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Abstract Time-delaydisplacement andvelocity feed-
back of different types of active control in a cantilever
beam carrying an lumped mass is investigated in this
paper. Based on Euler–Bernoulli beam theory, the non-
linear governing equation is studiedwith damping, har-
monic distribution, displacement delay, velocity delay
and two time delays. The multiple scales perturbation
method is applied to obtain the frequency response
equations near primary, superharmonic and subhar-
monic resonances. A thorough study on the stability
is proposed, with a particular emphasis on delay feed-
back. The results show that the hardening and soften-
ing behaviors of the system depend on the location of
lumped mass. Furthermore, the displacement feedback
gain coefficient onlymakes the peak amplitudemove to
the low frequency, yet velocity feedback coefficient and
their time delays can be used to effectively enhance the
stability and quench the nonlinear vibration of the can-
tilever beam. Thus, reasonable selection of the control
system parameters can effectively improve the level of
vibration control for the mechanical system.
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1 Introduction

The study of a cantilever beam with an intermediate
lumped mass at an arbitrary position subjected to base
excitation can find applications in robotic manipula-
tors, components of high-speed machinery, structural
buildings and many other structural elements [1–5]. If
internal resonance is involved in such a system, the
response and stability analysis will be more compli-
cated. Therefore, the study of instability has attracted
much attention in recent years [6–10]. For example,
Nayfeh and Younis [11] studied the dynamics of elec-
trically actuated microbeams under secondary, super-
harmonic and subharmonic resonances and found that
a dynamic pull-in instability can occur at an elec-
tric load much lower than a pure DC voltage. Ekici
and Boyaci [12] examined the nonlinear vibrations
of microbeams using the multiple scales method and
solved the equation of motion for two cases of sub-
harmonic and superharmonic resonances. It was found
that nonideal boundary conditions have a certain influ-
ence on the vibration ofmicrobeams.Mehran et al. [13]
studied the nonlinear forced vibration of a cantilever
beam with an intermediate lumped mass and found
that the frequency response of the cantilever beam is
strongly influenced by the damping and excitation lev-
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els. Eftekhari et al [14,15] investigated the dynamical
behaviors of an aeroelastic panel and pointed out that
for linear systems, a nonlinear feedback force should be
used to obtain bifurcation boundary and produce limit
cycle oscillation as the system response. Oveissi et al
[16] and Toghraie et al [17] all studied the vibration and
instability of axially moving carbon nanotubes convey-
ing fluids and found that the stationary CNT conveying
fluid is more stable than all cases of the axially moving
CNT conveying fluid.

In addition to the study of a cantilever beam with an
intermediate lumped mass, the control of various non-
linear systems [18–22] has been investigated recently.
Because the flexibility of active control and time delay
[23–27] are more common and unavoidable in con-
trolled systems, many researchers are working on non-
linear systems with time delay. For example, Hu et al.
[28] studied the resonance of a harmonic forced Duff-
ing oscillatorwith time-delay feedbackusing amultiple
scales method. They found that appropriate choices of
the feedback gain coefficient and the time delay value
enable better vibration control. Hu andWang [29] con-
sidered the primary and subharmonic resonances of
a harmonic forced Duffing oscillator with time delay
and discussed the stability of periodic motion. In Refs.
[30–37], the authors studied time-delay controllers and
found that the time delay can be used as a control
parameter to suppress the vibration of the dynamic
system. Alhazza et al. [38–40] studied the nonlinear
vibrations of a cantilever beam when excited exter-
nally andparametricallywith linear andnonlinear time-
delay feedback control. They found that time-delay
control could feasibly reduce the system vibrations.
Daqaq et al. [41] studied the nonlinear vibration of
a piezoelectric-coupled cantilever beam by time-delay
acceleration feedback control. They demonstrated that
when the excitation frequency is very close to the least-
damped delay frequency and the excitation amplitude
is sufficiently large, the homogeneous solution emanat-
ing from the delayed feedback locks onto the particular
solution resulting from the primary excitation.

Although many studies have been carried out on
the stability of systems under time-delay control, to
the best of the author’s knowledge, a rigorous analysis
of cantilever beams carrying a lumped mass has not
been presented. In this paper, the nonlinear behavior
of a cantilever beam carrying a lumped mass with both
delayed displacement and velocity feedbacks is investi-
gated. Based on Euler–Bernoulli beam theory, the non-

linear governing equation is studiedwith damping, har-
monic distribution, displacement delay, velocity delay
and two time delays. The primary and secondary res-
onances of this control system are determined using
multiple scales analysis. All subharmonic and super-
harmonic conditions are obtained. The steady-state fre-
quency response curves of the system in each case are
given, and the amplitude-stable and unstable portions
of the frequency response are determined. Then, com-
prehensive sensitivity studies are carried out for dif-
ferent time-delay parameters (displacement feedback
gain coefficient, velocity feedback gain coefficient, dis-
placement feedback and velocity feedback), and the
effects of different parameters on the nonlinear system
behavior are compared.

2 Mathematical model

In this section, a cantilever beam carrying an interme-
diate lumped mass is shown in Fig. 1. The cantilever
beam with a length l and a mass per unit lengthm has a
lumped mass located at a distance d from its base. The
cantilever beam is connected to a joint rotation spring
of Kr at the base and is subjected to a harmonic dis-
tribution load of amplitude P . We use the total kinetic
and potential energy of the beam to obtain the corre-
sponding Lagrangian:

L = ml

2

⎡
⎢⎢⎢⎣

c1
(
du
dτ

)2 + c3u2

l2

(
du
dτ

)2 + c4u2

l2

(
du
dτ

)2

+ c5u4

l4

(
du
dτ

)2 + c6u4

l4

(
du
dτ

)2

−
(

E I
ml4

) (
c2u2 + c7u4

l2
+ c8u6

l4

)

⎤
⎥⎥⎥⎦

where u (τ ) denotes the time dependence of the beam
displacement. E and I represent the Young’s modulus
of elasticity and the moment of inertia, respectively.

The constant values c1 − c8 are defined as follows:

c1 = ∫ 1
0 φ2dς + ρφ2 (η) ; c2 = ∫ 1

0 φ′′2dς;
c3 = ∫ 1

0

(∫ ς

0 φ′2dχ
)2
dς;

c4 = ρ
[(∫ ς

0 φ′2dχ
)2]

ς=η
;

c5 = ∫ 1
0

[(∫ ς

0 φ′2dχ
) (∫ ς

0 φ′4dχ
)]
dς;

c6 = ρ
[(∫ ς

0 φ′2dχ
) (∫ ς

0 φ′4dχ
)]

ς=η
;

c7 = ∫ 1
0 φ′2φ′′2dς; c8 = ∫ 1

0 φ′4φ′′2dς
where φ (ς) is the eigenfunction of the beam, which is

written as [24]φ (ζ ) = sin βζ−U sinh βζ−V (cosβζ−cosh βζ)
r
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Fig. 1 Schematic of a cantilever beam carrying a lumped mass
under harmonic loading

Here, r(r = φ (1)) is the scaling factor,β is a dimen-

sionless frequency parameter defined by β4 = mω2
0l

4

E I ,
and ω0 is the natural frequency of the beam. U and V
are, respectively, defined as U =
lKr − 2E Iβ sin β(cosβ + cosh β)
lKr + 2E Iβ sinh β(cosβ + cosh β)

, V = sin β +U sinh β
cosβ + cosh β

.

The dimensionless parametersη = d
l , ς = s

l , ρ =
M
ml represent the distance, span length and mass ratio,
respectively. ρ is the mass density per unit length.

By employing the Euler-Lagrange equation, the
dimensionless governing equation of motion for the
dynamics is as follows [17]:

ü + u + μu̇ + α1u
3 + α2u

5 + β1u
2ü + β1uu̇

2

+β2u
4ü + β2u

3u̇2 = F cos (�t) (1)

where μ is the damping coefficient. The coefficients
α1, α2, β1 and β2 are defined as α1 = 2c7

c2
, α2 =

2c8
c2

, β1 = c3c4
β4c1

, β2 = c5c6
β4c1

. t = τ
√

E Ic2
l4c1m

, F =
P∫ 1

0 φ2dς
, and � = ω

ω0
is the dimensionless excitation

frequency.
By integrating the time-delayed displacement and

velocity feedback controller into system (1), Eq. (2)
becomes the following:

ü + u + μu̇ + α1u
3 + α2u

5 + β1u
2ü + β1uu̇

2

+β2u
4ü + β2u

3u̇2 = F cos (�t) + gpu (t − τ1)

+gd u̇ (t − τ2) (2)

where gp, gd , τ1 and τ2 are the displacement feed-
back coefficient, velocity feedback coefficient and time

delays of the displacement and velocity feedbacks,
respectively.

3 Multiple scales method

3.1 Primary resonance

In this section, we use the multiple scales method to
obtain an accurate analytical solution of a cantilever
beam. To obtain the primary resonance of the system,
supposing a small perturbation parameter ε, Eq. (2) can
be rewritten as follows:

ü + u

= ε

⎛
⎜⎜⎝

−μu̇ − α1u3 − α2u5 − β1u2ü
−β1uu̇2 − β2u4ü + β2u3u̇2

+F cos (�t) + gpu (t − τ1)

+gd u̇ (t − τ2)

⎞
⎟⎟⎠ (3)

We assume that the frequency of the actuation is close
to the fundamental frequency:

� = 1 + εσ (4)

where σ is the nonlinear detuning parameter. Let Tn =
εnt, (n = 0, 1, 2) and the displacement be u0 (t) =
u0 (T0, T1, T2). Equation (3) can be expanded Eqs. (5)
and (6):

u (t) = u0(T0, T1, T2) + εu1(T0, T1, T2)

+ ε2u2(T0, T1, T2) · · · (5)

u (t − τi ) = u0(T0 − τi , T1 − ετi , T2 − ε2τi )

+ εu1(T0 − τi , T1 − ετi , T2 − ε2τi )

+ ε2u2(T0 − τi , T1 − ετi , T2 − ε2τi ) · · · ,

i = 1, 2 (6)

The time derivatives are defined as follows:
d

dt
= D0 + εD1 + ε2D2 + · · · (7)

d2

dt2
= D2

0 + 2εD0D1 + ε2
(
D2
1 + 2D0D2

)
+ · · ·

(8)

By substituting Eqs. (5-8) into Eq. (3) and equating the
coefficients of ε, we have

ε0 : D2
0u0 + u0 = 0 (9)

ε1 : D2
0u1 + u1 = −μD0u0 − 2D0D1u0 − α1u

3
0

−α2u
5
0 − β1u

2
0D

2
0u0 − β1u0 (D0u0)

2

−β2u
4
0

(
D2
0u0

)
− β2u

3
0 (D0u0)

2 + gpu0τ1

+gd D0u0τ2 + F cos (�t) (10)
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The general solution of Eq. (9) is

u0 = A(T1, T2)e
iT0 + Ā(T1, T2)e

−iT0 (11a)

and

u0τi = A(T1 − ετ1, T2 − ε2τ2)e
i(T0−τi )

+ Ā(T1 − ετ1, T2 − ε2τ22)e
−i(T0−τi ) (11b)

where A and Ā are the complex amplitude and complex
conjugate of A, respectively.

Given the fact that ε is very small compared to unity,
after expansion by Taylor’s

formula, we get

A(T1 − ετ1, T2 − ε2τ2)

= A(T1, T2) − ετ j D1A(T1, T2)

−ε2τ j D2A(T1, T2) + · · · ∼= A(T1, T2) (12)

Substituting Eqs. (11, 12) into Eq. (10),

D2
0u1 + ω2

0u1

= 1

2
Fei�T0 − α1A

3e3iT0

− α2A
5e5iT0 − 5α2A

4 Āe3iT0

+ 2β1A
3e3iT0 + 2β2A

5e5iT0 + 6β2A
4 Āe3iT0

+

⎛
⎜⎜⎝

−3α1A2 Ā − 10α2A3 Ā2 − iμA + 2β1A2 Ā
+8β2A3 Ā2 − 2i Ȧ
+gp Ae−iτ1 + igd Ae−iτ2

⎞
⎟⎟⎠ eiT0

+ c.c (13)

where c.c represents the complex conjugate of all
terms.

Eliminating the secular term in Eq. (13), the follow-
ing expression is obtained:

− 3α1A
2 Ā − 10α2A

3 Ā2 − iμA + 2β1A
2 Ā

+ 8β2A
3 Ā2 − 2i Ȧ + 1

2
FeiσT1 + gp Ae

−iτ1

+igd Ae
−iτ2 = 0 (14)

By assuming A = aeiθ
2 , substituting it into Eq. (14),

and separating the real and imaginary parts, we have
the result

ȧ = −μa

2
+ F

2
sin γ − agp

2
sin (τ1) + agd

2
cos (τ2)

(15)

aγ̇ = aσ + F

2
cos γ − 3α1a3

8
− 5α2a5

16
+ β1a3

4

+ β2a5

4
+ agp

2
cos (τ1) + agd

2
sin (τ2) (16)

where γ = σT1 − θ .

Letting ȧ = aγ̇ = 0, we obtain the frequency
response equation

F2

4
=

(μa

2
+ agp

2
sin (τ1) − agd

2
cos (τ2)

)2

+
(
aσ − 3α1a3

8
− 5α2a5

16
+ β1a3

4
+ β2a5

4

+agp
2

cos (τ1) + agd
2

sin (τ2)
)2

(17)

The peak value of the primary resonance can be
obtained by Eq. (17)

amax = F

2μ0
(18)

here μ0 = μ+gp sin τ1−gd cos τ2
2 .

The corresponding peak amplitude of uncontrolled
system is

āmax = F

μ
(19)

Since the analytical solution of the nonlinear vibration
system is usually difficult to solve, the studyof the time-
delay control performance of the nonlinear vibration
system cannot simply adopt the form of the response
amplitude ratio similar to the linear vibration system.
Therefore, the attenuation ratio of the peak amplitude of
primary resonance response, denoted by R, is defined
by the ratio of the peak amplitude of primary reso-
nance vibrations with and without the attachment. The
vibration control performance is evaluated by using the
attenuation rate [42]. The attenuation ratio is expressed
as follows:

R = amax

āmax
= 1

1 + gp sin τ1−gd cos τ2
μ

(20)

As can be seen from Eq. (20) that a small value of R
indicates a large reduction in amplitude which indi-
cates that the level of vibration control is effectively
improved. A smaller attenuation rate can be obtained
by selecting an appropriate feedback gain factors and
time delays.

For simplicity, two delays are expressed as τ1 = τ

and τ2 = φ + τ . As the phase of velocity is ahead
of displacement by π

2 , the phase difference φ can be
assumed as π

2 [43]. Equation (20) can be rewritten as

R = 1

1 + (gp+gd) sin τ

μ

(21)

The stability of solutions is determined by the eigenval-
ues of the corresponding Jacobianmatrix of Eqs. 15 and
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16. The eigenvalue is the root of the following equation

λ2 + 2μ0λ + μ2
0 +

(
σ0 − v0a

2 − v1a
4
)

(
σ0 − 3v0a

2 − 5v1a
4
)

= 0 (22)

The sufficient condition of system stability is

f (σ0) = μ2
0 +

(
σ0 − v0a

2 − v1a
4
)

(
σ0 − 3v0a

2 − 5v1a
4
)

> 0, μ0 > 0

(23)

When the critical equation f (σ0) = 0 has no real solu-
tion, the value of f (σ0) is always positive. Then, the
expression is as

μ2
0 ≥ v20a

4
max + 4v0v1a

6
max + 4v21a

8
max

≥ v20a
4 + 4v0v1a

6 + 4v21a
8 (24)

where v0 = 3α1
8 − β1

4 , v1 = 5α2
16 − β2

4 .

Substituting Eq. (18) into Eq. (24), the region of the
stable vibration control parameters is satisfied as

(μ + gτ1 sin τ)10 ≥ 4v20F
4 (μ + gτ1 sin τ)4

+ 16v0v1F
6 (μ + gτ1 sin τ)2 + 16v21F

8, μ0 > 0

(25)
When the critical equation f (σ0) = 0 has two real
solutions, the stable vibration region is
gτ2 cos τ

≥
8v0F2μ2 + 3v1F4+2

√
4v20F

4μ4+4v0v1F6μ2 + v21F
8 − μ10

8μ4

− 2σ, μ0 > 0 (26)

or

gτ3 cos τ

≤ −
√
4v20F

4μ4 + 4v0v1F6μ2 + v21F
8 − μ10

4μ4

− 2σ, μ0 > 0 (27)

where gτ i = (
gp + gd

)
, i = 1, 2, 3.

In a word, if the critical equation has no real solu-
tion, the optimal design of the control parametersmeets
min 1

1+ gτ1 sin τ

μ

and Eq. (25). If the critical equation has

two real solution, the optimal design of the control
parameters satisfies min 1

1+ (gp+gd ) sin τ

μ

and Eq. (26), or

min 1

1+ (gp+gd ) sin τ

μ

and Eq. (27).

Obviously,when nonlinear control parameters, exci-
tation amplitude, damping coefficient, time delays and
natural frequency of the system are known, feedback
gain coefficients, attenuation ratio and also the optimal
time delays can be obtained.

3.2 Secondary resonance

To investigate the superharmonic and subharmonic res-
onances of a cantilever beam with time delay, Eq. (2)
can be rewritten as follows:

ü + u =

ε

⎛
⎝

−μu̇ − α1u3 − α2u5 − β1u2ü − β1uu̇2

−β2u4ü − β2u3u̇2

+gpu (t − τ1) + gd u̇ (t − τ2)

⎞
⎠

+ F cos (�t) (28)

By substituting Eqs. (5)–(8) into Eq. (28) and equating
the coefficients of ε, we have

ε0 : D2
0u0 + u0 = F cos (�t) (29)

ε1 : D2
0u1 + u1 = −μD0u0 − 2D0D1u0 − α1u

3
0

−α2u
5
0 − β1 u

2
0D

2
0u0 − β1u0 (D0u0)

2

−β2u
4
0

(
D2
0u0

)
− β2u

3
0 (D0u0)

2

+gpu0τ1 + gd D0u0τ2 (30)

The general solution of Eq. (22) is

u0 = A(T1, T2)e
iT0 + �(T1, T2)e

i�T0 + c.c (31)

where � = F
2(1−�2)

.

Substituting Eq. (31) into (30), we obtain Eq. (32),
which is presented in Appendix A. All the conditions
of the secondary resonances of the control system (2)
can be recognized, and the corresponding amplitude–
frequency response equation is studied in the next sec-
tion.

3.2.1 Superharmonic resonances of ω ≈ 1
2ω0,

ω ≈ 1
3ω0 and ω ≈ 1

5ω0

Here,we assume that the frequency of actuation is close
to one-half of the fundamental frequency:

2� = 1 + εσ (33)

Substituting Eq. (33) into Eq. (32), the secular terms
are collected, and then, we have

− 6A�2α1 − 3A2 Āα1 − 30A�4α2 − 60A2�2 Āα2

− 10A3 Ā2α2 + 2A�2�2β1

+ 18A�4�2β2 + 18A2�2 Ā�2β2 − iμA

+ 2A�2β1 + 2A2 Āβ1 + 6A�4β2

+ 30A2�2 Āβ2 + 8A3 Ā2β2

+ e2iσT1
(
−5�4 Āα2 + 7�4 Ā�2β2
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− 2�4 Ā�β2 + �4 Āβ2

)

− 2i Ȧ + gp Ae
−iτ1 + igd Ae

−iτ2 = 0 (34)

By assuming A = aeiθ
2 and separating the real and

imaginary parts, the frequency response equation of
the steady-state solutions is obtained

(
−5a�4α2

2
+ 7a�4�2β2

2
− a�4�β2 + a�4β2

2

)2

=
(

μa

2
+ agp sin τ1

2
− agd cos τ2

2

)2

+

⎛
⎜⎜⎜⎜⎜⎜⎝

aσ − 3a�2α1 − 3a3α1
8 − 15a�4α2

− 15a3�2α2
2 − 5a5α2

16 + a�2�2β1

+9a�4�2β2 + 9a3�2�2β2
4 + a�2β1

+ a3β1
4 + 3a�4β2 + 15a3�2β2

4 + a5β2
4

+ agp cos τ1
2 + agd sin τ2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

2

(35)

Similarly, when 3� = 1 + εσ is substituted into Eq.
(32), one obtains

− 6A�2α1 − 3A2 Āα1 − 30A�4α2 − 60A2�2 Āα2

− 10A3 Ā2α2 + 2A�2�2β1

+ 18A�4�2β2 + 18A2�2 Ā�2β2 − iμA

+ 2A�2β1 + 2A2 Āβ1 + 6A�4β2

+ 30A2�2 Āβ2 + 8A3 Ā2β2

+ eiσT1
( −�3α1 − 5�5α2 − 20A�3 Āα2 + 2�3�2β1

+6�5�2β2 + 18A�3 Ā�2β2 + 6A�3 Āβ2

)

+ e−iσT1
(
−10A2�3α2 + 9A2�3�2β2

− 6A2�3�β2 + 5A2�3β2

)

− 2i Ȧ + gp Ae
−iτ1 + igd Ae

−iτ2 = 0 (36)

Similarly, the frequency response equation of the
steady-state solutions is obtained:
⎛
⎜⎜⎜⎝

−�3α1 − 5�5α2 − 5a2�3α2
2

+2�3�2β1 + 6�5�2β1 + 9a2�3�2β2
4

+ a2�3β2
4 − 3a2�3�β2

2

⎞
⎟⎟⎟⎠

2

·

⎛
⎜⎜⎜⎝

−�3α1 − 5�5α2 − 15a2�3α2
2

+2�3�2β1 + 6�5�2β1 + 27a2�3�2β2
4

+11a2�3β2
4 − 3a2�3�β2

2

⎞
⎟⎟⎟⎠

2

=
(

μa

2
+ agp sin τ1

2
− agd cos τ2

2

)2

⎛
⎜⎜⎜⎝

−�3α1 − 5�5α2 − 15a2�3α2
2 + 2�3�2β1

+6�5�2β1 + 27a2�3�2β2
4 + 11a2�3β2

4

− 3a2�3�β2
2

⎞
⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aσ − 3a�2α1 − 3a3α1
8 − 15a�4α2

− 15a3�2α2
2 − 5a5α2

16 + a�2�2β1

+9a�4�2β2 + 9a3�2�2β2
4 + a�2β1

+ a3β1
4 + 3a�4β2 + 15a3�2β2

4 + a5β2
4

+ agp cos τ1
2 + agd sin τ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

⎛
⎜⎜⎜⎜⎜⎝

−�3α1 − 5�5α2 − 5a2�3α2
2

+2�3�2β1 + 6�5�2β1

+ 9a2�3�2β2
4 + a2�3β2

4

− 3a2�3�β2
2

⎞
⎟⎟⎟⎟⎟⎠

2

(37)

When 5� = 1 + εσ , one obtains

− 6A�2α1 − 3A2 Āα1 − 30A�4α2 − 60A2�2 Āα2

− 10A3 Ā2α2 + 2A�2�2β1

+ 18A�4�2β2 + 18A2�2 Ā�2β2 − iμA

+ 2A�2β1 + 2A2 Āβ1 + 6A�4β2

+ 30A2�2 Āβ2 + 8A3 Ā2β2

+ eiσT1
(
−�5α2 + 2�5�2β2

)

− 2i Ȧ + gp Ae
−iτ1 + igd Ae

−iτ2 = 0 (38)

Then, the steady-state responses of the system are:
(
−�5α2 + 2�5�2β2

)2 =
(

μa

2
+ agp sin τ1

2
− agd cos τ2

2

)2

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aσ − 3a�2α1 − 3a3α1
8 − 15a�4α2

− 15a3�2α2
2 − 5a5α2

16 + a�2�2β1

+9a�4�2β2 + 9a3�2�2β2
4 + a�2β1

+ a3β1
4 + 3a�4β2 + 15a3�2β2

4 + a5β2
4

+ agp cos τ1
2 + agd sin τ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(39)

3.2.2 Subharmonic resonances of ω ≈ 2ω0, ω ≈ 3ω0

and ω ≈ 5ω0

In this section, three cases of subharmonic resonances
are studied.
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Case 1: when � = 2 + εσ , one obtains

− 6A�2α1 − 3A2 Āα1 − 30A�4α2 − 60A2�2 Āα2

− 10A3 Ā2α2 + 2A�2�2β1

+ 18A�4�2β2 + 18A2�2 Ā�2β2 − iμA

+ 2A�2β1 + 2A2 Āβ1 + 6A�4β2

+ 30A2�2 Āβ2 + 8A3 Ā2β2

+ e2iσT1
( −10�2 Ā3α2 + 5�2 Ā3�2β2 − 6�2 Ā3β2

+9�2 Ā3β2

)

− 2i Ȧ + gp Ae
−iτ1 + igd Ae

−iτ2 = 0 (40)

Then, the frequency response equation of the steady-
state solutions is obtained:

(
−5a3�2α2

4
+ 5a3�2�2β2

8
− 3a3�2β2

4
+ 9a3�2β2

8

)2

=
(

μa

2
+ agp sin τ1

2
− agd cos τ2

2

)2

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aσ

2 − 3a�2α1 − 3a3α1
8 − 15a�4α2

− 15a3�2α2
2 − 5a5α2

16 + a�2�2β1

+9a�4�2β2 + 9a3�2�2β2
4 + a�2β1

+ a3β1
4 + 3a�4β2 + 15a3�2β2

4 + a5β2
4

+ agp cos τ1
2 + agd sin τ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(41)

Case 2: when � = 3 + εσ , one obtains

− 6A�2α1 − 3A2 Āα1 − 30A�4α2 − 60A2�2 Āα2

− 10A3 Ā2α2 + 2A�2�2β1

+ 18A�4�2β2 + 18A2�2 Ā�2β2 − iμA

+ 2A�2β1 + 2A2 Āβ1 + 6A�4β2

+ 30A2�2 Āβ2 + 8A3 Ā2β2 + eiσT1⎛
⎜⎜⎜⎜⎝

−3� Ā2α1 − 30�3 Ā2α2 − 20A� Ā3α2

+ Ā2��2β1 + 15�3�2 Ā2β2 + 4A� Ā3�2β2

− 2�� Ā2β1 − 6�3� Ā2β2 − 4A� Ā3�β2

+ 3� Ā2β1 + 15�3 Ā2β2 + 16A� Ā3β2

⎞
⎟⎟⎟⎟⎠

+ e−iσT1
(
−5A4�α2 + A4��2β2

− 2A4��β2 + 7A4�β2

)

− 2i Ȧ + gp Ae
−iτ1 + igd Ae

−iτ2 = 0 (42)

and the amplitude-frequency curve equation is

⎛
⎜⎜⎜⎝

− 3�a2α1
4 − 15�3a2α2

2 − 15�a4α2
16 + �a2�2β1

4

+ 15�3a2�2β2
4 + 3�a4�2β2

16 − �a2�β1
2 − 3�3a2�β2

2

−�a4�β2
8 + 3�a2β1

4 + 15�3a2β2
4 + 9�a4β2

16

⎞
⎟⎟⎟⎠

2

·

⎛
⎜⎜⎜⎝

− 3�a2α1
4 − 15�3a2α2

2 − 25�a4α2
16 + �a2�2β1

4

+ 15�3a2�2β2
4 + 5�a4�2β2

16 − �a2�β1
2 − 3�3a2�β2

2

− 3�a4�β2
8 + 3�a2β1

4 + 15�3a2β2
4 + 23�a4β2

16

⎞
⎟⎟⎟⎠

2

=
(

μa

2
+ agp sin τ1

2
− agd cos τ2

2

)2

⎛
⎜⎜⎜⎜⎜⎜⎝

− 3�a2α1
4 − 15�3a2α2

2 − 25�a4α2
16

+�a2�2β1
4 + 15�3a2�2β2

4 + 5�a4�2β2
16

−�a2�β1
2 − 3�3a2�β2

2 − 3�a4�β2
8

+ 3�a2β1
4 + 15�3a2β2

4 + 23�a4β2
16

⎞
⎟⎟⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aσ
3 − 3a�2α1 − 3a3α1

8 − 15a�4α2

− 15a3�2α2
2 − 5a5α2

16 + a�2�2β1

+9a�4�2β2 + 9a3�2�2β2
4 + a�2β1

+ a3β1
4 + 3a�4β2 + 15a3�2β2

4 + a5β2
4

+ agp cos τ1
2 + agd sin τ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3�a2α1
4 − 15�3a2α2

2

− 15�a4α2
16 + �a2�2β1

4

+ 15�3a2�2β2
4 + 3�a4�2β2

16

−�a2�β1
2 − 3�3a2�β2

2

−�a4�β2
8 + 3�a2β1

4

+ 15�3a2β2
4 + 9�a4β2

16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(43)

Case 3: when � = 5 + εσ , one obtains

− 6A�2α1 − 3A2 Āα1 − 30A�4α2 − 60A2�2 Āα2

− 10A3 Ā2α2 + 2A�2�2β1

+ 18A�4�2β2 + 18A2�2 Ā�2β2 − iμA

+ 2A�2β1 + 2A2 Āβ1 + 6A�4β2

+ 30A2�2 Āβ2 + 8A3 Ā2β2

+ eiσT1

(
−5�Ā

4
α2 + ��2Ā

4
β2 − 2��Ā

4
β2

+7�Ā
4
β2

)

− 2i Ȧ + gp Ae
−iτ1 + igd Ae

−iτ2 = 0 (44)

Similarly, the frequency response equation is obtained:

(
−5�a4α2

16
+ ��2a4β2

16
− ��a4β2

8
+ 7�a4β2

16

)2

=
(

μa

2
+ agp sin τ1

2
− agd cos τ2

2

)2
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 Amplitude–frequency curve of the system for the primary resonance with different delays and feedback gain coefficients
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Fig. 3 Phase–amplitude response with zero initial conditions

Fig. 4 Time–amplitude response with zero initial conditions

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

aσ
5 − 3a�2α1 − 3a3α1

8 − 15a�4α2

− 15a3�2α2
2 − 5a5α2

16 + a�2�2β1

+9a�4�2β2 + 9a3�2�2β2
4 + a�2β1

+ a3β1
4 + 3a�4β2 + 15a3�2β2

4 + a5β2
4

+ agp cos τ1
2 + agd sin τ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(45)

4 Results and discussion

To investigate the nonlinear behavior of the control
system (2), the primary amplitude–frequency response
Eq. (17) of a cantilever beam carrying an intermedi-
ate lumped mass is considered. The influences of the
feedback gain coefficients gp, gd and delay feedback
τ1, τ2 on the amplitude–frequency curve of the main
system can be calculated with α1 = 0.3331, α2 =
0.1299, β1 = 0.3338 and β2 = 0.1319 [44]. In all
figures of this article, a solid line indicates the sta-

Fig. 5 Variation of Rwith time delay for different feedback gain
coefficients at μ = 0.06 and F = 0.1

ble solution, and the dashed line indicates the unsta-
ble solution. The effects of the different parameters
on the primary resonance are studied, and the corre-
sponding amplitude–frequency curves are illustrated in
Fig. 2. Figure 2a, b shows the influence of the excitation
amplitude and the dimensionless damping coefficient
on the amplitude of the steady-state response of the sys-
tem without a time delay. Obviously, the primary reso-
nant frequency curve is shifted to the right, exhibiting
hard spring and multivalued characteristics. With an
increase in F , the response area broadens and the max-
imum amplitude of the vibration increases. When the
damping increases, the peak amplitude decreases, the
migratory nature of the resonance frequency decreases,
and the curve with the characteristics of a hard spring
and multivalued areas is significantly reduced. From
Fig. 2a, b, we can see that the excitation amplitude
has little effect on the shape of the stable resonance
frequency, but the damping coefficient has an impor-
tant influence on the stability behavior of the system.
Obviously, the conclusions are in good agreement with
Refs. [13,45]. Figure 2c shows that as the displacement
feedback gain coefficient increases, the peak amplitude
moves to the left, and the vibration peak amplitude,
the response spring characteristic, and the stability of
the system’s nonlinearity do not change. However, as
shown in Fig. 2d, with the increase in the velocity feed-
back gain coefficient, the peak amplitude obviously
decreases, and it remarkably changes the stability of the
system. To compare the control effects of the displace-
ment and velocity feedback gain coefficients, different
gain coefficient values are chosen, as shown in Fig. 2e.
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An increase in gp makes the peak amplitude move to
a low frequency, and the increase in gd can effectively
suppress the vibration amplitude of the nonlinear sys-
tem. These results are consistent with those shown in
Fig. 2c, d. Therefore, vibration control of a nonlinear
system can be achieved by optimizing the selection
of the velocity feedback gain coefficient. Figure 2f–
h shows the effect of time delays on the frequency
response of the system. Figure 2f, g shows that both the
displacement time delay τ1 and the velocity time delay
τ2 can suppress the vibration amplitude of the nonlinear
system. The effectiveness of the time delay is further
studied in Fig. 2h. Four cases are shown: without time
delay, only displacement time delay, only velocity time
delay and with two time delays. The results show that
velocity delay has a more obvious effect on the nonlin-
ear vibration of the system and that the two time delays
have a better suppressive effect on system control at
lower frequencies. Obviously, with the change in the
time delay and feedback gain coefficient, the effect of
nonlinear suppression is enhanced. It is also observed
that the results of this paper agree well with those in
Refs. [24–26]. Therefore, choosing an appropriate time
delay and feedback gain coefficient can improve the
control effect and stability of the nonlinear system. To
further illustrate the validity of the results, the phase
diagram and the time–amplitude response diagram are
shown in Figs. 3 and 4with zero initial conditionswhen
gp = 0.01, gd = 0.01, τ1 = 0.05π , τ2 = 0.05π . It can
be seen from the figures that the vibration response of
the system eventually tends toward stability.

The relations between the attenuation ratio and time
delay with different feedback gain coefficients are pre-
sented in Fig. 5. The figure states that reasonable selec-
tion of time delays for different feedback gain coeffi-
cients gives a small value of the attenuation rate R.
The smaller R, the better vibration control of system.
Obviously, π

2 is one of the optimal time delays.
For the superharmonic case of ω = 1

2ω0, the effects
of F and μ are illustrated in Fig. 6a, b. The only sta-
ble response for this case is zero amplitude (which is
presented by a solid line), while the other curves are
unstable. The effects of the feedback gain coefficient
and time delay are shown in Fig. 6c–h. The results show
that these parameters only have a certain influence on
the system resonance bandwidth. Similarly, Figs. 7 and
8 are plotted for the superharmonic case of ω = 1

3ω0

and ω = 1
5ω0. Moreover, when ω ≈ 1

5ω0, the control

effect is more obvious. This result is consistent with
the primary resonance result.

A similar parametric study is performed for all the
cases (ω ≈ 2ω0, ω ≈ 3ω0 and ω ≈ 5ω0) of the sub-
harmonic resonances, and their results are shown in
Figs. 9, 10 and 11, respectively. It can be seen from the
figures that each curve has two branches correspond-
ing to two different values of the amplitude. In the two
branches, the large amplitude is stable, and the small
amplitude is unstable. The displacement feedback gain
coefficient only makes the peak amplitude of system
move to a low frequency, but the velocity feedback gain
coefficient can change the amplitude and the bandwidth
when subharmonic resonance occurs.

We now turn our attention to the influence of loca-
tion of the concentrated mass on the primary reso-
nance of the system. According to Ref. [44], the val-
ues of dimensionless parameters are taken as α1 =
0.3331, α2 = 0.1299, β1 = 0.1850 and β2 = 0.4306.
The amplitude–frequency curves of the system for tip
mass subjected to base excitation are plotted in Fig. 12.
It is noticed that the system shows softening behavior
which is different from Fig. 2. The results also reveal
that the increase of displacement feedback gain coef-
ficient only makes the peak amplitude of system move
to a low frequency. Yet velocity feedback coefficient
and their time delays are able to effectively restrain the
amplitude of the system. Furthermore, velocity feed-
back coefficient is significant for the stability of the
system, but the displacement feedback gain coefficient
only causes a translation of stable points of the system.
These results are consistent well with those in Fig. 2.

5 Conclusion

In this paper, we presented an analysis of the dynam-
ics of a cantilever beam carrying an lumped mass
with time-delay displacement and velocity feedback.
The multiple scales method is used to approximate
the primary, superharmonic and subharmonic reso-
nance conditions of the control system and to inves-
tigate their stability. The variation of the amplitude–
frequency response curve of the system under different
time delays was discussed and solved numerically. The
results show that the system exhibits a hard spring char-
acteristic for a lumped mass at an intermediate posi-
tion, whereas it shows softening behavior for tip mass.
The delayed displacement and velocity feedback con-
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Fig. 6 Amplitude–
frequency curves of the
system for the
superharmonic case of
ω ≈ 1

2ω0 with different
delays and feedback gain
coefficients

(a) (b)

(d)(c)

(e) (f)

(g) (h)

trol terms have significant effects on the resonance sta-
bility and peak amplitude. A specific time delay control
can effectively reduce the amplitude of the resonance.
Moreover, by comparing the feedback gain coefficient
and time delay, it is found that under the same condi-

tions, the control effects of the velocity feedback gain
coefficient and the velocity time delay are relatively
good. When four control variables exist at the same
time, the control effect of the system is better.
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Fig. 7 Amplitude–
frequency curves of the
system for the
superharmonic case of
ω ≈ 1

3ω0 with different
delays and feedback gain
coefficients

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 8 Amplitude–
frequency curves of the
system for the
superharmonic case of
ω ≈ 1

5ω0 with different
delays and feedback gain
coefficients

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 9 Amplitude–
frequency curves of the
system for subharmonic
case of ω ≈ 2ω0 with
different delays and
feedback gain coefficients

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 10 Amplitude–
frequency curves of the
system for subharmonic
case of ω ≈ 3ω0 with
different delays and
feedback gain coefficients

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 11 Amplitude–
frequency curves of the
system for subharmonic
case of ω ≈ 5ω0 with
different delays and
feedback gain coefficients

(a) (b)

(c) (d)

(f)(e)

(g) (h)
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Fig. 12 Amplitude–
frequency curve of the
system for the primary
resonance of tip mass with
different delays and
feedback gain coefficients

(a) (b)

(d)(c)

(e) (f)

(h)(g)
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Appendix A

ε1 : D2
0u1 + u1 = +e−5i�T0

(
−α2�

5 + 2�5β2�
2
)

+ e5i�T0
(
−α2�

5 + 2�5β2�
2
)

+ e−5iT0
(
−α2A

5 + 2A5β2

)

+ e5iT0
(
−α2A

5 + 2A5β2

)

+ e−3i�T0

(−α1�
3 − 20AĀα2�

3 − 5α2�
5 + 2β1�

2�3 + 12AĀβ2�
3�2

+ 6β2�
5�2 + 6AĀβ2�

3�2 + 6AĀβ2�
3

)

+ e3i�T0

(−α1�
3 − 20AĀα2�

3 − 5α2�
5 + 2β1�

2�3 + 12AĀβ2�
3�2

+ 6β2�
5�2 + 6AĀβ2�

3�2 + 6AĀβ2�
3

)

+ e−i�T0

⎛
⎝

− 6AĀα1� − 30A2 Ā2α2� − 3α1�
3 − 60AĀα2�

3 − 10α2�
5

+ 2AĀβ1��2 + 2β1�
3�2 + 6A2 Ā2β2��2 + 30AĀβ2�

3�2

+ 8β2�
5�2 + 2AĀβ1� + 18A2 Ā2β2� + 18AĀβ2�

3

⎞
⎠

+ ei�T0

⎛
⎝

− 6AĀα1� − 30A2 Ā2α2� − 3α1�
3 − 60AĀα2�

3 − 10α2�
5

+ 2AĀβ1��2 + 2β1�
3�2 + 6A2 Ā2β2��2 + 30AĀβ2�

3�2

+ 8β2�
5�2 + 2AĀβ1� + 18A2 Ā2β2� + 18AĀβ2�

3

⎞
⎠

+ e4iT0
(
ei�T0

(−5A4α2� + A4β2��2 + 2A4β2�� + 7A4β2�
)

+e−i�T0
(−5A4α2� + A4β2��2 − 2A4β2�� + 7A4β2�

)
)

+ e−4iT0

(
ei�T0

(−5A4α2� + A4β2��2 + 2A4β2�� + 7A4β2�
)

+ e−i�T0
(−5A4α2� + A4β2��2 − 2A4β2�� + 7A4β2�

)
)

+ e3iT0

⎛
⎜⎜⎝

−A3α1 − 5A4 Āα2 − 20A3α2�
2 + 6A3β2�

2�2 + 2A3β1 + 6A4 Āβ2

+ 18A3β2�
2

+e2i�T0
(−10A3α2�

2 + 5A3�2β2�
2 + 6A3β2�

2� + 9A3β2�
2
)

+e−2i�T0
(−10A3α2�

2 + 5A3�2β2�
2 − 6A3β2�

2� + 9A3β2�
2
)

⎞
⎟⎟⎠

+ e−3iT0

⎛
⎜⎜⎝

−A3α1 − 5A4 Āα2 − 20A3α2�
2 + 6A3β2�

2�2 + 2A3β1 + 6A4 Āβ2

+ 18A3β2�
2

+e2i�T0
(−10A3α2�

2 + 5A3�2β2�
2 + 6A3β2�

2� + 9A3β2�
2
)

+e−2i�T0
(−10A3α2�

2 + 5A3�2β2�
2 − 6A3β2�

2� + 9A3β2�
2
)

⎞
⎟⎟⎠

+ eiT0

⎛
⎜⎜⎜⎜⎝

− 3A2α1 Ā − 10A3 Ā2α2 − 6Aα1�
2 − 60A2 Āα2�

2 − 30Aα2�
4 + 2A�2β1�

2

+ 18A2 Ā�2β2�
2 + 18A�4β2�

2 + 2A2 Āβ1 + 2A�2β1 + 8A3 Ā2β2

+ 30A2 Ā�2β2ω
2
0 + 6A�4β2 + gp Ae−iτ1 + igd Ae−iτ2

+e4i�T0
(−5Aα2�

4 + 7A�4β2�
2 + 2Aβ2�

4� + Aβ2�
4
)

+e−4i�T0
(−5Aα2�

4 + 7A�4β2�
2 − 2Aβ2�

4� + Aβ2�
4
)

⎞
⎟⎟⎟⎟⎠

+ eiT0e2i�T0

⎛
⎝

− 3Aα1�
2 − 30A2 Āα2�

2 − 20Aα2�
4 + 3A�2β1�

2 + 15A2 Ā�2β2�
2

16A�4β2�
2 + 2A�2β1� + 6A2 Ā�2β2� + 4A�4β2� + A�2β1

+ 15A2 Ā�2β2 + 4A�4β2

⎞
⎠
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+ eiT0e−2i�T0

⎛
⎝

− 3Aα1�
2 − 30A2 Āα2�

2 − 20Aα2�
4 + 3A�2β1�

2 + 15A2 Ā�2β2�
2

16A�4β2�
2 − 2A�2β1� − 6A2 Ā�2β2� − 4A�4β2� + A�2β1

+ 15A2 Ā�2β2 + 4A�4β2

⎞
⎠

+ e−iT0

⎛
⎜⎜⎜⎜⎝

−3A2α1 Ā − 10A3 Ā2α2 − 6Aα1�
2 − 60A2 Āα2�

2 − 30Aα2�
4

+ 2A�2β1�
2 + 18A2 Ā�2β2�

2 + 18A�4β2�
2 + 2A2 Āβ1

+ 2A�2β1 + 8A3 Ā2β2 + 30A2 Ā�2β2 + 6A�4β2

+e4i�T0
(−5Aα2�

4 + 7A�4β2�
2 + 2Aβ2�

4� + Aβ2�
4
)

+e−4i�T0
(−5Aα2�

4 + 7A�4β2�
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4� + Aβ2�
4
)

⎞
⎟⎟⎟⎟⎠

+ e−iT0e2i�T0

⎛
⎜⎜⎝

− 3Aα1�
2 − 30A2 Āα2�

2 − 20Aα2�
4 + 3A�2β1�

2

+ 15A2 Ā�2β2�
2 + 16A�4β2�

2 + 2A�2β1�

+6A2 Ā�2β2� + 4A�4β2� + A�2β1

+ 15A2 Ā�2β2 + 4A�4β2

⎞
⎟⎟⎠

+ e−iT0e−2i�T0

⎛
⎜⎜⎝

− 3Aα1�
2 − 30A2 Āα2�

2 − 20Aα2�
4 + 3A�2β1�

2

+15A2 Ā�2β2�
2 + 16A�4β2�

2 − 2A�2β1�

− 6A2 Ā�2β2� − 4A�4β2� + A�2β1

+15A2 Ā�2β2 + 4A�4β2

⎞
⎟⎟⎠

+ e2iT0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei�T0

⎛
⎝

− 3A2α1� − 20A3 Āα2� − 30A2α2�
3 + A2β1��2 + 4A3 Āβ2��2

+ 15A2�3β2�
2 + 2A2β1�� + 4A3 Āβ2�� + 6A2�3β2�

+ 3A2β1� + 16A3 Āβ2� + 15A2β2�
3

⎞
⎠

+e−i�T0

⎛
⎝

− 3A2α1� − 20A3 Āα2� − 30A2α2�
3 + A2β1��2 + 4A3 Āβ2��2

+ 15A2�3β2�
2 − 2A2β1�� − 4A3 Āβ2�� − 6A2�3β2�

+ 3A2β1� + 16A3 Āβ2� + 15A2β2�
3

⎞
⎠

+e3i�T0
(−10A2α2�

3 + 9A2�3β2�
2 + 6A2�3β2� + 5A2�3β2

)
+e−3i�T0

(−10A2α2�
3 + 9A2�3β2�

2 − 6A2�3β2� + 5A2�3β2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ e−2iT0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei�T0

⎛
⎝

− 3A2α1� − 20A3 Āα2� − 30A2α2�
3 + A2β1��2 + 4A3 Āβ2��2

+ 15A2�3β2�
2 + 2A2β1�� + 4A3 Āβ2�� + 6A2�3β2�

+ 3A2β1� + 16A3 Āβ2� + 15A2β2�
3

⎞
⎠

+e−i�T0

⎛
⎝

−3A2α1� − 20A3 Āα2� − 30A2α2�
3 + A2β1��2 + 4A3 Āβ2��2

+ 15A2�3β2�
2 − 2A2β1�� − 4A3 Āβ2�� − 6A2�3β2�

+ 3A2β1� + 16A3 Āβ2� + 15A2β2�
3

⎞
⎠

+e3i�T0
(−10A2α2�

3 + 9A2�3β2�
2 + 6A2�3β2� + 5A2�3β2

)
+e−3i�T0

(−10A2α2�
3 + 9A2�3β2�

2 − 6A2�3β2� + 5A2�3β2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)
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