order to fix the designation and have ref-
erences. Then, we will describe logistic growth mod-
els with exponentially and gamma-distributed lags. For
the analysis of these models, we will use the results
obtained for the logistic integro-differential equation
with distributed lag.

7.1 Logistic growth model without lag

The standard economic model of growth in a compet-
itive environment and the logistic growth models use
the concepts of economic accelerator and multiplier.

The accelerator equation without lag has the form

I (t) = vY (1) (t) , (58)

where Y (t) is the output, i.e., the volume of produc-
tion that was produced and sold at the time t, and the
function I (t) is net investments, i.e. the investments
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to expand production (the difference between the total
investment and amortization costs), where v > 0 is the
accelerator coefficient (the investment coefficient).

The accelerator equation without lag has the form

I (t) = mZ (t) , (59)

where Z (t) is the income and m is the net investment
rate (0 < m < 1) that describes the share of income
that goes to the net investment. In the model of growth
in a competitive environment, the income is described
by equation

Z (t) = P (t) Y (t) , (60)

where P (t) = P (Y (t)) is the price of the released
product Y (t). Substitution of expression (60) in (59)
and then the result in Eq. (58) gives the model equation

Y (1) (t) = m

v
P (Y (t)) Y (t) . (61)

which describes the growth in a competitive environ-
ment without lag and memory. In the logistic model,
the price is a linear function of the output

P (Y (t)) = p0 − p1Y (t) , (62)

where p0 is a price that does not depend on the volume
of production and p1 is the margin price. Substitution
of (62) in (61) gives the equation

Y (1) (t) = m

v
(p0 − p1Y (t)) Y (t) (63)

that is equation of the logistic growth model without
lag and memory. If p0 �= 0 and p1 �= 0, we can use the
variable X (t), which is defined by the equation

X (t) = (p1/p0) Y (t) . (64)

The equation of logistic growth (63) is the logistic dif-
ferential equation (7), where the constant r = p0m/v

defines the growth rate. The solution of Eq. (63) has
the form

Y (t) = p0Y (0) exp (p0mt/v)

p0 + p1Y (0) (exp (p0mt/v) − 1)
. (65)

Note that the characteristic feature of logistic growth
without delays is the increase of the output Y (t) even
at the slightest and infinitely small deviation from the
zero value of the output Y (0) = 0. Equation (9) means
that volume of production (output) Y (t), which was
produced and sold at the time t, will grow at any start
of production (Y (0) > 0).

7.2 Logistic growth model with distributed lag

The standard economic models that are described by
Eqs. (61) and (63) assume an instantaneous change
in some variables when other variables change. This
means these models do not take into account the mem-
ory effect and the time delay (lag) effect. The eco-
nomic models of logistic growth with memory have
been proposed in [4]. In general, economic processes
have a finite speed, and the change of the economic
variable does not lead to instant changes of other vari-
ables that depend on it. Therefore, it is important to
describe logistic growth with lag.

In the simplest case of lagging with fixed durations,
the linear accelerator equation has the form

I (t) = vY (1) (t − τ) , (66)

where τ > 0 is delay time that characterizes the fixed
time lag.

In general, the delay time is not a constant value and
it is often regarded as a random variable, distribution of
which can be described by a probability density func-
tion M (τ ) on the positive semiaxis that satisfies the
normalization condition∫ ∞

0
M (τ ) dτ = 1. (67)

In economics, M (τ ) is usually called the weighting
function (see [3, pp. 25–26]).

Let us consider averaging the accelerator equation
(65) over random variable τ > 0 that is continuously
distributed with the density M (τ ) in the form∫ ∞

0
M (τ ) I (t) dτ = v

∫ ∞

0
M (τ ) Y (1) (t − τ) dτ.

(68)

Using the normalization condition (66), we get

I (t) = v

∫ ∞

0
M (τ ) Y (1) (t − τ) dτ, (69)

which is described in [12, pp. 25–27] (see also [12, p.
72]) as a continuous analog of the discretely distributed
lag.Asweobtain the equation of investment accelerator
with continuously distributed lag. In economic mod-
els with continuous time, the exponential distribution
of the lag is usually considered [12–14]. The contin-
uously distributed lags are described in Section 1.9 of
[12, pp. 23–29] and Section 5.8 of [12, pp. 166–170]
for exponential weighting function. The existence of
the time delay (lag) is connected with the fact that the
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economic processes take place with a finite speed, and
the change of the economic factor (input) does not lead
to instant changes of indicator (output) that depends on
it. Equation (69) means that I (t) depends on the rate of
outputY (1) (τ ) for all past time (τ ≤ t). The normaliza-
tion condition (67) means that the economic process,
which is described by accelerator equation (68), passes
through all states without any losses.

The fixed time delay (66) is a particular case of
(68), in which we can use M (t) = δ (t − T ) with
delay time T > 0. The discretely distributed lag
[12, pp. 25–27] is a special case of the (68), when
M (τ ) = ∑∞

n=0 Mn (T ) δ (τ − nT ), where δ (t) is the
Dirac delta function and T > 0 is the constant param-
eter of the fixed time delay (the length of delay).

Using the change of variable (t − τ → τ), Eq. (68)
can be rewritten in the form

I (t) = v

∫ t

−∞
M (τ ) Y (1) (t − τ) dτ. (70)

Integral equation (70) describes economic (investment)
accelerator with the continuously distributed lag [12–
14], which distribution is described by the weighting
function M (τ ) that satisfies the normalization condi-
tion (67).

7.3 Logistic growth model with exponentially and
gamma-distributed lags

An important case of continuous lag is the exponen-
tially distributed lag, which is described by the den-
sity function (5). In economics, the exponentially dis-
tributed lag is considered as continuous version of the
geometric lag that is based on geometric sequence (pro-
gression) in models with discrete time [12–14]. The
exponential distribution has the following economic
interpretation. Let us consider a market for goods on
which the purchase is made from time to time. Under
certain assumptions, the time between two consecutive
purchases of the same goods will be a random variable
with an exponential distribution. The average waiting
time for a new purchase is 1/λ. The parameter λ can
then be interpreted as the average number of new pur-
chases per unit of time.

Using differential operator (6) with the exponential
distribution of lag (5), the equation of accelerator with
the exponential lag has the form

I (t) = v
(
Dλ,1
T+Y

)
(t) . (71)

If we explicitly write out the operator (6), then accel-
erator equation (72) will have the form

I (t) = vλ

∫ t

−∞
exp {−λ (t − τ)} Y (1) (τ ) dτ. (72)

Integral equations (71), (72) describe investment accel-
erator with the exponentially distributed lag [12–14]
with the speed response λ = 1/T . Note that the mem-
oryless property of the exponential distribution leads
to the fact that accelerator (71), (72) cannot be used
to describe logistic growth with memory. To take into
account the memory [9–11] in logistic growth model,
we can use fractional derivatives of noninteger orders
[4].

Using the accelerator with the exponentially dis-
tributed lag (71) in themodel of growth in a competitive
environment instead of the acceleratorwithout lag (58),
we obtain the new growth model.

Substitution of expression (60) in (59) and then the
result inEq. (71) gives the equation of the growthmodel
in the form(
Dλ,1
T+Y

)
(t) = m

v
P (Y (t)) Y (t) . (73)

Let us consider the case, when the price is a linear
function of output Y (t) that is described by Eq. (62)
with p0 �= 0 and p1 �= 0. In this case, Eq. (72) has the
form(
Dλ,1
T+Y

)
(t) = (p0 − p1Y (t)) Y (t) . (74)

Equation (74) describes the economic models of logis-
tic growth with the exponentially distributed lag.
Changing the variable Y (t) = (p0/p1) X (t) , we get
the logistic equation (9) with the exponentially dis-
tributed lag where r =mp0/v, and X (t)= (p1/p0) Y
(t) .

The exponentially distributed lag is actively used
in macroeconomic models with distributed lag in the
framework of the continuous-time approaches [12, p.
26]. In standard macroeconomic models, the differen-
tial equations of exponentially distributed lag are used
instead of equationswith integro-differential operators.
For example, the economic accelerator with the expo-
nential lag (72) is usually considered [12, p. 63] in the
form

I (1) (t) = −λ
(
I (t) − vY (1) (t)

)
. (75)

Equation (75) is called the differential equations of the
exponential lag [12, p. 27]. This equation is actively
used in various macroeconomic models. For example,
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differential equation (75) is used in the Phillips model
of multiplier–accelerator that takes into account the
exponentially distributed lag (for details, see [12, pp.
72–74]).

The use of the representation by differential equa-
tions of integer order (75) instead of the integro-
differential operator (72) is caused by the fact that there
are considerable difficulties in handling the integrals in
(72). The differential equations of economic models,
as a rule, are easier to handle in comparison with the
integro-differential equations.

Using representation (75) of Eq. (71), the nonlinear
integro-differential equation (73) can be represented as
the system of the differential equation{

I (t) = mP (Y (t)) Y (t) ,

vλY (1) (t) = I (1) (t) + λ I (t) .
(76)

Substituting the variable I (t) from the first equation
of system (76) into the second equation, we obtain the
differential equation

vλY (1) (t) − m (P (Y (t))

+ P(1)
Y (Y (t)) Y (t)

)
Y (1) (t)

−mλP (Y (t)) Y (t) = 0, (77)

where P(1)
Y (Y (t)) is the partial derivative of the func-

tion P (Y ) with respect to the variable Y and λ is the
speed of response. As a result, Eq. (77) takes the form(

vλ − mP (Y (t)) − mP(1)
Y (Y (t)) Y (t)

)
Y (1) (t)

−mλP (Y (t)) Y (t) = 0. (78)

If we assume that the price is a linear function of output
Y (t) that is described by Eq. (62), then(

vλ − m (p0 − p1Y (t)) + mp1Y (t)
)
Y (1) (t)

−mλ (p0 − p1Y (t)) Y (t) = 0, (79)

where p0 is the price, which is independent of the out-
put, and p1 is the margin price.

As a result, we obtain the equation(
vλ − mp0 + 2mp1Y (t)

)
Y (1) (t)

−mλ (p0 − p1Y (t)) Y (t) = 0. (80)

Using Y (t)= (p0/p1) X (t) and r =mp0/v, we get
Eq. (10). The stationary (equilibrium) states (X (1) (t) =
0) are defined by the expression X (t) = 0 and
X (t) = 1, which corresponds to the values of the out-
put Y (t) = 0 and Y (0) = p0/p1. The economic pro-
cesses demonstrate the evolution to these equilibrium
(or steady) states.

If we will use the n-order derivative in the logistic
equation with exponentially distributed lag instead of
the first-order derivative, then we have the equation(
Dλ,n
T+Y

)
(t) = (p0 − p1Y (t)) Y (t) . (81)

For n = 2 Eq. (82) can be represented by Eq. (25),
where Y (t) = (p0/p1) X (t) and r = mp0/v.

If we will consider the gamma distribution of lag
with shape parameter a = 2, then equation of the eco-
nomic model of logistic growth with lag has the form(
Dλ,a,n
T+ Y

)
(t) = (p0 − p1Y (t)) Y (t) . (82)

For a = 2 and n = 2, Eq. (82) can be represented by
Eq. (52),whereY (t) = (p0/p1) X (t) and r = mp0/v.

Using the results, which are obtained for logistic
integro-differential equation with exponentially dis-
tributed lag, we can consider properties of the eco-
nomic model of logistic growth with exponentially dis-
tributed lag,which is described byEq. (80), whereY (t)
describes the volumeof production (output), whichwas
produced and sold at the time t. The logistic growth
of output Y (t) with the exponentially distributed lag
differs from the case of the absence of lag. For some
values of the initial output Y (0), the dynamics of fur-
ther output may show a decline instead of growth in the
presence of the distributed lag. The economic behav-
ior of the output Y (t) demonstrates the decline if the
following inequality is satisfied

Y (0) <
p0
p1

r − λ

2r
, (83)

and we have the growth of the output Y (t) if the con-
dition is satisfied

Y (0) >
p0
p1

r − λ

2r
, (84)

where we consider Y (0)∈ [0, p0/p1] , and r =mp0/v.
It should be emphasized that in contrast to pro-

cesses without distributed lags, the economic process
can return to the lower stationary state Y (t) = 0 if the
initial value Y (0) is less than a certain critical value
Ycr, which is determined by the expression

Ycr = p0
p1

r − λ

2r
= mp0 − vλ

2p1
= mp0

2p1
− v

2p1T
, (85)

where T = 1/λ is the average time of delay. Parameter
(83) defines the critical value of the initial output for the
economic model of logistic growth with exponentially
distributed lag.

For exponentially distributed lag with the integer-
order derivatives of the orders n ≥ 2, the critical values
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Ycr,n with n ≥ 2 are absent. In this case n = 2, we have
the damping oscillation that tends to the upper steady
state Y (t) = p0/p1.

For gamma-distributed lag shape parameter a = 2
and the order of derivative n = 2, the critical value
Ycr,a,n with a, n ∈ N of the initial Y (t) is defined by
the expression

Ycr,2,2 = p0
p1

r − λ2

2r
= mp0 − vλ2

2mp1
. (86)

For n = 1, the critical value of gamma distributionwith
a = 2 is defined by the expression Ycr,1,2 = p0/ (2p1).
Note that the critical value does not depend on the
model parameters of m, v and the rate parameter λ

(or the scale coefficient θ = 1/λ) of the gamma distri-
bution (30). For a = 1, the gamma distribution takes
the form of the exponential distribution. Therefore, the
critical values of gamma distribution coincide with the
values of exponential distribution, i.e., Ycr,1,n = Ycr,n .
The existence of the critical values Ycr,a,n for noninte-
ger shape parameter a > 0 is an open question.

Using the economic interpretation of Y (t) as the
output, we will consider Y (t) > 0 and the initial con-
dition Y (0) ∈ [0, p0/p1]. The dynamics of output
demonstrates a growth if the condition Y (0) > Ycr,a,n

holds. If this inequality holds, then the economic pro-
cesses demonstrate the evolution to the upper equilib-
rium (or steady) state Y (t) = p0/p1. If the inequality
Y (0) < Ycr,a,n holds, then the economic processes
demonstrate the decline in the form of the evolution to
the lower equilibrium state Y (t) = 0.

Note that the characteristic feature of standard logis-
tic growthmodelwithout delays is violated.Distributed
lag leads to the fact that volume of the production (out-
put) Y (t), which was produced and sold at the time
t > 0, can grow or fall, depending on the size of the
initial production (Y (0) > Ycr,a,n or Y (0) < Ycr,a,n).

As a result, we can formulate the principle, which
states that the distributed lag leads to the emergence of
the cutoff threshold, below which growth is followed
by decline.

Principle of growth clipping by distributed lag. In the
logistic growth model, the effect of exponentially and
gamma-distributed lags can lead to the appearance of a
cutoff threshold, below which growth is replaced by a
decline. If the condition Y (0) > Ycr,a,n with a, n ∈ N

holds, thenwe have the growth to the upper equilibrium
state Y (t) = p0/p1. If the inequality 0 < Y (0) <

Ycr,a,n holds, then we have the decline to the lower
equilibrium state Y (t) = 0.

This principle states that for production growth, the
starting production should exceed a certain minimum
(critical) value of production. An initial value of the
output Y (0) > 0 can transfer the economic process
to upper steady state Y (t) = p0/p1 only if the ini-
tial values Y (0) are greater than the critical value Ycr,
i.e., Y (0) > Ycr,a,n . Note that the growth clipping
by exponentially distributed lag is absent for λ ≥ r
since Yc,1,1 ≤ 0 for this relationship of parameters.
The clipping of growth by gamma-distributed lag with
shape a = 2 is also absent for λ2 ≥ r since Yc,2,2 ≤ 0
for this relationship of parameters. For economic pro-
cesses without delay, described by the standard logistic
equations (7), such effect of the return to the lower equi-
librium value by continuously distributed lag is absent.

8 Conclusion

In this paper, we consider a generalization of the logis-
tic differential equation by taking into account contin-
uously distributed lag. We describe dynamics of pro-
cesses, in which the distribution of lag is described by
the gamma and exponential distributions.

The macroeconomic models with continuously dis-
tributed lag, which is described by linear differen-
tial equations, are actively considered in mathematical
economy [12–14]. In this paper, we describe nonlin-
ear differential equations with continuously distributed
lag. We demonstrate that the logistic growth of output
with the distributed lag differs from the case of the
absence of lag. One of the most important differences
is the fact that for some values of the initial output,
the dynamics of further values of the output may show
a decline instead of growth. We formulate the princi-
ple of growth clipping by distributed lag, which states
that the lag can lead to the emergence of the cutoff
threshold, below which growth is replaced by decline.
In economy, this means that for production growth, the
starting production should exceed a certain minimum
(critical) value of production.

Let us note possible generalizations of the proposed
description. In economic growth model, it is impor-
tant to take into account distributed lag in the pro-
cesses with power-law fading memory. To describe the
power-law memory, we can use the fractional deriva-
tives and integral [10,11,22]. The continuously dis-
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tributed lag can be taken into different economic mod-
els with power-law memory including the Harrod–
Domar model [10,23], the intersectoral macroeco-
nomic models [24], the natural growth model [25], the
growthmodelwith constant pace [26] and the economic
models with time-dependent parameters [27].

For economic models, it is interesting to understand
whether the growth clipping disappears, when we take
into account the effects of fading memory. To take
into account the memory in the logistic growth model,
we can consider a generalization of the logistic equa-
tions with distributed lag by the replacement of the
integer-order nth derivative in Theorem 2 to fractional
derivative [28–34]. Since exact solutions to the frac-
tional logistic equation have not yet been found [7,8],
the study of the problem is possible only by computer
simulation of fractional logistic equations with contin-
uously distributed lag.

We assume that the proposed models with power-
law memory and continuously distributed lag can be
used for economic growth modeling of some real eco-
nomic processes. Economic processes with memory
in European countries were modeled in [35–41]. We
assume that analogous modeling can be realized for
these processes by taking into account the continu-
ously distributed lag. The simulation of these processes
can be constructed by a generalization of the methods
described in the works written by the groups of sci-
entists Tejado et al. [35–40] and the group of Luo et
al. [41]. To take into account the distributed lag for
described processes, it is possible to replace the kernel
of fractional derivatives by the (exponential or gamma)
weighting functions. Themodelswith power-lawmem-
ory and continuously distributed lag, which have been
suggested in this paper, can givemore correct economic
growth modeling by taking into account nonlinearity
and time delay in a generalization of methods applied
in the works [35–41].
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