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Abstract In the present work, we formulate a gener-
alization of the Noether Theorem for action-dependent
Lagrangian functions. The Noether’s theorem is one
of the most important theorems for physics. It is well
known that all conservation laws, e.g., conservation
of energy and momentum, are directly related to the
invariance of the action under a family of transforma-
tions. However, the classical Noether theorem cannot
be applied to study non-conservative systems because
it is not possible to formulate physically meaning-
ful Lagrangian functions for this kind of systems in
the classical calculus of variation. On the other hand,
recently it was shown that an Action Principle with
action-dependent Lagrangian functions provides phys-
icallymeaningful Lagrangian functions for a huge vari-
ety of non-conservative systems (classical and quan-
tum). Consequently, the generalized Noether Theorem
we present enables us to investigate conservation laws
of non-conservative systems. In order to illustrate the
potential of application, we consider three examples of
dissipative systems and we analyze the conservation
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1 Introduction

Since the introduction of the Action Principle in its
mature formulation by Euler, Lagrange, and Hamilton,
it has become one of the most fundamental principles
of physics. It provides a solid and universal foundation
for the whole dynamical structure in any classical or
quantum conservative theory. Actually, it is from the
Action Principle that the dynamical equations describ-
ing any conservative system, in any physical theory
(classical or quantum), is obtained. However, despite
its importance to study conservative systems, it is well
known that the equations of motion for dissipative lin-
ear dynamical systems cannot be obtained from a phys-
ically meaningful Lagrangian in the classical Action
Principle framework. A rigorous proof for the failure of
the Action Principle in describing dissipative systems
was given in 1931 by Bauer [1], who proved that it is
impossible to obtain a dissipation term proportional to
the first-order time derivative in the equation of motion
from the traditional Action Principle.

Over the last century, several methods have been
developed in order to overcome the failure of the
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Action Principle to describe non-conservative sys-
tems. Examples include time-dependent Lagrangians
[2–7], the Bateman approach by introducing auxiliary
coordinates that describe the reverse-time system [8–
13] and Actions with fractional derivatives [14,15].
Unfortunately, all these approaches either give us non-
physically meaningful Lagrangian functions (in the
sense that they provide non-physical relations for the
momentumandHamiltonianof the system)ormakeuse
of non-local differential operators with algebraic prop-
erties different from usual derivatives (see [14,15] for a
detailed discussion). In recent works [16,17], in order
to formulate an Action Principle for non-conservative
systems, we take a different approach and we propose a
physically meaningful Action Principle for dissipative
systems by generalizing the variational problem [18–
20] for Lagrangian density functions depending itself
on an action–density field. In any physical theory, the
Lagrangian function which defines the Action is con-
structed from the scalars of the theory, and from it, the
corresponding dynamical equations can be obtained.
However, the Action itself is a scalar and we might
ask ourselves what would happen if the Lagrangian
function itself were a function of the Action. For a one-
dimensional system, the answer to this question can
be given by an almost-forgotten variational problem
proposed by Herglotz in 1930 [18–20]. A reason for
this problem to be almost unknown is that a covari-
ant generalization for several independent variables is
not direct. Only recently, the Herglotz variational prob-
lem gained more interest in the literature [19–27] and,
in particular, in a recent work [16] we formulated a
covariant generalization for the Herglotz problem to
construct a non-conservative gravitational theory from
the Lagrangian formalism. Furthermore, by following
the ideas we introduced in [16], in [17] we formulated a
general Action Principle for non-conservative systems
for Lagrangian density functions depending itself on
an action–density field. We obtained a generalization
of the Euler–Lagrange equation for this Action Prin-
ciple and applied it in several classical and quantum
systems.

A physically consistent generalization of the Action
Principle to non-conservative systems enables us to use
all themathematicalmachineries of the calculus of vari-
ation to study dissipative systems. Among these math-
ematical machineries, we can highlight the Noether’s
theorem that becomes one of the most important the-
orems for physics in the twentieth century. Since the

seminal work of Emmy Noether, it is well known that
all conservation’s laws in mechanics, as for example,
conservation of energy and momentum, are directly
related to the invariance of the Action under a family of
transformations. Furthermore, conserved quantities in
any dynamical system play a major role in the analysis
of the system. They enable us to solve some problems
without a more detailed knowledge of the dynamics,
for example, as found in any undergraduate textbook in
physics, we can solve easily several mechanical prob-
lems by making use of the energy and momentum con-
servations without the necessity of solving the dynam-
ical equation given by Newton’s second law of motion.
In general, the continuous symmetries and its related
conserved quantities give us first integrals for dynami-
cal systems that can be used to simplify the problem.On
the other hand, non-conservative forces remove energy
from the systems and, as a consequence, the standard
Noether constants of motion (as energy and momen-
tum) are broken. In this context, the generalization of
the Noether’s theorem for the Action Principle defined
in [16,17] is fundamental to investigate the action sym-
metries for non-conservative systems. In the present
work, we generalize Noether’s theorem for Lagrangian
density functions depending itself on an action–density
field. As examples of application to non-conservative
systems, we study the problem of a vibrating string
under a frictional force, and the problem of a complex
scalar field.

The paper is organized in the following way. In
Sect. 2, we review the basic notions of Herglotz varia-
tional problemandour generalization for fields [16,17].
Furthermore, we discuss the gauge invariance in our
Action Principle [16,17] and we introduce a Canonical
Gauge. The Noether’s theorem for Lagrangian density
functions depending itself on an action–density field is
obtained in Sect. 3. The examples of applications of the
Noether’s theorem are presented in Sect. 4. Finally, the
conclusions are presented in Sect. 5.

2 Action principle for action-dependent
Lagrangians

In this section, we first present the Action Principle
introduced by us in [16,17], and after we show that the
Action is gauge invariant. This gauge invariance will
play a fundamental role in the generalization of the
Noether Theorem.
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2.1 The Herglotz variational problem

In recent works [16,17], we formulated a covari-
ant Action Principle for Action-dependent Lagrangian
densities by generalizing the Herglotz variational prob-
lem. The original Herglotz problem, introduced in
1930 [18,19], consists in the problem of determining
the function x(t) that extremizes (minimizes or maxi-
mizes) S(b), where the Action S(t) is a solution of

Ṡ(t) = L(t, x(t), ẋ(t), S(t)), t ∈ [a, b]
S(a) = sa, x(a) = xa,

x(b) = xb, sa, xa, xb ∈ R.

(1)

It is important to stress that S(t) is a functional since,
for each function x(t), we have a different differential
equation problem (1). Therefore, S(t) depends on x(t).
Furthermore, the Herglotz problem (1) reduces to the
classical fundamental problem of the calculus of vari-
ations if the Lagrangian function L does not depend
on S(t). In this particular case, by integrating (1), we
obtain the classical variational problem

S(b) =
∫ b

a
L̃(t, x(t), ẋ(t)) dt −→ extremum, (2)

where x(a) = xa , x(b) = xb, and

L̃(t, x(t), ẋ(t)) = L(t, x(t), ẋ(t)) + sa
b − a

. (3)

Herglotz proved [18,19] that a necessary condition
for a function x(t) to imply an extremum of the vari-
ational problem (1) is given by the generalized Euler–
Lagrange equation:

∂L

∂x
− d

dt

∂L

∂ ẋ
+ ∂L

∂S

∂L

∂ ẋ
= 0. (4)

It is easy to notice that in the case where ∂L
∂S = 0,

as in the classical problem (2), the differential equa-
tion (4) reduces to the classical Euler–Lagrange equa-
tion. The potential application of Herglotz problem to
non-conservative systems is evident even in the sim-
plest case, where the dependence of the Lagrangian
function on the Action is linear [17]. For example, the
Lagrangian function

L = mẋ2

2
−U (x) − γ

m
S (5)

describes a dissipative system with a point particle of
mass m under a potential U (x) and a viscous force
with a resistance coefficient γ . From (4), the resulting
equation of motion,

mẍ + γ ẋ = F, (6)

includes the well-known dissipative term proportional
to the velocity ẋ ,where ẍ is the particle acceleration and
F = − dU

dx is the external force. In this context, the lin-
ear term γ

m S in the Lagrangian function (5) can be inter-
preted as a potential function for the non-conservative
force [17]. Furthermore, the Lagrangian given by (5)
is physical in the sense it provides us with physically
meaningful relations for themomentum and theHamil-
tonian [14,15,17].

2.2 Generalization of the Herglotz problem for fields

Although the Herglotz problem was introduced in
1930, a covariant generalization of (1) for several
independent variables is not direct and was proposed
only recently [16,17]. For a scalar field φ(xμ) =
φ(x1, x2, . . . , xd) defined in a domain Ω ∈ R

d (d =
1, 2, 3, . . .), the classical problem of variational calcu-
lus deals with the problem to find φ that extremizes the
functional

S(δΩ) =
∫

δΩ

L (
xμ, φ(xμ), ∂νφ(xμ)

)
dd x, (7)

where δΩ is the boundary of Ω , and φ satisfies the
boundary condition φ(δΩ) = φδΩ with φΩ : δΩ −→
R. The cornerstone of a generalization of the Herglotz
problem for fields is to note that, for a given fixed φ, the
functional S defined in (7) reduces to a function of the
boundary δΩ . In this context, if there is a differentiable
vector field sμ such that

S(δΩ) =
∫

δΩ

sνnν dσ, (8)

where here and throughout the rest of the work we
assume the summation convention on repeated indices,
then, from the Divergence Theorem we obtain

S(δΩ) =
∫

δΩ

sνnνdσ =
∫

Ω

∂νs
νdd x

=
∫

Ω

L (
xμ, φ(xμ), ∂νφ(xμ), sμ

)
dd x, (9)

where we consider that δΩ is an orientable Jordan sur-
face, nμ is the surface normal vector field, and dσ is
the surface differential. Consequently, we can general-
ize the Herglotz variational principle as follows [17]:

Definition 1 (Fundamental Problem) Let the action–
density field sμ be a differentiable vector field on Ω ∈
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R
d . The fundamental problem of Herglotz variational

principle for fields consists in determining the field
φ that extremizes (minimizes or maximizes) S(δΩ),
where S(δΩ) is given by

∂νs
ν = L (

xμ, φ(xμ), ∂μφ(xμ), sμ
)
,

xμ = (x1, x2, . . . , xd) ∈ Ω

S(δΩ) =
∫

δΩ

sνnνdσ, φ(δΩ) = φδΩ,

φ(δΩ) : δΩ −→ R. (10)

Like in the original Herglotz problem, it is easy
to notice that the Action functional defined by (10)
reduces to the usual Action (7) when the Lagrangian
function is independent of the action–density field sμ.
Furthermore, we can prove the following condition for
the extremum of (10) (see [17] for the proof):

Theorem 1 (GeneralizedEuler–Lagrange equation for
non-conservative fields) Let ∂sνL = γν be a gradient
γν = ∂ν f (xμ) = (∂x1 f, . . . , ∂xd f ) of a scalar field
f : Ω −→ R, and let φ∗ be the fields that extremize
S(δΩ) defined in (10). Then, the field φ∗ satisfies the
generalized Euler–Lagrange equation

∂L
∂φ∗ − d

dxν

(
∂L

∂ (∂νφ∗)

)
+ γν

∂L
∂ (∂νφ∗)

= 0. (11)

It is easy to see that for Lagrangian functions inde-
pendent on sμ, the generalized Euler–Lagrange equa-
tion (11) reduces to the usual one,

∂L
∂φ∗ − d

dxν

(
∂L

∂ (∂νφ∗)

)
= 0, (12)

since, in this case, γμ = 0. Furthermore, when the
action–density field sμ has only one non-null compo-
nent and it is a function of only one variable, for exam-
ple s1 �= 0 and x1 = t , and Ω = [ta, tb] ⊗ R

d−1,
the fundamental problem in Definition 1 contains, as a
particular case, the non-covariant problem introduced
in [20]. Moreover, in the latter situation, equation (10)
can be easily solved for Lagrangian functions linear on
s1, resulting in a s1 expressed as a history-dependent
function.

Finally, it is straightforward to generalize the fun-
damental problem (10) and the Euler–Lagrange equa-
tion (11) to the case with several fields φi (xμ) =

φi (x1, x2, . . . , xd) (i = 1, . . . , N ). In this case, we
have the Action S(δΩ) defined by [17]

∂νs
ν = L

(
xμ, φi (xμ), ∂μφi (xμ), sμ

)
,

xμ = (x1, x2, . . . , xd) ∈ Ω

S(δΩ) =
∫

δΩ

sνnνdσ, φi (δΩ) = φi
δΩ,

φi (δΩ) : δΩ −→ R, (13)

and for a Lagrangian function for which ∂sνL = γν =
∂ν f (xμ), we obtain the following set of generalized
Euler–Lagrange equations:

∂L
∂φi∗ − d

dxν

(
∂L

∂
(
∂νφi∗)

)
+ γν

∂L
∂

(
∂νφi∗) = 0,

i = 1, . . . , N . (14)

We can now formulate an Action Principle suited to
dissipative systems and free from difficulties found in
the previous approaches.

Definition 2 (Generalized Action Principle [17]) The
equation of motion for a physical field φi is the one for
which the Action (13) is stationary.

As a consequence of Definition 2, the physical field
should satisfy the generalized Euler–Lagrange equa-
tion (14). Since for Lagrangian functions indepen-
dent on the action–density the variational problem (13)
reduces to the classical one, the generalized Action
Principle is appropriate to describe both conservative
and non-conservative systems [17].

Remark 1 We can extend for the more general Action
Principle in Definition 2 the physical interpretation
we give to the Lagrangian (5) for a single particle
under frictional forces. Since in Theorem 1 we con-
sider only the particular case when ∂sνL = γν with
γν = ∂ν f (xμ) = (∂x1 f, . . . , ∂xd f ), the Lagrangian
functionsL of a general physical system, in the sense of
Definition 2, can bewritten asL = Lc+γνsν , whereLc

is a standard Lagrangian function for the corresponding
conservative system (kinetic energy minus the poten-
tial of conservative interactions) and γνsν can be inter-
preted as the potential energy of non-conservative inter-
actions. In this context, the physical content of the dis-
sipative interactions is contained in γν , that is, in the
function f (xμ). As we shall see in the examples dis-
played in Sect. 4, for a constant γν , and a Lagrangian
quadratic in the first-order time derivative, wewill have
a linear frictional force proportional to the first-order
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Noether theorem for action-dependent Lagrangian functions 1129

time derivative, as in the Lagrangian (5). This results
follows from the fact that the Euler–Lagrange equation

give us a frictional force γν

∂Lc

∂
(
∂νφi∗) in this case.More

general nonlinear dissipative forces will be foundwhen
γν is not constant and when the Lagrangian Lc is not
quadratic in the first-order time derivative.

2.3 Gauge invariance of the action

An important and interesting feature of the Action
Principle in Definition 2 is that the Action S(δΩ) is
gauge invariant. This follows directly from the fact that
the Fundamental Problem (10) do not completely fix
the action–density field sμ. For example, in the three-
dimensional case where xμ = x = (x1, x2, x3) and
sμ = s = (s1, s2, s3), the action–density field sμ is
fixed unless the curl of any vector field v, since for any
s = s + ∇ × v we have

S(δΩ) =
∫

δΩ

s · n dσ =
∫

Ω

∇ · s d3x

=
∫

Ω

∇ · (s + ∇ × v) d3x

=
∫

Ω

∇ · s d3x = S(δΩ), (15)

where S(δΩ) is defined by (10) with s instead of s.
Although the action–density field sμ is not completely
fixed by (10), the Fundamental Problem (10) gives us
dynamic equations (11) that completely fix the field φ.
We can make an analogy with the electromagnetic the-
ory, where the Maxwell equations do not completely
fix the four-vector potential, and say that the Action
S(δΩ) is gauge invariant under gauge transformations
of the action–density field sμ. Let us define the follow-
ing Canonical Gauge:

Definition 3 (Canonical Gauge) Let sμ be a differ-
entiable vector field and γμ = ∂sμL. The Canonical
Gauge for the Fundamental Problem (10) is defined by
the condition

γν∂μs
μ − γμ∂νs

μ = 0. (16)

The reason why we choose the Canonical Gauge as in
(16) will be clear in the next section when we obtain
the generalization of the Noether Theorem. Although
the field φ is independent of the gauge we choose, the
gauge invariance will play a fundamental role in the
generalization of the Noether Theorem.

3 Generalized Noether theorem

Physical systems described by the Herglotz Euler–
Lagrange equation are, in general, non-conservative in
the classical sense (as an example, the total energy is
non-conserved in systems under frictional forces). In
this context, the generalization of Noether Theorem is
fundamental to study conservative quantities in non-
conservative systems described by Herglotz problems.
In recent works, Noether’s like theorems for several
kinds of Herglotz variational problems are proposed
[20–27]. In the present work, in order to generalize
the Noether Theorem for our Action Principle given
by the Fundamental Problem 1, we consider invariance
transformations in the (xμ, φ)-space, depending on a
real parameter ε. To be more precise, we consider the
one-parameter group of invertible transformations{
x̃μ = ϕμ(xν, φ; ε), μ, ν = 1, . . . , d
φ̃ = ψ(xν, φ; ε),

(17)

where ϕμ(xν, φ; 0) = xμ and ψ(xν, φ; 0) = φ. We
now define the transformed action–density s̃μ of sμ,
given by Definition 1, as

Definition 4 The transformed action–density s̃μ of sμ,
given by Definition 1, is a solution of the transformed
differential equation

∂̃ν s̃
ν = L

(
x̃μ, φ̃, ∂̃μφ̃, s̃μ

)
, (x̃μ ∈ Ω̃), (18)

where Ω̃ is the transformed domain of the domain Ω ,
and ∂̃μ = ∂

∂ x̃μ .

We can now define what means a functional S(δD)

be invariant under a one-parameter group of invertible
transformation (17).

Definition 5 (Invariance) Let D be a closed subdo-
main of Ω with boundary δD ⊂ Ω . We say that the
functional defined by (10) is invariant under the fam-
ily of transformations (17) if the functional S̃(δ D̃) =∫
δ D̃ s̃ν ñν dσ̃ defined by the transformed equation (18),
where D̃ and δ D̃ are the transformed D and δD under
(17), and the functional S(δD), defined by the non-
transformed equation (10), satisfies

S̃(δ D̃) =
∫

δ D̃
s̃ν ñν dσ̃ =

∫
δD

s̃νnν

dσ =
∫

δD
sνnν dσ = S(δD). (19)

Furthermore, if the functional is invariant under a local
one-parameter groupG of transformations (17), we say
that G is a symmetry group.
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We can now obtain the following identity from the
invariance Definition 5:

Theorem 2 Let (17) be a symmetry group of the func-
tional S(δΩ) defined in (10). Then, the following iden-
tity

d

dxν

[(
∂L

∂ (∂νφ)
η + Lξν − ∂L

∂ (∂νφ)
∂μφ ξμ

)
e− f (xα)

]

+ e− f (xα)
(
γν∂μs

μ − γμ∂νs
μ
)
ξν = 0 (20)

holds on solutions of the generalized Euler–Lagrange
equation (11), where ξμ = dϕμ

dε |ε=0 and η = dψ
dε |ε=0.

Proof In order to prove the generalized Noether’s the-
orem for the Fundamental Problem (10), we recall from
the Lie theory that near the identity transformation the
action of the group (17) is the same as the action of the
infinitesimal linear group
{
x̃μ = xμ + ξμ(xν, φ)ε,

φ̃ = φ + η(xν, φ)ε,
(21)

where ξμ = dϕμ

dε |ε=0 and η = dψ
dε |ε=0. From the con-

dition (19), we have

S̃(δ D̃) =
∫

δ D̃
s̃ν ñν dσ̃ =

∫
D̃

∂̃ν s̃
ν dd x̃

=
∫
D̃
L(x̃μ, φ̃, ∂̃μφ̃, s̃μ) dd x̃

=
∫

δD
s̃νnν dσ =

∫
D

∂ν s̃
ν dd x . (22)

Now, we perform a change of variables in (22) to go
back to the original variables xμ and φ. We obtain∫
D

∂ν s̃
ν dd x =

∫
D
L(x̃μ, φ̃, ∂̃μφ̃, s̃μ)

det

(
∂ x̃μ

∂xν

)
dd x, (23)

where the determinant of the Jacobi matrix arises from
the change of variables xμ. By taking a derivative of
(23) with respect to ε, we get

dS̃(δ D̃)

dε

∣∣∣∣∣
ε=0

=
∫
D

∂ν

ds̃ν

dε

∣∣∣∣
ε=0

dd x

=
∫
D

[
dL
dε

det

(
∂ x̃μ

∂xν

)
+ L d

dε
det

(
∂ x̃μ

∂xν

)]∣∣∣∣
ε=0

dd x = 0, (24)

since by hypothesis the one-parameter group of trans-
formations (21) leaves the functional S(δD) invariant,

namely S̃(δ D̃) = S(δD). Since from (21) we have
∂ x̃μ

∂xν

∣∣∣
ε=0

= δi j , we get

det

(
∂ x̃μ

∂xν

)∣∣∣∣
ε=0

= 1. (25)

After some calculations, we also obtain

d

dε
det

(
∂ x̃μ

∂xν

)∣∣∣∣
ε=0

= dξν

dxν
. (26)

By inserting (25) and (26) into (24), we have
∫
D

∂ν

ds̃ν

dε

∣∣∣∣
ε=0

dd x =
∫
D

[
dL
dε

∣∣∣∣
ε=0

+ Ldξν

dxν

]
dd x .

(27)

Thus,
∫
D

∂νζ
ν dd x =

∫
D

[
∂L
∂xν

ξν + ∂L
∂φ

η

+ ∂L
∂ (∂νφ)

d

dε

(
∂̃ν φ̃

)∣∣∣
ε=0

+ γνζ
ν + Ldξν

dxν

]
dd x,

(28)

where now ζμ = ds̃μ
dε

∣∣∣
ε=0

. After some calculations we

get

d

dε

(
∂̃ν φ̃

)∣∣∣
ε=0

= dη

dxν
− ∂μφ

dξμ

dxν
. (29)

Finally, by inserting (29) into (28) results in
∫
D

[
∂νζ

ν − ∂L
∂xν

ξν − ∂L
∂φ

η

− ∂L
∂ (∂νφ)

(
dη

dxν
− ∂μφ

dξμ

dxν

)
− Ldξν

dxν
− γνζ

ν

]

dd x = 0. (30)

A sufficient condition to satisfy (30) for any subdomain
D ⊂ Ω is that

∂νζ
ν = ∂L

∂xν
ξν + ∂L

∂φ
η + ∂L

∂ (∂νφ)(
dη

dxν
− ∂μφ

dξμ

dxν

)
+ Ldξν

dxν
+ γνζ

ν (31)

Since γν = ∂ν f (xμ) is a gradient vector on D ⊂ Ω ,
(31) implies that ζ ν can be written as

ζ ν(xμ, φ, ∂μφ, sμ) = Aν(xμ, φ, ∂μφ, sμ)e f (xα),

(32)
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Noether theorem for action-dependent Lagrangian functions 1131

where

∂ν A
ν(xμ, φ, ∂μφ, sμ)

=
[

∂L
∂xν

ξν + ∂L
∂φ

η + ∂L
∂ (∂νφ)(

dη

dxν
− ∂μφ

dξμ

dxν

)
+ Ldξν

dxν

]
e− f (xα). (33)

From (22), we have

dS̃(δ D̃)

dε

∣∣∣∣∣
ε=0

=
∫

δD

ds̃ν

dε

∣∣∣∣
ε=0

nν dσ

=
∫

δD
ζ νnν dσ = 0. (34)

A sufficient condition to satisfy (34) for any subdomain
D ⊂ Ω is that the function Aν(xμ, φ, ∂μφ, sμ) satis-
fies the boundary condition Aνnν = 0 for all xμ ∈ δD.
Consequently,∫

δD
Aν(xμ, φ, ∂μφ, sμ)nν dσ

=
∫
D

∂ν A
ν(xμ, φ, ∂μφ, sμ) dd x

=
∫
D

[
∂L
∂xν

ξν + ∂L
∂φ

η + ∂L
∂ (∂νφ)(

dη

dxν
− ∂μφ

dξμ

dxν

)
+ Ldξν

dxν

]
e− f (xα) dd x = 0.

(35)

Let us now obtain the generalized Euler–Lagrange
equation (11) under the integral (35). By considering
first the term involving dη

dxν , Eq. (35) can be written as∫
δD

Aν(xμ, φ, ∂μφ, sμ)nν dσ =

=
∫
D

η

[
∂L
∂φ

− d

dxν

∂L
∂ (∂νφ)

+ γν

∂L
∂ (∂νφ)

]
e− f (xα)

dd x +
∫
D

d

dxν

[
∂L

∂ (∂νφ)
ηe− f (xα)

]
dd x +

+
∫
D

[
∂L
∂xν

ξν − ∂L
∂ (∂νφ)

∂μφ
dξμ

dxν
+ Ldξν

dxν

]
e− f (xα)

dd x = 0, (36)

which on the solution of the generalized Euler–
Lagrange equations (11) becomes∫
D

[
d

dxν

(
∂L

∂ (∂νφ)
ηe− f (xα)

)

+
(

∂L
∂xν

ξν − ∂L
∂ (∂νφ)

∂μφ
dξμ

dxν
+ Ldξν

dxν

)
e− f (xα)

]

dd x = 0. (37)

Finally, by considering the terms involving dξμ

dxν and dξν

dxν

in (37) we get
∫
D

d

dxν

[(
∂L

∂ (∂νφ)
η + Lξν − ∂L

∂ (∂νφ)
∂μφξμ

)
e− f (xα)

]
dd x −

∫
D

[
ξν∂νφ

(
∂L
∂φ

− d

dxμ

∂L
∂

(
∂μφ

) + γμ

∂L
∂

(
∂μφ

)
)

+γμ∂νs
μξν − Lγνξ

ν
]
e− f (xα)dd x = 0, (38)

which on the solution of the generalized Euler–
Lagrange equations (11), and by using (10), reduces
to
∫
D

{
d

dxν

[(
∂L

∂ (∂νφ)
η + Lξν − ∂L

∂ (∂νφ)
∂μφξμ

)
e− f (xα)

]

+ e− f (xα)ξ ν
(
γν∂μs

μ − γμ∂νs
μ
) }

dd x = 0. (39)

Since (39) should be satisfied for any subdomain D of
Ω , we obtain (20). 	


We can now formulate the Generalized Noether
Theorem for Herglotz variational principle. Since the
Action S(δΩ) is gauge invariant, the action–density
field sμ is not uniquely defined by the Fundamental
Problem given by (10). This is not a problem in deter-
mining the equation of motion (11) that completely fix
the physical field φ, in a similar way that Maxwell’s
equations completely fix the physical electromagnetic
field but do not fix the vector and scalar potentials.
However, the specific choices we make for the action–
density sμ plays an important role when analyzing the
symmetries from invariance transformations, since sμ

arouses in the identity (20) that holds when the Action
is invariant under (17). In this context, in order to obtain
conserved quantities from (20) with physically mean-
ingful content, it is reasonable to choose a gauge where
the identity (20) becomes a total derivative. Thus, we
have for the generalization of the Noether Theorem:

Theorem 3 (Generalized Noether Theorem) Let (17)
be a symmetry group of the functional S(δΩ) defined
in (10), and let us assume the canonical gauge (16).
Then, the following quantity[

∂L
∂ (∂νφ)

η + Lξν − ∂L
∂ (∂νφ)

∂μφ ξμ

]
e− f (xα) (40)

is conserved (constant of motion) on solutions of the
generalized Euler–Lagrange equation (11).

Proof Theproof followsdirectly from (20) by inserting
(16). 	
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Remark 2 Note that the canonical gauge (16) is not
the only possibility to reduce the identity (20) into a
total derivative. For example, the gauge (γν∂μsμ −
γμ∂νsμ)ξν = e f (xα)∂νFν(xα), where Fν(xα) is any
vector field, also reduces (20) into a total derivative.
However, there is no physical motivation to introduces
a non-null field Fν(xα) in the problem.

Remark 3 Our Generalized Noether Theorem (40)
generalizes for fields the Noether’s like theorems for
the classical Herglotz problem [20,22].

Remark 4 It is easy to see that for Lagrangian functions
independent on sμ, the Generalized Noether Theorem
(40) reduces to the usual one,

∂L
∂ (∂νφ)

η + Lξν − ∂L
∂ (∂νφ)

∂μφ ξμ = constant, (41)

since, in this case, γμ = 0 implies f (xα) = constant.

Finally, it is straightforward to generalize The-
orem 3 to the case with several fields φi (xμ) =
φi (x1, x2, . . . , xd) (i = 1, . . . , N ). In this case, we
have the Action S(δΩ) in (13). By defining a one-
parameter group of invertible transformations
{
x̃μ = ϕμ(xν, φ j ; ε),

φ̃i = ψ i (xν, φ j ; ε),
(42)

where ϕμ(xν, φ j ; 0) = xμ and ψ i (xν, φ j ; 0) = φi ,
and the transformed action–density s̃μ of sμ is solution

of ∂̃ν s̃ν = L
(
x̃μ, φ̃ j , ∂̃μφ̃ j , s̃μ

)
(x̃μ ∈ Ω̃), we get

Theorem 4 (Generalized Noether Theorem for sev-
eral fields) Let (42) be a symmetry group of the func-
tional S(δΩ) defined in (13), and let us assume the
canonical gauge (16). Then, the following quantity
[

∂L
∂

(
∂νφi

)ηi + Lξν − ∂L
∂

(
∂νφi

)∂μφi ξμ

]
e− f (xα),

(43)

where ξμ = dϕμ

dε |ε=0 and ηi = dψ i

dε |ε=0 is conserved
(constant of motion) on the solution of the generalized
Euler–Lagrange equation (11).

Proof The proof follows similarly the ones of Theo-
rems 2 and 3, by considering the Definition 5. 	


4 Examples

The conserved quantities in any dynamical system play
a major role in the analysis of the system. They enable
us to solve some problems without a more detailed
knowledge of the dynamics, for example, as found in
any undergraduate textbook in physics, we can solve
easily several mechanical problems by making use of
the energy and momentum conservations without the
necessity of solving the dynamical equation given by
Newton’s second law of motion. In general, the contin-
uous symmetries and its related conserved quantities
give us first integrals for dynamical systems that can
be used to simplify the problem. In this context, our
generalized Noether Theorems 40 and 43 provide us a
fairly automatic procedure to find conserved quantities
for dissipative systems.

In this section, we consider two examples in order
to illustrate the potential of application of our Action
Principle in Definition 2, and its related Noether The-
orems 40 and 43, to investigate dissipative systems. In
the first, we investigate the conserved quantities related
to the symmetries under space and time transformations
for a vibrating string under viscous forces. The second
example illustrates a conservation law related to inter-
nal (global) symmetry in a dissipative complex scalar
field system.

4.1 Spacetime transformations symmetries: a
vibrating string under viscous forces

In order to illustrate the potential of application of our
Action Principle 2 and generalized Noether theorems
(3) and (4) to investigate dissipative systems, we con-
sider a vibrating string under viscous forces (like the
frictional reaction of the air through which the string
moves, among others). This is the simplest continuous
mechanical system in which we can include dissipative
forces. We can also extend this method to bars, mem-
branes, etc. Let us consider a two-dimensional space–
time (d = 2), with x1 = t (t ∈ [ta, tb]), and x2 = x ,
(x ∈ [a, b]). The Lagrangian function for a vibrating
string under viscous forces can be given by [17]

L = μ

2
(∂tφ)2 − T

2
(∂xφ)2 − γ

μ
s1 (44)

whereμ is the mass density, T is the string tension, φ is
the string transverse displacement from equilibrium, γ
is the viscous coefficient of themedium, andwe choose
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γμ = (− γ
μ
, 0). The last term in (44) can be interpreted

as potential energy for the dissipative force [17]. The
first and second terms in (44) are the kinetic energy and
the elastic potential, respectively. From the Lagrangian
function (44), it is easy to see that our Action Princi-
ple gives the correct equation of motion for a string
under the presence of a viscous force proportional to
the first-order derivative ∂tφ. By inserting (44) into the
generalized Euler–Lagrange equation (11), we get

μ∂t tφ − T ∂xxφ + γ ∂tφ = 0. (45)

Since we have a frictional force, the total energy
of the system is not conserved. From our generalized
Noether’s Theorem 3, the conserved quantity under
time and space translations (ξμ �= 0 and η = 0) is

T ν
μe

γ
μ
t =

(
∂L

∂ (∂νφ)
∂μφ − δν

μL
)
e

γ
μ
t
, (46)

where T ν
μ is the well-known stress–energy tensor for a

scalar field φ, δν
μ is the Kronecker delta function, and

we set f (xα) = − γ
μ
t since ∂ν f = ∂sνL = γν =

(− γ
μ
, 0) is a constant vector. Since (46) is conserved,

we have

∂ν

(
T ν

μe
γ
μ
t
)

= 0. (47)

Then, the two conserved quantities are given by

Ee
γ
μ
t and Pe

γ
μ
t
, (48)

where

E(t) =
∫ b

a
T 1
1 dx

=
∫ b

a

(
μ

2
(∂tφ)2 + T

2
(∂xφ)2 + γ

μ
s1

)
dx (49)

is the total energy (sum of kinetic and potential ener-
gies), and

P(t) =
∫ b

a
T 0
1 dx = μ

∫ b

a
∂tφ ∂xφ dx (50)

is the total momentum of the system. Then, from the
conserved quantities (48) we can conclude that the
value of both energy and momentum decreases expo-
nentially in time. In particular, we have for the energy

E(t) = E0e
− γ

μ
t

= e− γ
μ

∫ b

a

(
μ

2
(∂tφ)2 + T

2
(∂xφ)2

)∣∣∣∣
t=0

dx,

(51)

where E0 is the initial value of the mechanical energy,
and, since the Lagrangian function is defined less than
a constant (actually, it is defined less than a total deriva-
tive) as in traditional calculus of variation, we set
s1|t=0 = 0 without loss of generality.

4.2 Time transformations symmetry: a
two-degree-of-freedom nonlinear dissipative
oscillator

In the present example, we consider a spherical pen-
dulum under frictional forces. A spherical pendulum is
a simple pendulum consisting of a particle of mass m
suspended from a fixed point O by a rigid rod of length
l and negligible mass. The pendulum is free to swing to
the entire solid angle about the point O . Consequently,
the particle of mass m moves on a spherical surface of
radius l in the gravitational field. A Lagrangian for this
system, in a spherical coordinate system, is given by

L = ml2

2

(
θ̇2 + sin2(θ)φ̇2

)
+ mgl cos(θ) − γ

ml
s,

(52)

where on this case x1 = t (d = 1), γ1 = − γ
ml , φ

1 = θ

and φ2 = φ (N = 2). The variable θ is the polar
angle (the angle between the vertical line and the rigid
rod), and φ is the azimuthal angle (the rotation angle
about the vertical line). As in the previous example,
the last term in (52) can be interpreted as the potential
energy of the dissipative forces acting in the particle.
The remaining terms are the kinetic energy minus the
potential energy of the conservative gravitational force
for the spherical pendulum [28]. From our generalized
Euler–Lagrange equation (14), we obtain the following
equations of motion for the pendulum

ml2θ̈ + γ l θ̇ − ml2 sin(θ) cos(θ)φ̇2 + mgl sin(θ) = 0

(53)

and
d

dt

(
ml2 sin2(θ)φ̇

)
+ γ l sin2(θ)φ̇ = 0. (54)

For γ = 0, (53) and (54) reduce to the well-known
equations of motion for the classical conservative
spherical pendulum [28]. On the other hand, as in the
simple example of a particle under frictional forces dis-
cussed in Sect. 2.1, the effective potential energy γ

ml s
for the dissipative forces in the Lagrangian (52) intro-
duces frictional forces proportional to the velocity in
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the equations of motion. In (53), we have a frictional
force proportional to the polar velocity vθ = l θ̇ and
in (54) a force proportional to the azimuthal velocity
vφ = l sin(θ)φ̇. As a consequence, the total energy of
the system, as well as the azimuthal angular momen-
tum pφ = ∂L

∂φ̇
= ml2 sin2(θ)φ̇, is not conserved. It is

important to notice that for γ = 0, Eq. (54) reduces to
the conservation of the azimuthal angular momentum
dpφ

dt = 0, as we should expect for a dissipationless sys-
tem. From our generalized Noether’s Theorem 4, the
conserved quantity under time translations (ξ1 �= 0 and
η = 0) is

H(t)e
γ
ml t =

(
ml2

2

(
θ̇2 + sin2(θ)φ̇2

)

−mgl cos(θ) + γ

ml
s

)
e

γ
ml t , (55)

from where it is evident that the Hamiltonian H(t) =
E(t), corresponding to the total energy E of the sys-
tem (kinetic energy plus the potential energy of both
conservative and dissipative forces), is not conserved
if γ �= 0. Actually, as in the previous example we have
for the energy

E(t) = E0e
− γ

ml t

=
(
ml2

2

(
θ̇2 + sin2(θ)φ̇2

)
− mgl cos(θ)

)∣∣∣∣
t=0

e
γ
ml t ,

(56)

where E0 is a constant. Consequently, the total energy
decreases exponentially with time. Finally, the con-
served quantity (55) obtained from our generalized
Noether’s Theorem 4 provides us a relation (56) that
can be used to eliminate φ̇ in the equations of motion
(53) and (54) facilitating the solution of this nonlinear
problem.

4.3 Internal symmetry: a dissipative complex scalar
field

A complex scalar field is the simplest problem dis-
playing internal symmetry. It appears in the descrip-
tion of quantum systems, where the complex field
φ describes the wave function of a physical scalar
field related to bosonic particles and its anti-particles.
It arises in the description of several quantum sys-
tems, for example, in the description of the collec-
tive excitation (phonon) in periodic elastic arrangement

of atoms/molecules in condensed matter (solids and
some liquids). In order to consider the simplest dissi-
pative (open) quantum system displaying internal sym-
metry, let us consider the following Lagrangian func-
tion

L = ∂μφ∂μφ∗ − m2φφ∗ − γμs
μ, (57)

where φ∗ is the complex conjugate of φ, m is the
mass density of the field φ, and the last term in
(57) can be interpreted as a potential energy of a
dissipative interaction. From the generalized Euler–
Lagrange equation (14) we obtain, by considering
φ1 = φ and φ2 = φ∗, the following equation of
motion:

∂μ∂μφ + mφ − γμ∂μφ = 0, (58)

that for γμ = 0, and ∂μ∂μ = 1
c2

∂2

∂t2
− ∇2, reduces to

the well-known Klein–Gordon equation.
The Lagrangian (57) has a continuous symmetry

related to phase changes of φ, since the transforma-
tion x̃μ = xμ and φ̃ = eiεφ (ξμ = 0, η1 = iφ, and
η2 = −iφ∗) leaves (57) invariant. Thus, from the gen-
eralized Noether theorem (43) we obtain the following
associated conserved current

jμ = i
(
φ∂μφ∗ − φ∗∂μφ

)
eγαxα

. (59)

Since currents of the form i (φ∂μφ∗ − φ∗∂μφ) have
the interpretation of electric charge (or particle num-
ber), from (59) we see that, as we should expect in
an dissipative (open) problem, the charge of a system
defined by the Lagrangian (57) decreases exponentially
in time when γμ = (γ, 0, 0, 0).

5 Conclusions

In the present work, we formulate a generaliza-
tion of the Noether Theorem for the Action Princi-
ple with action-dependent Lagrangian functions intro-
duced in [16,17]. When the dependence on the action
is removed, both the Action Principle and the general-
ized Noether Theorem reduce to the traditional ones.
Noether’s theorem is one of the most important the-
orems for physics in the twentieth century. It is well
known that all conservation laws in physics, e.g., con-
servation of energy or conservation of momentum, are
directly related to the invariance of the action under
a family of transformations. However, the classical
Noether theorem cannot yield information about con-
stants of motion for non-conservative systems since

123



Noether theorem for action-dependent Lagrangian functions 1135

it is not possible to formulate physically meaningful
Lagrangians for this kind of systems in the classical
calculus of variation. On the other hand, our recent
Action Principle with action-dependent Lagrangian
functions [16,17] enables us to construct meaningful
Lagrangian functions, which provide physically con-
sistent expressions for the momentum and the Hamil-
tonian of the system, for a huge variety of non-
conservative systems (classical and quantum). Conse-
quently, the generalized Noether Theorem we formu-
late in the present work enables us to investigate con-
servation laws for non-conservative systems. In order
to illustrate the potential of application of our Action
Principle and its related Noether Theorem, we con-
sider three examples of dissipative systems. In the
first, we investigate the conserved quantities related
to spacetime transformations symmetries for a vis-
cous vibrating string. In the second example, we stud-
ied the conservation law related to time transforma-
tions symmetry in a two-degree-of-freedom nonlin-
ear dissipative oscillator. Finally, in the last exam-
ple, we analyze the conservation law related to inter-
nal (global) symmetry of a dissipative complex scalar
field.
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